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Connectivity properties of classes of linear systems

RAIMUND OBER%

The number of pathwise-connected components of various classes of linear systems
is determined. The proofs are based on the representation of these classes of systems
in terms of balanced realizations. This provides a unified way of deriving well-known
results as well as the new results presented here.

1. Introduction

Brockett (1976) was one of the first to point out the importance of topological
investigations for system identification. He examined the space of scalar rational
transfer functions of degree n and proved that this space has n+ 1 connected
components. Glover (1975) showed that in the case of multivariable systems, however,
there is only one connected component. These papers were at the beginning of a series
of investigations into the topology of spaces of linear systems (see e.g. Segal 1979,
Helmke 1982, Delchamps 1982).

To define a topology on the set of linear systems of given order n consider the set
LM R™" x R*™*™ x RP*" x R?*™ of all minimal n-dimensional systems. We can put
a topology on LZ'™ by embedding this set in R"@*»*m*+Pm with the natural topology.
We now take the set of equivalence classes L2"™/ ~ in LF"™ with respect to the system
equivalence, ie. (4,, B;, C,, D,) ~(4,, B;, C,, D,) if and only if (4,, B,, C,,D,) =
(TAT™', TB, CT™!, D) for some invertible T. The space L?™/ ~ is endowed with the
quotient topology.

The number of connected components of L}''/ ~ was determined by Brockett as
n+ 1. Glover (1975) showed that if max (m, p) > 1 then L?™/~ has only one con-
nected component. The same results were obtained independently by Hanzon (1986)
and Ober (1987 a) for the subsets of asymptotically stable systems. An important
entity in the study of scalar systems is the Cauchy index of a transfer function.

Definition 1.1

Let p(x) and g(x) be relatively prime polynomials with real coefficients. The
Cauchy index C;.4(g(x)) of g(x) = p(x)/q(x) is defined as tt the number of jumps from
#y oo to -t co minus the number of jumps from + oo to ;— oo of g(x) as x varies from
— oo to + 00,

Brockett (1976) showed that the connected components in L!'!/ ~ are character-
ized by the Cauchy indices of the corresponding transfer functions.

Whereas there has been a considerable amount of work done on the space of
minimal systems, comparatively little attention has been given to other classes of
~ linear systems that are of equal importance in linear systems theory. In this paper we
shall determine the number of connected components for several classes of such

Received 22 February 1989.
t Department of Engineering, Trumpington Street, Cambrldge CB2 1PZ, UK.

0020-7179/89 $3.00 © 1989 Taylor & Francis Ltd.



2050 R. Ober

systems like non-strictly-proper scalar positive real and minimum-phase systems,
bounded real and allpass systems. The case of strictly proper scalar minimum-phase
and positive real systems has been studied by Krishnaprasad (1980) and Helmke
(1989). We take an approach to the proof of these results that allows us to treat the
different problems in a unified way. This is done by using balanced parametrizations
of the vatious classes of systems given by Ober (1988). These parametrizations have a
common structure, which can be exploited to prove our results in a unified and
elementary way. We therefore have a way of rederiving the results of Brockett (1976),
Glover (1975), Hanzon (1986) and Ober (1987 a) using virtually the same proof that
will yield our new results on the other classes of systems under consideration. The
results for asymptotically stable systems in Ober (1987 a) were proved using similar
techniques.

The paper is organized as follows. Section 2 contains a review of the canonical
forms derived by Ober (1988). It is seen that allpass systems are in some sense the
building blocks of general systems. Hence we first derive results for this class of
systems in § 3. General systems are considered in §4. In § 5 we show that similar
results also hold for discrete-time systems.

2. Canonical forms for multivariable systems

In this section we shall introduce several classes of multivariable systems and
review canonical forms for these systems. We first define the classes of systems that we
shall consider.

Definition 2.1
Let (4, B, C, D) € L?™ be a system with transfer function G(s) = C(s{ — A) " 'B+
DeTL™

(1) Asymptotically stable systems: the set of asymptotically stable continuous-time
systems in L2'™ is denoted by C>™ with TC2™ the corresponding set of transfer
functions.

(2) Allpass systems: the set of asymptotically stable allpass transfer functions, i.e.
G(s) € TC™ such that

G(5)G(—s)T=021 (s€C)

for some ¢ >0 is denoted by TAP, with A™ the corresponding set of minimal
state-space systems.

(3) Bounded real systems: the set of bounded real systems, i.c. (4, B,C, D) e C;'™
with I — DTD > 0 such that

I—-G(—iw)TG(iw) >0 (weR)

is denoted by BZ'™, with TBP"™ the corresponding set of transfer functions.

(4) Positive real systems: the set of positive real systems, ie. (4, B, C,D) e Ci™
with D + DT > 0 such that

G(iw) + G(—iw)T>0 (weR)

is denoted by P, with TP? the corresponding set of transfer functions.
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(5) Minimum-phase systems: the set of minimum-phase systems, i.e.
(A4, B, C, D) € C&'™, with D invertible, such that 4 — BD~1C has its eigenvalues
in the open left half-plane, is denoted by M7, with TM} its corresponding set of
transfer functions.

Ober (1988) derived canonical forms for these classes of linear systems. These
canonical forms will be the main tools in the later analysis of these sets. Before
reviewing the canonical forms, we need to introduce some notation and definitions.

Definitions 2.2
(@) A matrix B=(b; }); <i<k,1<j

5 5

< 1s called positive upper-triangular if there exist

indices
It <..<g<..<y<l
such that
b,,>0 forl<i<k
bi’j’—"o f0r1<]<t,and1<l<k
b;;e R otherwise
ie.
0 0 byy big+r
B= 0 (') (') see ? b2,t2 b2,lz+1
0 .. 0 O 0 .. 0 0 0 v 0 by b+

(b) A matrix A is said to be in r-balanced form, 1 <r < n, if for

A A
A=|: 1 lz:l, AIIE!R"XT
A21 A22

we have the following properties:
(1) Ay, is skew-symmetric;
(2) A,, and A,, are given by the set of indices
l=h<..<h<h, <..<h<n-—r
I<g, <. <g41<8&<..<g <r
in the following way:
(1) for Ay, =(au)1<ssr1<in-r
A, >0 forl<i<yq
a,,=0 fort>h, wherel1<i<gq

a,,=0 fort>h,ands>g;, where 1 <i<gq
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ie.
agz—l.hz—l gy 1,0y gy~ 1,hy+1
asz.hz -1 agz-hz 0
Agr+1,02-1 0 Y
A12_
Qg -1k Pgi—1m+1 o Qg —1h-1
Qg 0 0
0 0 0
|0 0 0 0 0 o
(i) A,, is given by
0 o,
—'az 0 0(3
—tX3 0 0
A22_
0 0 oA, —r
-, — T 0

where for 2<ig<n—r

=0 ifi=hforsomel<s<gq

o
>0 otherwise

(3) Ay, = —471,.

Let A =(a;j); <i<n,1<j<n; then we denote by
(1) [A]:=(a;j)1 <i<n.1 <j<n the lower-triangular part of A, i.e.
0 (=)
a;= .
a; (j<i)
(2) [41a =(di))1 <i<n1<j<n the diagonal part of 4, ie.
_ {0 (#i)
4= .
a; (j=1)

Ober (1988) showed that a transfer function G(s) in one of the classes of systems
discussed above can be realized by a system (A4, B, C, D) in standard form that is
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parametrized by a set of standard parameters:

6,>..>06;>..>0,>0

k

Ryseres Bjensy My neN, Y nj=n
i=1

rl,..., rj,..., rk rje[N, lgrlgmln(nl, m, p)

. T _
Uiy Ujoen, Uy Uje R, UjU;=1,
B,,... Ej,..., B, §j € R *™ positive upper-triangular
Ayyes Aoy 4y A;e R%*" in r-balanced form
5, DeRexm

in the following way: If (A, B, C, D) is partitioned according to n,, ..., nj, ..., iy, i.e.

A=(Aij)1si,jsk, Aijepmxnj
r’Bl—

B= Bj N Bjeanjxm
Bk_

C=(Cl,..., Cj""’ Ck)’ Cjeprnj
then

j

B ~ ~
(§1] Bj=<0>, where B; e R*™ is a function of B; and D;

(i) C;= (Cj, 0), where Cj e R?*" is a function of Ej, U;, 6; and D;

(A0
(ii1) ij = 0 0

i #j, where A;; € R"*" is a function of a;, o, B, B;, U, U; and D;

3 J 0 0
where ij e R"7*" is a function of g;, Ej, U; and D;
(v) D is a function of D.

The particular way in which the parameters enter the system matrices determines the
class of systems that is parametrized. We can now state the canonical forms for the
various classes of systems (Ober 1988).



2054 R. Ober

Theorem 2.1
(1) Minimal systems: the following two statements are equivalent:

(1) G(s) e TLY™;
(ii) G(s) has a standard realization (4, B, C, D) e R**" x R"*™ x RP*" x RP*™

given by a standard set of parameters such that

D=D
B;=B;S!?, whereS,=1+D'D
Cj=R,}/2UjAj9 where Aj=(§j§]-'r)1/2’ Rr=I+DDT

[o/(1+6?)B.Bf —a,(1+0?)AUTU;A/]

pN]

Y et—a?
+ B DTU;A; (i #))
_ 1—g¢? 1—g? .
9 20
(2) Asymptotically stable systems: the following two statements are equivalent:

(i) G(s) e TCP™,
(i) G(s) has a standard realization (4, B, C, D) e R**" x R**™ x RP*" x RP*™

given by a standard set of parameters such that

C,=U,;A;, where A;=(B;B)'"

A o
t J

- | . 1
A= ——[A2],— — A2
aj [Aj]l 20,][ ]]d

2
(3) Allpass systems: the following two statements are equivalent:

(1) A(s) € TAT;
(i) A(s) has a standard realization (4, B, C, D) e R"**" X R xm X B"*" x Rmxm
given by a standard set of parameters with k=1, D with DDT =621 and

U=—0"'DBTA™!, A=(BB")2, such that

D=D
B=8
C=UA, where A=(BB™)'/?
- 1 1
A= —— [Az]t— Cy [Az]d
] 20

(4) Bounded real systems: the following two statements are equivalent:

(i) B(s) e TBy™
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(i) B(s) has a standard realization (4, B, C, D) e R"*" x R™*™ x RP*" x RP>™
given by a standard set of parameters with o;<1for 1 <j<k and I — D™D
> 0, such that

o
()}

B,=B,S'?, where S=1-D'D
C,=RY2U;A;, where A;=(B;Bf)'?, R=I-DD"

iR
- 1

A,.j=m [o;(1~0?)B,Bf — 0,(1— 6})A,UTU;A;]

—BD"U,A; (i #))

- 1+a, 1+,

A= — [A2),— [A2],— B,DTU;A,

J
(5) Positive real systems: the following two statements are equivalent:
(i) P(s)e TPy,
(ii) P(s) has a standard realization (A, B, C, D) e R**" x R*™*™ x R™*" x R™*™

given by a standard set of parameters with o;<1 for 1<j<k and
— D™D >0, such that

D=I-D)"Y(I+Dy
B,=./2B;8'*(1-D)"', whereS=I—D"D
C;=+/2(I—D)"1RY*U,A,,

where A;=(B;B])'/?, R=I1-DD"

N

1 o

+B;§712(1-D")(I—D) " 'RY2U,A; (i #))
- 1+0? l+a
Ajj= d (A 2]1 ! (A 2]d

+ B,.s l/2(1 - DT)(I — D)™ 'RY2U;A,

(6) Minimum-phase systems: the following two statements are equivalent;

(i) M(s) e TMT,

(i) M(s) has a standard realization (A4, B, C, D) e R"*" x R**™ x R™*" x R™"*™
given by a standard set of parameters withg; < 1for 1 <j < kand D invertible,
such that

D=>b
;= B,(D"D)'?
C =D"T(D"D)'*(U;A;—;Bf), where A;=(B;B])'?
- 1 )
A= e [6(1—0?)B;Bf — a,(1 — 6?) A, UTU;A;]

2
61— j
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+BUA; (i#))

- 1+ 1+0?
A= ——"1[A?],— J
H o; 4 20;

[A?]y + B;U;A,

Having reviewed the canonical forms for multivariable systems, we can now state
those for scalar systems, which have a much simpler structure. Ober (1988) showed
that each transfer function in one of the classes of systems we are discussing has a
realization (A4, b, ¢, d) that can be parametrized by a set of standard parameters:

6,>..>0;>..>06,>0

k

Mgy ey Mjyuees My meN, Y nj=n
i1

S5 ees Sjyens S si==x1, 1<j<k

bl’a(l)la---’a(l)j’--"a(l)nl—l b1>0’ fx(1)j>0, 1<J<n1_1
bi, o)1, ves @(D);, .., i) g, — 1 b;>0, a(i);>0, 1<j<n—1

by, w(k)y, ..., a(K)j, ..., t(K)p =y b>0, a(k);>0, 1<j<n,—1
d deR

The standard system (A, b, ¢, d) is then given by
(1) b=(b,,0,...,0,...,b;,0,...,0,..., 5,0,..., 07T
- ~ J . ~ J [\ v

v
n, nj n
(2) ¢=(5;b,,0,...,0,...,5;b;,0,...,0, ..., 5,0, ..., 0)
\ ~- J 4 ~ J \ Y__J
ny nj ny
(3) For A =:(A4;j)1<i,j<x We have
(a) block-diagonal entries 4;;, 1 <j<k:
a;j (j)4
—a(j), 0 a(j)2
—a(j)2 0 0
Ajj= .
0 . 0 (f)n,-1
_a(j)nj—l 0

with g;; a function of b;, ¢; and d.
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(b) off-diagonal blocks A4;;, 1 <i,j<k,i#J:

ijs

a; 0 ... 0

0O 0 .. 0
Aij_

0 0 ... 0

with g;; a function of b;, b;, s;, s;, 0;, 6; and d.

We now state the canonical forms for scalar systems.

Theorem 2.2
(1) Minimal systems: the following two statements are equivalent:
() g(s) e TLy'%;

(ii) g(s) has a standard realization (4, b, ¢, d) e R"*" x R"*! x R! *" x R! *! given
by a standard set of parameters such that

—b;b; (1 —s;5;9;q;
a,-j= i’ J l“s}'d
1+d siqui+qj

(2) Asymptotically stable systems: the following two statements are equivalent:
() g(s) e TCyY;

(i1) g(s) has a standard realization (A4, b, ¢, d) e R**" x R**! x R *" x R! *! given
by a standard set of parameters such that

5;8;0,+0;

a;;
(3) Allpass systems: the following two statements are equivalent:
(i) a(s) e TA;";
(ii) a(s) has a standard realization (4, b, c,d) e R**" x R"*! x R! *" x R! *! given
by a standard set of parameters with k=1 and d = —s, ,, such that
—b?
a,, = 70‘,1—1
(4) Bounded real systems: the following two statements are equivalent:
(i) b(s) e TB,"';
(ii) b(s) has a standard realization (4, b, ¢, d) e R**" x R**! x R!*" x R!*! given
by a standard set of parameters with ;< 1, 1 <j<k, and |d| < 1, such that

—bib; (1 + s;5;p;p;
a;; = 3 X SSliby +s;d
1—d*\ s;5;p; + p;

(5) Positive-real systems: the following two statements are equivalent:
(i) p(s) € TP;;
(ii) p(s) has a standard realization (4, b, ¢, d) e R"*" x R"*1 x R1x" x R! *! given
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by a standard set of parameters with 6; <1, 1 <j<k, and d >0, such that

aij_2d(s.~sjp,~+pj) (1—s;p)(1 Sjl_’j)

(6) Minimum-phase systems: the following two statements are equivalent:

(i) m(s) e TM};
(ii) m(s) has a realization (A4, b, c, d) e R " x R**! x R'*" x R1*!, where 4, b, d

are as in the standard realization, given by a standard set of parameters with
0;<1,1<j<k, and d#0, such that

s = “ble
v dz(sisjpi +p))
The c-vector is given by

(1—sp)(1— sij)

1
c=;((s1 —06,)b,,0,...,0,...,(5;—0;)b;,0,...,0, .., (s, — o) b, 0,...,0)
\

J . J o\ J
Y g \d

ny n; n,

It is interesting to note that the canonical forms for the various classes of linear
systems have an almost identical structure. In particular, the parameter spaces differ
only in a few details. In addition, the conditions on the parameters that guarantee that
a system is in a certain class of systems are very explicit. This makes it possible to
study some geometric properties of these classes of systems in an elementary and
unified way.

With the exception of minimum-phase systems, all scalar systems that are given in
one of the previously stated canonical forms have the so-called ‘sign-symmetry
property’, i.e.

=SAS, b=Sc"
where S is.a diagonal matrix, whose diagonal terms are + 1. In particular, if

Ry,..., B

FRNS MR PR

js eees Sk

are the usual structural parameters of a scalar system given in one of the canonical
forms of the previous theorem then the sign-symmetry matrix § is

- -~

S=diag(s; [, Sl s Sid)

J

where

I,,=diag(+1, =1, +1,.., (- )"+ ) eR*"

Remark 2.1

An important property of the sign-symmetry matrix of a system is that it can be
linked to the Cauchy index of its transfer function. A consequence of a result in
Anderson (1972) is that if a system is sign-symmetric with respect to a sign symmetry
matrix S then the Cauchy index of its transfer function g(s) is given by

Cina(g(s)) =trace S
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3. Allpass systems

In the previous section we have seen that systems for which the structural
parameter k = 1 are in some sense building blocks of general systems. Allpass systems
were shown to be a particular class of such systems. In this section we are going to
determine the number of connected components for such systems. The subclass of
Lym(Cp™, BR™, Py, My) such that k = 1 is denoted by L27(CE'T, BE™, P7\, M™)).

The following lemma will be important in determining the number of connected
components in the case of scalar systems. Part (1) is due to Brockett (1976).

Lemma 3.1
(1) The map
L1527
(Aa b’ (& d)HCind(C(SI - A)_ lb + d)
is continuous.
(2) The map
L' >R

(A, b,c,d)—cexp(toA) b
to > 0, is continuous.

Proof

For Part (1) see Brockett (1976). Part (2) follows immediately by recalling the
identity

n—1
exp (toA) = _Zo Ai(to) A
Where /‘:’l(to) € R’ 0 < i <n-— 1. : "”7*[':}

Since we are studying systems with non-zero D-terms, we have to consider the
topological structure of the various sets of D matrices used to parametrize the different
classes of systems. The following lemma summarizes several well-known connectivity
results.

Lemma 3.2
(1) The set {D e R?*™} is pathwise-connected.
(2) The set {D e R?*™|I — D™D >0} is pathwise-connected.
(3) The set {D € R™*™| D invertible} has two connected components.
(4) The set {D e R™*™| DD =¢?I, ¢ >0} has two connected components.

We can now state the main theorem of the section. The proof of this theorem is
based on the explicit construction of paths in the class of systems we are considering.
Such a construction is possible using the canonical forms and parametrizations given
in the previous section. Those parametrization results give sufficient conditions for a
state-space system to be in a particular class of systems. Since these conditions are
very explicit, it is straightforward to see that a constructed path connecting two
elements of a class of systems is itself in this class.
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Theorem 3.1

If max (p, m) > 1 then the sets L7/ ~, C2'7'/~, By:T/~ and Py,/~ have one
connected component, whereas M,/ ~ has two connected components. The sets
Lt/ ~, Ch}/~, Bii/~ and P,,/~ have two connected components whereas
M} ;/ ~ has four connected components.

Proof
The following lemma will be necessary for the proof.

Lemma 3.3

Let (A, B, C, D) € L2 (CE'T, BE:T, Py, My ;) be given by the parameters g, r, U,
B, A and D. There exists a continuous path in LZT(CET, BL'T, Poy, M) connecting
(4, B, C, D) with (A, B,, Cy, Dy) e LE7(CRT, BRT, Py, Myy) that is given by the
parameters 6, =0, r; =1, Uy =(5,,0,...,0T e RP*%, 5, = +1, B, =(1,0, ..., 0) and
A,, which is such that

[a,, 1 ]
-1 0 . 0
A=
0 01
i ~1 o]

with a,, a function of ¢; and D.

Proof of Lemma 3.3

First note that 4 can be continuously perturbed such that the first super-diagonal
of A contains 1s and that the first subdiagonal contains —1s. Then the remaining
entries 4 can be brought continuously to zero. Now, the B and the U parameters are
continuously changed to be of the desired form. This can be done such that the path
always stays in the parameter space. Hence we have constructed a continuous path in
the respective class of systems connecting (4, B, C, D) with (4, B,, C,, D,). a

We now consider the case where max (p,m)> 1. The following lemma is
formulated also to include the case k > 1, which will be useful in the following section.

Lemma 3.4
Let max (p, m) > 1. If (4, B, C, D) is given by the parameters

Gyseees O

Byyeees My

Fiseestys Fj=12

Uy,.. U, U;=(5;0,..,07, s
B,,...,B., B;=(1,0,..,0)

I
H

~
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0 1 . ]
10 . 0
Ay, A, A= RN
o .0 1
L —1 0_
D

then (4, B, C, D) can be pathwise-connected in LEZ™(CE™, BE'™, Py, My) with the
system (A,, B, C,, D,) e L2™(C>™, BE'™, P7', M7} given by the parameters

01, vesy O-k

nl, ceey nk

B, ..., B, =(1,0 0)
S0 _
-1 0 0
Ao A A=
0 0 1
L —1 0_
D

Proof of Lemma 3.4

Case 1: p>2. Since p=2, it is straightforward to construct a path in RP*!
continuously connectmg U; with U =(0,1,0,...,0)T such that the unit length of the
vector is preserved. U can now be connected w1th U; by a continuous path that does
not leave the parameter space.

Case2: p=1. In this case U;=s;, s;= t1. I 5;=1, there is nothing to show.
Therefore we can assume ;= —1. Since, by asszumption, max (p, m) > 1, we have
m> 1. So we can connect B;=(1,0,...,0) with B;=(0, 1,0, ...,0). This in turn can
be connected with B =( —1 0,. 0) A state-space transformation with Q=
diag (In,+...+n;_1» — -1, I,,j+l+ +,,k) [=diag (1, —1,1, —1,...) will bring the system
to the desired form. Note that the path can be constructed continuously The path
connecting the system with parameter B to the system with parameter B is clearly in
the requlred class of systems. The same holds for the path connecting the system with
parameter B ; to the system with parameter B since the systems along the path are in
canonical form after a state-space transformation with Q. O

The parameter spaces for ¢ and for D are pathwise-connected for all the classes of
systems that we consider, with the exception of M}, / ~, in which case the parameter
space of the D-matrices has two connected components. Hence we can summarize
and conclude that for max (p, m) > 1 each system in LE'T(CET, Bi'T, Py 1) can be

e
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pathwise-connected with any other system in LET(CEYT, B2T, Py, ). Since the param-
eter space of D-matrices for systems in M,/ ~ has two connected components, we
have My ,/~ has two connected components. The continuity of the natural pro-
jection then implies the result for the corresponding quotient sets.

We now consider the case of scalar systems, i.e. p=m = 1. First take the case of
systems in L;'{/~, Co:i/~, By'{/~ and P} ,/~. By Lemma 3.1, the function
(A, b, ¢, d)—cb is continuous on each subset of L!'!. But cb =5, b? # 0 for the classes
of systems we are considering. Therefore there are at least two connected components
in the respective quotient sets. Lemma 3.3. together with the fact that the d-terms are
parametrized by connected sets shows that L!'!/~, Cy:}/~, Bi:l/~ and P} /~
have two connected components.

In the case of systems in M} ,/~ note that the condition d # 0 implies that the
parameter set of the d-term has two connected components. Again examining the
quantity ch =d ™ (s, — o) b2, we see that M} | has at least four connected components.
Lemma 3.3 implies that there are exactly four components. The result now follows by
the continuity of the canonical projection. O

As a corollary, we obtain the following result on allpass systems.

Corollary 3.1
A7/~ has two connected components, m > 1,

Proof

A’/ ~ has at least two connected components since the set of D-terms has two
connected components. We are going to show that a system (A4, B, C, D) in A} can be
continuously connected with a system (4,, B;, C,, D,) as given in Lemma 3.3 with
D, = —s,0l, s, = + 1. First continuously perturb D to obtain D,, for some s,. Then
continuously change A to obtain the desired structure for 4,. Now B can be
connected with B,. Since U= —o~'DBTA™!, this implies that U has been con-
tinuously changed to U, =(s,, 0, ..., 0)T. Since ¢ can be continuously perturbed, we
have therefore shown that A7/~ has at most two connected components. O

4. General systems

Whereas in the previous section we determined the number of connected
components with structural parameter k = 1, in this section we shall consider the same
problem for systems without the imposition of such a constraint.

The main result is as follows.

Theorem 4.1

If max (p, m) > 1 then the sets L2'™/~, CB™/~ BE™/~ PR/~ have one con-
nected component, whereas the set M7/~ has two connected components. If p=
m=1then L}''/~, C}'/~, B}-!'/~ and P!/~ have n+ 1 connected components
whereas M}/ ~ has 2(n + 1) connected components.

Proof

We first prove two lemmas.
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Lemma 4.1

Let (4, B, C, D) e LE™(CE™, B2™ P M7') be given by the parameters

Gyy..., O
By Iy

| S

Uy, ..., Uy
B,,..., B,
a,.., 4,
b

Therl

h (~A,~B, C,D) can be pathwise-connected in LP-™(CP™, BP™ P? M™) with
(A, B, C, D) in the same class of systems where (A4, B, C, D) is given by the parameters

O,,... Uy U;=(5;,0,..,007, s;= +1
B,,...B., B;=(1,0,..,0)
0 1 T
-1 0 0
Aoorhe A=
0 0 1
| -1 0 |
b
Proof of Lemma 4.1 |
The proof is analogous to the proof of Lemma 3.3. L D
Lemma 4.2

Let (A4, B, C, D) € LE"™(CP™, B2™, P, M) be given by the parameters
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C0 1 i

-1 0 0
Ao Ay A=

0 0 1

| —1 0]
D

~ oA o e,

Then (A, B,C, D) can be pathwise connected in L5™(CP™, Bp'™, P™, M™) with
.B,

(A, B, C, D) in the same class of systems where (4, B, C, D) is given by the parameters
k=n
Gryoees Ops G, =0,>6,>..>06, >
6'n,+1=62>&n,+2>'”>5’n1+n1>
&n,+nz+1=63>&n,+n2+2>'”>5'n,+nz+n3>
~n,+...n,<_.+1"=‘Tn,(>5;..+...n,(_,+2>"'>5'n>0
Ay enes Ay, =1
U,..U0, U;=@,0,..,07
§,=51, §3= =58y, §3=51,.0, 8, =(—1""1s,
§n,+1=329 §n,+2=—'s2, §n1+3=s2""’§n,+nz=(—l)n2+1s2
Spitng+1 =53 Spi4n+2= —S3, §n|+nz+3=s3""’§n1+nz+n3=(_1)n3+ls
Suitotme 141 =Sk §n,+...+nk_,+2=_sk,"'s§n=(_l)nk+lsk
B.,...B, B,=(10,..,0)
D

Proof of Lemma 4.2
In order to avoid unnecessarily complex notation, we shall give an example that is
sufficiently general to show all essential parts of a proof. Assume that the system
(A, B, C, D) has three outputs (p=3) and two inputs (m=2) and is given by the
following set of parameters:
n=>5
6,>0,>0

n=3 n,=2

with the other parameters as specified above. Hence A is of the form
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a;, 1 0 a, O

-1 0 1 0 O

A= 0 -1 0 0 O
1

0

a;, 0 0 a,,

[ 0 0 0 -1 0]

B is given as

B=p(D)

S = OO -
S O O O O

L. -~

where B(D) is a function of D depending on the class of systems considered, and for
(4, B, C, D) e L2™(CE™, BE'™, Py), C is given as

s; 0 0 5, O
C=yD){0 0 0 0 O
0 00 0O

where y(D) is a function of D depending on the class of systems considered, whereas
for (A, B, C, D) e M, C is given as

81—0'1 0 0 52—62 0
C=yD)yl o0 00 0 O

0 0 0 0 0

First consider the system (4, B, C, D) given by the parameters

n=>5

k=5

G,=0,>6,>03>6,=06,>65>0

=R, =fy=H,=fs=1

U;=(3,0,07, §=s;, §=—8, §=5
§4=5;, §5=-—3,
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such that A4 is given by

where

with f;; an expression depending on the class of systems under consideration. The B-
matrix is given by

b,
b,
B=p(D)| b,
bs
bs

S O o o O

with B(D) a function of D. For (A4, B, C, D) € LE"™(CE™, Be™, P?), C is given by

C=%D)| 0 0 0 0 0

where 7(D) is a function of D depending on the class of systems under consideration,
whereas for (4, B, C, D) e M™, C is given as
(81 —61)by (8,—63)by (855—03)by (54— B4)bs (85— 35)bs
C=%D) 0 0 0 0 0
0 0 0 0 0
We proceed stepwise and first consider the first three states corresponding to the
first (n, dimensional) subsystem of (A, B, C, D). Within this gubsystem, we shall also
proceed stepwise and consider the third state of (A4, B, C, D) corresponding to the

parameter &5. From the above representation of (4, B, C, D), it follows that we have
constructed a path in the respective class of systems if we let

by,—0
G350,

at the same rate. Since for some constant J;;> 0, | f;;| > 6;; > O for all i, j along this



path, we have

Connectivity properties of classes of linear systems

a;3—~0
a3, =0
a3, —0
a43—0
a3s—0
as3 >0
a3 2%

a3y = — 0,

2067

for some a, > 0. Thus the limiting system (A4,, B, C,, D,), which is again in the class
of systems under consideration, is given by

_au
az
A= 0
a4
| 951
B, =B1(D~)
C, =71(D~)
or
(8, —61)by
C,=7:(D) 0
0

a; 0 ay,
Az Oy Oz4
—a, 0 O
s 0 a4,
as; 0 as,
b, 0]
b, 0
0 0
b, O
L bs 0 _
[5,b, $,b,
0 0 O
| 0 0
(8§, —63)b,
0 0
0 0

0 0
0 0

0 (54—04)bs (85—65)bs

0 0
0 0

if (4, B, C, D) e M™. The structural parameters of (4,, B;, C,, D,) are given by

k=4
6’1, &2, &4’ &5
n1=1, n2=2, n3=1,

n4=1,
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As the next step, we let
b,—0
G, 0,
at the same rate. This implies similarly that (4,, B,,C,,D,) is continuously

connected with the system (A,, B,, C,, D,) in the same class of systems, which is
given by

a, o 0 a4 a5
-, 0 a2, 0 O
A2 = 0 _az 0 0 0

as1 0 0 ay, aus
| 951 0 0 asq ass |
with ¢y = lim a,,,
by=0,3,-8,
b, 0]
0
Bz=ﬂz(5) 0 0
by O
| b5 0

C,=71,(D)] 0 0 0 O

or

(5y—61)by 0 0 (5,—84)bs (55—35)bs
C,=7v,(D) 0 00 0 0
0 00 0 0
if (4, B, C, D) e M.
As a final step, it remains to consider the second subsystem of (4, B, C, D)
corresponding to the parameter n, = 2. In the same way as shown above, it is possible

to find a continuous path in the class of systems under consideration to connect
(A,, By, C,, D,) with (A, B, C, D) by letting

b,—0
Gs— G, =0,
at the same rate. Hence we have constructed a path connecting (,Z, B, € 5) with

(A, B, C, D) without leaving the class of systems in which these two systems lie. O

Combining these two lemmas, we have shown that each system in the set of
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systems under consideration can be pathwise-connected with a system in the same
class whose structural parameter k = n and whose parameters U; are given by U; =
(5;,0,...,0), s;= £ 1. In the last step the distinction between multivariable systems
and scalar systems will become important.

Case 1: max (p, m) > 1. Now consider the system (A4, B, C, D) given in Lemma 4.2. By
Lemma 3.4, there is a continuous path in the class of systems connecting (4, B, C, D)
with a system (4, B, C, D) that has the same parameters with the exception of U;,
which are now given by U; = (1,0, ..., 0). The only parameters in this system that are
not fixed to certain constants are the 6;- and the D-parameters. Since the g; can be
continuously perturbed to any other possible values, the number of connected
components for multivariable systems only depends on the number of connected
components of the parameter space of the D-parameter. But this parameter space has
one connected component for all classes of systems, with the exception of the class
M™, where there are two components. Therefore the sets L™/ ~, CE'™/~, BE™/ ~,
P?/~ have one connected component whereas M)/~ has two connected
components.

Case2: p=m=1. The following lemma is the main part in proving the last step
for scalar systems.

Lemma 4.3
Let (A, b, ¢, d) be a system given by the parameters
k=n
6,>0,>..>0,
Sty SjsSjt1seens Sus  Sjay = —8;
by,..., b,

This system can be pathwise-connected with the system (A4,, b, ¢,, d,) in the same
class of systems given by the parameters

k=n

6,>0,>..>0,

~ ~

Sl,...,§j,§j+1,...,sn, s~,~=s,- (l#j,j"’l)

~ ~

5= =55 Sj+1=5;

Proof of Lemma 4.3

Using the same approach as for Lemma 4.2, we construct a path in the class of
systems under consideration connecting (A4, b, ¢, d) with (4,, b,, ¢5, d,) that is given
by the parameters

k=n-1

m=1, .., nm_=1 n=2 n, =1 .. n=1
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0,>..,0j-1>0j41>...>0,

S1yeves Sjs it 25 +ens S

bl, eeey bj, bj+2, very bn

«(j)
This is done by letting
bj+1—0

J
Oj+17*0;

at the same rate such that a(j); = lim  a;;,,.

by, 10,05, —0;
Now consider the system (A4,, by, ¢;,d;). If we let
Gj+1—>0;
at the same rate then we have constructed a path connecting (4,, by, ¢, d,) with the

system (A,, b3, c3, d3) that is, however, no longer in canonical form. But it can be
easily verified, by applying the state-space transformation

. i [ o1
Q=diag(l;-,,0,1,-;-,), 0= 1 0

that (A,, b,, ¢,,d,) and (A3, bs, c3,d;) are equivalent systems. This implies that
(A3, b3, c3, d3) is an element of the class of systems under consideration. Therefore we
have constructed a continuous path in the respective class of systems connecting
(4, b, c,d) with (4,,b,,¢,,4d,). O

Applying this lemma several times, we can now find a path connecting each system
(4,5, ¢ d) to a system given by the following parameters:
k=n

6,>06,>..>0,>0

S1seees Sigs Sigh 15 -+>8p Sy = =8 =—L S =..=s5,=1
by,.... b,
d

For given fixed i, it therefore follows that there is only one connected component for
systems in L)1, C!-1, B!'! and P}, whereas for systems in M, we have two connected
components since the set of d parameters has two connected components.

Since there are n + 1 possible choices for iy, there are at most n+ 1 connected
components in L', C}'!, By'' and P;. M, has at most 2(n+ 1) connected
components. To show that these are the exact numbers of connected components,
note that by Remark 2.1 the Cauchy index of the transfer function of the system
(4,5, ¢ d) is given by n—2i,, provided (4, b, ¢, d) is sign-symmetric. Lemma 3.1
therefore implies that L!'!, Ci'', Bi'! and P, have exactly n+ 1 connected com-
ponents. Given a number n—2i, i=0,...,n, it is straightforward to construct a
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minimum-phase system having Cauchy index n — 2i. This implies that M} has pre-
cisely 2(n + 1) connected components. Therefore we have proved the result. E]

The result on L'/~ was first proved by Brockett (1970. Glover (1975) showed
the multivariable version for L™/ ~. Using the same approach as here, the results for
asymptotically stable continuous-time systems were derived by Ober (1987 a). Results
on the number of connected components for scalar positive real and minimum-phase
transfer functions without the condition that the systems are nonstrictly proper were
given by Krishnaprasad (1980).

5. Discrete-time systems

In the previous sections we determined the number of connected components for
various classes of continuous-time systems. In this section we shall establish the
corresponding results for discrete-time systems. This will be done by mapping
continuous-time systems to discrete-time systems via a bilinear transformation. This is
a well-known technique to map results of one class of systems to the other and was
introduced to the study of topological results by Ober (1987 a).

We first define the classes of systems that will be considered.

Definition 5.1
Let (4,B,C,D) e R"*" x R**™ x RP*" x RP*™ and G(z) = C(zI — A) !B+ D.
(1) If all eigenvalues of A are in the open unit disk then (A, B, C, D) is called
discrete-time asymptotically stable. The set of discrete-time asymptotically-

stable systems in L2'™ is denoted by D2™, with TD?'™ the corresponding set of
transfer functions.

(2) A system (A, B, C, D) € D?™ is called discrete-time bounded real if
I—G(e™®)TG(e®) >0 (0€e[0,2n))
The set of discrete-time bounded real systems in D}*™ is denoted by DB2'™, with
TDBE™ the corresponding set of transfer functions.
(3) A system (A, B, C, D) € DI*™ is called discrete-time positive real if
G(e™ )T+ G(e%) >0 (0€[0,2n])
The set of discrete-time positive real systems in DP? is denoted by D?™, with
TDP? the corresponding set of transfer functions.
(4) A system (A, B, C, D) € Dj»™ is called discrete-time minimum phase if

G(z) = %;2 TD,,":';

%)
The set of discrete-time minimum-phase systems in D™™ is denoted by DM™,

with TDM;; the corresponding set of transfer functions.
(5) A system (A, B, C, D) € D™ is called discrete-time allpass if for some ¢ >0

G(e®)G(e™®)T =21 (0 [0, 27])

The set of discrete-time allpass systems in D™ is denoted by DAY, with TDA™
the corresponding set of transfer functions.
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The following proposition summarizes some basic results on the bilinear
transformation.

Proposition 5.1
The transformation

TUR™:. TCE'™ > TDE™
z—1
G Gy(2) =G | ——
()Gl C(Z - 1)
is a bijection with inverse

(TUZ™~': TD2™ - TCL™

64969 =6, 122

that induces a bijection between TB2™ and TDB?™. If p=m then TU,"™ induces a
bijection between TA™ and TDAJ, TPy and TDPy, as well as TM; and TDM}'.

This mapping also has a formulation in terms of state-space systems that is given
in the next proposition (Anderson et al. 1974, Glover 1984, Ober 1987 b, 1988).

Proposition 5.2
The transformation

suz™: cem— prm
(Aca Bc’ Cca DC)H(Ad’ sz Cd’ Dd)

(Aa, Bsy Cay D) =((I— A) (I + 4,), J2(I—A)'B,, J2C.(I1-A)*, D.+
C.(I — A,)"!B,) is a bijection with inverse

(SUZ™)~t: Dpm > CE™
(Ad’ Bda Cda Dd)H(Aca Bca Cc’ Dc)

(Ac’ Bc’ Cc’ Dc) = ((I + Ad) h l(Ad - I), \/E(I + Ad)— 1Bd9 \/Ecd(l + Ad)_ la Dd -
C,(I + A;)”'B,) that induces a bijection between BZ™ and DBY™. If p=m then
SU™™ induces a bijection between AT and DA}, Py and DP}, as well as My and
DM™. The map SUZ™ preserves system equivalence as well as sign symmetry of
state-space realizations, ie. for (A4, B, C.,D)=(SU"™)" 1((Ay, By, Cy4, DY),
(Ay, By, Cy4, D;) € D™ we have

A, =SATS, B,=SCT
if and only if

Ad == SA}S, Bd = SC}

for some S=diag(+1,..., £1).

An important corollary to these results is that the map T is in fact a homeomorph-
ism (Ober 1987 a).
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Corollary 5.1
The map T is a homeomorphism.

Hence we can carry all topological results over from the continuous-time
investigations.

Theorem 5

Multivariable systems (max (p, m) > 1): DA™/ ~ and DM™/ ~ have two connected
components. DCP»™/ ~, DB}'™/ ~ and DP}/ ~ have one connected component.

Scalar systems (p=m=1): DA,/ ~ has two connected components. DC}'!/ ~,
DB,''/~ and DP!/~ have n+1 connected components, whereas DM}/ ~ has
2(n+ 1) connected components.

The results presented in the previous theorem are new, with the exception of those
on asymptotically stable systems, which were first established by Ober (1987 a) using
the same approach and independently by Hanzon (1986) using different methods. It is
interesting to compare the results on non-strictly-proper scalar minimum-phase
systems presented here with those by Krishnaprasad (1980) and Helmke (1989) on
strictly proper scalar minimum-phase systems. Whereas in their case there are n(n+1)
connected components, in our case there are n + 1 connected components.
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