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ABSTRACT L S Ll VI

Canonical forms are derived for the set of minimal systems of given order from a
canonical form for a class of coinner transfer functions. One of these canonical forms
is in terms of so called Riccati balanced coordinates. The application of this work to
model reduction is discussed.

1. INTRODUCTION

This paper is concerned with canonical forms for linear, finite dimen-
sional state space systems. Recently, Ober (1987a) introduced a canonical
form for the special class of asymptotically stable systems in terms of
balanced realizations. This canonical form gives some insight into structural
properties of these systems, and is particularly useful from a model reduction
point of view. A canonical form with similar properties will be derived in this
paper for the set of all minimal systems of a given state space dimension.

} This work was completed while the second author was a Ph.D. student at the University of
Cambridge, England.
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We define a canonical form in the following way. Let L?™ be the set of
all minimal state space systems (A, B, C, D) with n dimensional state space,
m dimensional input space, and p dimensional output space. Two systems
(A,, B,,C,, D)) and (A,, By, Cy, D,) in L™ are called equivalent if there is
a nonsingular matrix T such that A, =TA,T~!, B;=TB,, C;=C,T"!; and
D, = D,. It is well known that two minimal systems are equivalent if and only
if their transfer functions are identical.

A canonical form is a map

r:Lpm L™

such that
I((Ay, By, Cy, D,)) =T((Ag, By, G,, Dz))
if and only if
(A,, B,,C,, D,) is equivalent to (A,, B,,C,, D,).

Section 2 reviews the results of Ober (1987a) on balanced realizations of
asymptotically stable systems. In Section 3 the concept of a normalized
coprime factorization of a transfer function is introduced; and it is shown that
coprime factors correspond to a particular class of asymptotically stable
coinner transfer functions. We can then derive a canonical form for minimal
state space systems on the basis of a canonical form for this class of coinner
systems. This is done by exploiting the connection between a transfer
function and its normalized coprime factors. Section 4 then gives canonical
forms for minimal systems in terms of so-called “normalized left coprime
factor balanced” coordinates and “Riccati balanced” coordinates. The latter
is shown to be an extension of the work by Jonckheere and Silverman (1983),
who gave a canonical form in terms of Riccati balanced coordinates for the
special case of single input, single output systems with distinct characteristic
values. The results of Sections 2—4 are then discussed in Section 5 in a model
reduction framework.

2. BALANCED REALIZATIONS FOR ASYMPTOTICALLY
STABLE SYSTEMS

In this section we are going to review the canonical form for asymptoti-
cally stable and minimal systems of given dimension, i.e. systems in CP'™ as
given in Ober (1987a). This canonical form was derived in terms of balanced
realizations, which are defined as follows.
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DeFiNiTION 2.1 (Moore, 1981). Let (A, B,C, D) € GP™. Then
(A, B,C, D) is called balanced if for

W = f * e ABBTe4 gt
° 0

W, = _/(; we"fT(J‘TCe‘A dt

we have W, =W, =: Z =: diag(o0,, 6,,...,0,). = is called the gramian of the
system (A, B, C, D). The positive numbers 0, 0,,..., o, are called the singu-
lar values of the system (A, B,C, D).

Alternatively, balanced realizations can be characterized as those systems
whose corresponding Lyapunov equations have identical and diagonal solu-
tions.

THEOREM 2.1 (Moore, 1981). (A, B,C, D)€ CP™ is balanced if and
only if there exists a diagonal matrix 2 > 0 such that

AZ+3AT= — BBT,
ATE+3A=-C"C.
In this case Z=W,=W,.

It was shown in Ober (1987b) that all pass systems have a particular
canonical form which is a building block for the canonical form of general
systems. For convenience of notation we therefore introduce the following
notion, which describes the essential features of structure of the C and A
matrix of an all pass system in the canonical form mentioned above.

DeFiniTION 2.2. We say that
(C,A) AeR™"*, CeRP*n,

is in standard all pass form if:
(1) We have

CTC =diag(A, 1,5, Ayl ..., M), 0,...,0)

with A} >X,> -+« >A;>0and r,:=2!_,7(i) < p. In particular C has
the following structure:
C=(cC(1),...,C(3),...,C(1),0,...,0),

where for 1 < i <, the submatrix

C(i) = (C(i)st)1<s<p eRP®

1<t gr(i)
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has lower triangular form specified by indices
1<s(i,1) <s(i,2) < -+ <s(i,r(i))<p
in the following way:
c()sin.e >0,  1<st<r(i),

c(i), =0, s<s(i,t), 1<t<r(i),

i.e.
0 0 0 0
0 0 0 0
(i) si 1 0 0 0
x 0 0 0
x C(i)s(i,2),2 0 0
x X 0 e 0
C(i)= . :
C(i)s(i,S),S 0
x
: 0
: : x (1) s(i. rtin, i)
x X x ce x
x x x . :

(2) For A partitioned as
Ay Al2]
A= R A . ER™0XM
[A2l Ag H

we have:

() A,, is skew symmetric, ie. AT, = — A,;;
(ii) there is an integer g > 1 and a set of double indices

(g(1), h(1)),....(g(i), h(i)).....(&(q). h(q))
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with

l=g(1)<--- <g(i)<g(i+l)<--- <n-r,

I=h(g)<--- <h(i+1)<h(i)<--- <5

such that for

A2l =t (ast)l<s<n—ro

lgtgr
we have
@giiy hiiy > 05 1<ixgq,
a,5.=0, t>h(i), 1<i<gq,
ast=0’ S>g(i), t>h(i), 1<i<q,
ie.
x x x x x T Gguy ey O
x x x x X X 0 0
x x x x x x 0
x x X Qo ne O 0 0
Ag = r x x 0 0
x x x 0
g 0 0 0 O
0 0
_ T
(i) Ajp= - Ags
(iv) we have
0 -—a, 0
(12 O - a3
ag 0
Agp =
n—r,
0 @y, 0

27
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with a;, 2 <i < n— 1, given by

a={0 if i=g(s)forsomel<s<gq,
! >0 otherwise. '

The following result, which was proven in Ober (1987a), gives a canonical
form for state space realizations of asymptotically stable and minimal sys-
tems. Conversely, it also shows that if a state space system is of this form it is
automatically minimal and asymptotically stable. Let TC?-™ denote the set of
transfer functions of systems with state space realizations in C>™.

TueoreM 2.2. The following two statements are equivalent:
(1) G(s) € TCP™.

(2) G(s) has a realization (A,B,C,D)ER" " XR"*™ XRP*" XRP*™
given in the following way: There are positive integers

k
n(1),...,n(j),...,n(k) suchthat 3} n(j)=n
j=1
and numbers
0,> - >0;> >0, >0

such that if (A’ B’ C) D) is partitloned as
A=:(A(i’j))l<i,j<k, A(i,j)eR"(i)Xn(i)’
Bl

B=|gil, Bi e R™MD*m,

C:=(Cl,...,Cj,...,Ck), CjeRan(j)’
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we have
() (C7, A(§, §)) is in standard all pass form and

I .7 -
A f) = = 5 (€)C1+ A, )
1

with 1y(§) = rank[(CTCI] < min(p, m);
(ii) we have
: . 11/2 i ) . ' ]
Bl = [(C])TC]] (%’) With U]ERTO(])XM’ U](UI)T_—.I

100§

(iii) we have

A(i,i)=(A(i)’j) g) 1<i,j<k, i#j,

with

A(i’ ]) = (a(i’ j)st)l<s<ro(i) € R o) X10(j)
1<t <rp(f)

such that

(i 1) = =53 o) BT — oD Te().]

2
v_oj

1

= =3 [ole@)lle(i) llu(i)u(i)7 - aic(i)Te().).
P9

where b(i), is the sth row of B', u(i), is the sth row of U', c(i), is

the sth column of C', and | c(i),||=Vc(i);c(i),;

(iv) DERP*™,
Moreover, (A, B,C, D) as defined in (2) is balanced with gramian

= diag(olln(l),...,ojln(j),..., okI”(k)).

The map which assigns to each system in CP'™ the realization given in
(2) is a canonical form.
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Proof. Follows from Theorem 6.1 and Theorem 7.1 in Ober (1987a) by
taking adjoints. m

The following corollary specializes these results to the case of single input,
single output transfer functions.

CoroLLARY 2.1. The following two statements are equivalent:

(1) g(s) e TC
(2) g(s) has a realization (A, b,c,d) ER™" XR"*! x RV " xR'*1, which
is given by the following parameters:

n(D),..., n(j)-.., n(k), n(j)EN, Z5_in(j)=n,
Sypreees Sjreers Sk s;=x1,1<j<k,
6>+ >0;> - 06,>0, o, €R, 1<j<k

cpa@p..r e ey €> 0, al);> 0, 1<j<n(D) -1,
3 02y, 2o, Apgy—1, €>0,a(2);>0,1<j<n@) -1,

Cro @k) sy k) ey k) y- 1 >0, a(k); >0, 1< j<n(k)~1,
deR

in the following way:
@) c=(cl,0,...,0,...,cj,O,...,O,...,ck,O,...,O).

R ———— L
n(l) n(j) n(k)
(i) bT=(slcl,0,...,0,...,sjcj,O,...,O,...,skck,O,...,O).
N — t——
n() n(j) n(k)
(iii) For A =:(A(i, j))1 <, j <k we have
(a) block diagonal entries A(§, j), 1< j<k:
a(j.j) —al(ih 0
a(j) 0 —a(j)e
a(j)e Y
A, i) = a(j)s O

—a(§)np-1

0 a(fup-i” O
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with a(j, j) = = (1/20;)c}.

(b) Off diagonal blocks A(i, j), 1<, j<k, i+ j:
a(i,j) 0 --- 0
ap=| O 0
o 0 0
with
a(i,j !
,])=_mcicr
(iv) d €R.

Moreover, (A, b, c,d) as defined in (2) is balanced with gramian
= = diag( 0,1 Unqys-- jln(j),...,okln(k)).

The map which assigns to each system in C}! the realization given in (2)
is a canonical form.

It is interesting to observe that a realization (A, b, ¢,d) as given in part
(2) of the previous corollary is in fact sign symmetric with respect to the sign
matrix

S= diag(slln(l)""’ Sjln(j)""’ skln(k))’

I,,=diag(+1, —=1,+1, —1,...) e R"DX"D),

ie.
= SAS, b=Sc".
The Cauchy index of a single input, single output system, which is

important in the study of the topology of transfer functions [see Brockett
(1976) or Ober (1987¢)] is defined as follows:

DerFiniTioN 2.3. Let p(x) and g(x) be relatively prime polynomials
with real coefficients. The Cauchy index C, 4(g(x)) of g(x)=p(x)/q(x) is
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defined as the number of jumps from — oo to + oo less the number of jumps
from oo to + oo of g(x) when x varies from = oo to + 0.
Pra S

A result due to Anderson (1972) implies that if a system is sign symmetric
with respect to a sign symmetry matrix S, the Cauchy index of its transfer
function is given by

Cina((s)) = trace(S).

As systems which are parametrized in the previous corollary are sign symmet-
ric, the Cauchy index of a transfer function in TC}! can thus be calculated
on the basis of the signs (s;); o; < , Which are part of the parametrization.

3. NORMALIZED LEFT COPRIME FACTORIZATIONS

In this section we will give a canonical form for a special class of coinner
systems which has a similar structure to the canonical form for C»™ in
Theorem 2.2. We will also show that a one to one correspondence exists
between this class of coinner functions and normalized coprime factor
representations. Further it is shown that a function in TL?'™, the set of
transfer functions of systems in L?'™, can be directly related to its normal-
ized coprime factor representation. In Section 4 we are then going to give a
canonical form for L?™ by exploiting these preliminary results.

Before we introduce the normalized left coprime factorization of a
transfer function in TL?'™, we will first discuss coinner transfer functions.

DerFintrion 3.1. A transfer function G(s) € TCP'™, p<m, is called
coinner if

G(s)G(-s)"=1

for all seC.

A system theoretic criterion for a transfer function to be coinner is given
in the next proposition.

ProposiTion 3.1 (Doyle 1984). Let (A, B,C,D)eCP™, p<m, and
let P = PT> 0 be such that

AP + PAT= — BBT,
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Then G(s) =C(sI — A)™'B + D is coinner if and only if

(i) CP + DBT=0,
(i) DDT=1.

For a class of coinner functions whose realizations have a particular
D-term this characterization can also be rewritten as follows.

ProposiTion 3.2. Let (A
tion

B.,C,D,)€CPr™, with p<m, and parii-

c? “Fe?

B.=[B,.B,], B eR"*",
D,=[D,.D,], D, eR"*".
If P=PT> 0 is the solution to

AP + PAT= — BBT

and D,,= (D,," > 0, then
G(s)=C(sI—A,) ‘B, +D,

is coinner if and only if

: = T Typ-1
() B,= —(PC; +B,D,)D, ",

)¢y

(i) D, is such that I - D, DT >0 and D, =(I — D, D)2
Proof. Assume that G(s) is coinner. Then

C,P+D,BT=C,P + D, B + D, Bl =

cgcg
and hence

" B, = — (PCT+ B, DI )D;".

)
The fact that D,D] =1 together with the assumption that D, = D] >0
7~ immediately implies (ii). The converse follows similarly. [ ]

We denote by TCI?™*? the class of coinner transfer functions in
TCP-™*? which are such that for G(o0) =:[D,, D, |, with D, € R?*?, D_ is
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symmetric and positive definite and for which the largest singular value of a
balanced realization of G(s) is strictly less than one. The symbol CIZ'™"?
denotes the set of minimal state space realizations of transfer functions in
TCIP-™*P,

Before we show that the set TCI?»"™*? is in fact closely linked with the
set TL?'™, we prove the following parametrization result for transfer func-
tions in TCI?-™™*P.

THeEOREM 3.1.  The following two statements are equivalent:

(1) G(s) & TCIP-™+»,
() G(s) has a realization (A, B, C,, D,) € R™" X R"®+™ X
RPX" X RP>X(P+*m) given in the following way: There are positive integers

k

n(1),...,n(j),...,n(k)  suchthat Y n(j)=n Y

ji=1

and numbers s

1>°1>"'>°j"'>°k>0
such that if (A, B,,C,,D,) is partitioned as

c? c? c?

AC=:(Ac(i,j))l<i,]-<k, Ac(i,j)e[Rn(i)Xn(j),

Bc‘l
B.=|B!|, Bl € R (ne),
B
c,=(CL,...,Cj,...,CF), CieRP*"D,
then:
() D,=[R"'?D,,,R"'? for a matrix D,, €ER?*™ with R:=I1+
meD:m'

(ii) (Ccf, A (i, ])) is in standard all pass form, where

. | N
A )= -;;(Cc’) Ci+ A )
i

with 1 j) = rank((C})"C/) < min(p, m).

/I)

>3
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(iii) Bi=:[B}, Bi], BI €R"*™ is given by

c? Py b0
B! = BiS~2~o,(C/)'R"/*D,,,
Bi= - |BiS~\2DL, +o,(C{) "R,

where

b= 1o [(e)el] (),

~~ with UIERTO(])X'" U](UI)T Ir olj)? and S=1+ mePm
(iv) We have

Ac(i,j)=(Ac((i)’j) g), 1<i,j<k, i#j,

with

Ac(i’ j) = (ac(i’ j)st)l<s<ro(j) e RO Xnlh)

1<t <r(j)

such that

i, 1) = === [0B(D).B()T ~ 0 (1~ ) e Te( )],

i

where b(i), is the sth row of B' and c (i), is the sth column of C..
Moreover, (A C,, D,) as defined in (2) is balanced with gramian

c? Bc’
2 dlag( aq@ys.- jIn(j)""’okln(k))'

The map which assigns to each system in CI?*™*? the realization given in
=~ (2) is a canonical form.

Proof. To show that (1) implies (2) let (A, B,, C,; D,) be a realization of
G(s) given in the balanced canonical form of Theorem 2.2 with gramian Z .
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Firstly note that as (A, B,,C,, D,) € CI?"™*P, the singular values are such
that

1>0,>--- >0,>0.

Part (i) follows, as G(s) € TCI?"™*? and hence, by Proposition 3.2, D, has
the form

D,=[D,.D,]=|R""D,,, R~/

pm>

with D, ==D_'D, and R:=1+ D,,,Dj,,. The inverse D! exists because
by assumption D, = DCT2 > 0.

Since (A, B,,C,, D,) is the canonical form of Theorem 2.2, A (j, j) and
CJ are as in (ii). To show (iii) and (iv), partition B, =: (B, BCZ], B € R"™>™,
and introduce the matrix

B= (B, +=C'R"VD,,)s"2,
with S=1+ D] D,.. Then

B, = BS™'2—-3 CIR™'?D,,,
and with Proposition 3.2

B, = — (LT + B, DI, R™/2)RV?
cc ;" pm

Ca

— (2 CTRV? + BS~2D], - S CTR™V?D,, DT,

m*~pm

—(=CTR"2+ BS~/2DL,,).

Thus we have that
T T T
B,B'=B, Bl + B, Bl
= Bs~'B"+ Bs~-V*D!, D, S /*B"
+32 CTR-V2D,, DI, R~'2C,2, + 2 CTR7ICE,
— Bs~V2p!, R-V2C,2, + BS™'/?Df,R™'*CZ,
-3 C'R"?D,, S 2BT+ 3 CTR-'*D,,, S~ \/*B"

=BBT+32CIC3,.

~
G

3
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If we partition

Bl
B=|gi|, Bieprixm,
o
we obtain that
T

T

Bi(B!)" = B(B')" +a¥(Cl)"C},

c

and as (A, B, C, D) is balanced, we have the identity
B/(B!)" = (¢2)'ct
which then implies that
Bi(B1)" =(1-4?)(c!) C.

Hence there exists a unique U/e€R™D*m UIUI = I, such that
(iii) is satisfied. Moreover 1(j) = rank [(CJ)TCJ] < min(p, m),
which shows (iii) and completes the proof of (ii).

To complete this part of the proof it now remains to evaluate the entries
a i, j), of A i, j), 1<i,j<k, i#j:

1 T T
a (i )= =3 [ob).b4)7 — oei)ej) ]

9;
1 T i T
= ———3[0b(0),5(j)7 ~ ai(1 - o} )e(D)ie(§)e].

where we have used that B,Bf = BB"+ 2 C'C,= .
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As a first step in proving that (2) implies (1) we show that G(s) € TCP"™
using Theorem 2.2. Analogously to the derivation above we obtain that

B,BT=BBT+3 CIC,S (%)

c cTc

and thus for 1 < j <k,

Bi(B)" = Bi(B)" +o7(Ci)C!

(1-02)(ci) ci+a¥(Ci) Cl
=(ci)'ct

which implies that

B~ ()] (7]

for some UJ € R X(m+P) gych that UIUI) = Ly
Again using ( *), it follows that

B(i),B(j)F =bi).b(i)7 — ooeli)i e

and hence

a.(i 1) = 5 [ 0BT~ o1 = 0F)es) e ()]

1 T T
= <= [0bli).63)7 — oei)ie(§).]-

This shows that (A,, B,, C,, D,) is given in the parametrization of Theorem
2.2 and hence G(s) € TCP™*? with gramian 2.

To complete the proof we have to show that G(s) is coinner. But
D,DT =1, so it remains to show, following Proposition 3.2, that

B, = —(=CT+ B, DL RV?)R2,
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where B, := [B B ], B, €R"*™. But this is the case, since for 1< j<k
and B’— (B, ] Bf ER"(J)X"' we have that

~ [o)(ci)" + BL DL, R-172| RV2

= —o,(C{)"RV2 - Bis~ 2D, +¢,(C!)"R"2D,, D,

pm*~pm
= — [o,(c)"R22+ Bis~1/2DT |

= Bi
Bc2‘ | |

Again, specializing to the case of least input and output dimensions we
obtain the following corollary for systems in TCI!-2.

CorovrLary 3.1.  The following two statements are equivalent:
(1) g(s)eTCI}2

(2) g(s) has a realization (A_, b, c,d,)ER™"XR"*2XR*" xR!*2
which is given by the following parameters:

n(l),...,n(j),..., n(k), n(j)eN, E5_n(j)=mn;

Spreees Sjreees Sho sj=-l_-1,1<j<k,
1>0,>-:->0;>---0,>0 o, €R, I<j<k
cpal),...,aD)..,al) gy, €,>0, o1);>0,1<j<n(l)-1
Co, 2)p,. s a(2)ye s @) g1y 6> 0, a(2);>0,1<j<n@) -1

ck,a(k)l,...,a(k),.,...,a(k)n(k)_l, ¢, >0, a(k)].> 0,1<j<gsn(k)—-1
dpmeIR

in the following way:

1
i) d, =— d,,.1].
@) 1+d,2,,,.[ pm> 1]

(ii)) c.=(¢;,0,...,0,..., ¢

n(l) n(§) n(k)
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(iii) We have

(oldpm sjy1—of ) cl( o, +s,d,, 1—0f )

0 0 n()
0 0
. 1 C]( ]dP'"—sfvl—’ofz) (0 +s]dpm 012)
K v : :
0 0

(okdpm syl —of ) ck( o, + 8 d |1 - 0f )

9 n(k)

(iv) For A, =(A (i, j))1<;,j<x we have
(a) Block diagonal entries A (j,§). 1< j<k:

a.(j,j) —a(ih 0
a(j) Y —a(f)e
a(j)e 0
Al )= (i)
—a(f)ajp-1
0 a(§Inp-1 0

—c2
2oj i
(b) Off diagonal blocks A (i, §), 1<i, j<k, i #j:

with a (f,j)= —

afij) 0 - 0
. 0 o --- 0
Ac(l’])__. : . :

o 0 - 0
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with

H_ g2
cicjl—o;

) ‘/__ 2’
o; +s;5;00/1—0;

(lc(i,j) == 6‘/1

Moreover, (A, b, c,d) as defined in (2) is balanced with gramian
2 = diag( 0,1,y ++» 6 ncjyo 5 Orlachy) -

The map which assigns to each system in CI}2 the realization given
in (2) is a canonical form.

The following definition of the normalized left coprime factorization of a
transfer function shows that coinner transfer functions are naturally associ-
ated with such a factorization. For a reference on the role of coprime
factorizations of transfer functions in the design of control systems see
Vidyasagar (1985).

Derinirion 3.2. Let G(s) be a pXm transfer function. Then the
transfer functions M(s) € TC?'?, N(s) € TCP'™ constitute a normalized left
coprime factorization of G(s) if:

(i) M(o0) is nonsingular.

(i) G(s)= M(s) N(s).

(iii) There exist V(s) € TCP:? and U(s) € TC;"? such that for all s C
we have

M(s)V(s)+ N(s)U(s) = I,.
(iv) [N(s), M(s)] is coinner, ie.
N(s)N(-s)T + M(s)M(-s)" = I,

for all seC.

The following statement formalizes the existence and uniqueness proper-
ties of these normalized left coprime factors.

ProposiTion 3.3 (Vidyasagar, 1985). The normalized left coprime fac-
tors N(s) and M(s) of a transfer function G(s) exist and are unique to
within left multiplication by a unitary matrix.
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We are now going to review a state space construction of the normalized
left coprime factors of a transfer function G(s) € TL? ™. To do this we have
to introduce Riccati equations for systems (A, B,C, D) in L?™,

The generalized control algebraic Riccati equation (GCARE) is given by

(A- BS'IDTC)TX +X(A- BS“DTC) — XBS~'BTX +C"R"!C=0,
and the generalized filtering algebraic Riccati equation (GFARE) is given by
(A-BS™'D'C)Z+Z(A - BST‘DTC)T —ZC"™R!CZ + BS'BT=0,

with R=1+ DDT and S=1+ DTD.

These Riccati equations occur in the solution to a particular linear-
quadratic-gaussian (LQG) control and filtering problem: the GCARE is the
Riccati equation associated with the steady state output regulator design
when input and output cost weights are chosen to be the identity. Dually, the
GFARE is the Riccati equation associated with the steady state optimal filter
design, where measurement and input noises have identity covariances.
[More details can be found, for example, in Kwakernaak and Sivan (1972).]
Note that the case D =0 allows considerable simplification of these equa-
tions.

It is well known that minimality of (A, B, C, D) is sufficient to ensure
that symmetric and positive definite solutions to the GCARE and the
GFARE exist, are unique and are the stabilizing ones:

ProrosiTioN 3.4. If (A, B,C, D) is controllable (observable), then
there exists a unique solution X=XT>0 (Z=Z2Z7>0) to the GCARE
(GFARE). If the control gain F and the filter gain H are defined to be

F:=—S$"YD’C + B"X),
H:= - (BDT+ZCT)R},
then the eigenvalues of

A+ BF, A+ HC

corresponding to these solutions have strictly negative real parts.

The use of Riccati equations in this coprime factor context has its basis in
the results of Nett et al. (1984), who showed that left and right coprime
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factors of a nominal plant can be generated from a state-feedback -observer
configuration.

The following proposition shows that the LQG problem mentioned above
yields the desired feedback—observer configuration for normalized coprime
factors of a transfer function G(s).

Proposition 3.5 (Vidyasagar, 1988). Let (A, B,C,D)E€ LP'™ with
transfer function G(s)=C(sI — A)~'B+ D, and let H— — (ZCT +
BDT)R™! be the filter gain corresponding to the unique positive definite
solution to the GFARE. Then with R =1+ DD,

N(s)=R"Y2C(s - A— HC) '(B+ HD)+ R~'/2D,
M(s)=R"Y2C(sI— A— HC) 'H+R"'/2
are normalized left coprime factors of G(s), i.e.
G(s) = M(s) "'N(s).

Remark 3.1.  The previous proposition shows that each transfer function
G(s) has a normalized left coprime factorization G(s)= M(s) 'N(s) such
that M(oo) = M(o0)" > 0. It follows from Proposition 3.3 that a normalized
left coprime factorization with this property is in fact unique.

Using Proposition 3.5, a realization of the transfer function [N(s), M(s)]
can be obtained. The next proposition shows that the positive definite
solutions to the Lyapunov equations of [ N(s), M(s)] are closely related to the
positive definitive solutions of the GCARE and GFARE of G(s).

ProposiTion 3.6 (Glover and McFarlane, 1988b) With the notation of
Proposition 3.5, define

A,=A+HC, B =[B+HD,H],
C,=R™Y2C, D,=[R"V2D, R"\72].

Then (A_, B,,C,, D,) is a minimal state space realization of [N’(s), M(s)]
such that the positive definite solutions to the Lyapunov equations

AP +PAT= —B BT

cTc?

40 +0a.= - Clc,
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are given by
P=7Z,
Q=X(I+2x)"",
where X, Z are the unique positive definite solutions to the GCARE and the
GFARE of (A, B, C, D) respectively.
A further property of P and Q is given next.

ProposiTiON 3.7 (Meyer, 1988; Glover and McFarlane, 1988b). With
the notation above,

I>PQ
or

0,<1,

where o, denotes the maximum singular value of a balanced realization of
[N(s), M(s))-

Remark 3.2. Definition 3.2 and Propositions 3.5-3.7 show immediately
that the matrix [N(s), M(s)] containing the normalized coprime factors of a
transfer function G(s) is in TCI?™*?,

We are next going to establish that each transfer function in TCIZ-™*P
can be related to a transfer function in TL?'™ in this way.

ProposiTion 3.8. Let G(s)=:[N(s), M(s)] € TCI»™*?, M(s) being
p X p, have a realization given by (A_, B, C,D) where B.=[B,,B,],
D,=:[D,, D, ] are partitioned conformally with [N(s), M(s)].

Then N(s) and M(s) are normalized left coprime factors of the transfer
function G(s) € TL?™ defined by the state space realization (A, By, Cy, Dy)
given by

D,= D;lecl,

G = D“C

BO Bc Dc ch
2 Cg

A,=A,- B, D;'C,.
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Proof. We first have to show that (A,, B,, Cy, D;) is minimal. For this
purpose we rewrite the matrices of the system (A, B,, C,, D,) in terms of the

matrices of the system (A, By, Gy, D,). Since (A, B,,C,, D,) is asymptoti-
cally stable, there exist P = PT> 0 and Q = QT > 0 such that

AP+ PAT= —BBI,
ATO+QA, = -CTC,.
The fact that the system is in CI?»™*? implies by Proposition 3.2 that

p,=(1-p,pr)"”*

1 ¢y
and
B, = - (PCT+ B, DT )DL
2 1 1 2
But these identities imply that
D, = R™V2D,,
D, =R-V2
C2
with R=(I - D, DT)™ =1+ D,D{ and that
B, = — (PCT+ B, DT )R>
2 1 1

C:

Using the definition B,=B, — B, RY 2D and setting S=I+ DID,=
(I-DID, )", we thus have that

B, = (B, - PCID,)s™},
B, = — (B,Df + PCT)R!
and hence

A,=Ay—(B,Df + PC{)R™C,

c
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with
C.=R™Y2C,.
Also note that
B.BT = B,S™'BJ + PCJR™'C,P.

We are now in a position to reformulate the Lyapunov equations correspond-
ing to (A,, B,,C,, D,). We have

0=A,P+PAT + B BT
— [ Ao~ (BoDF + PCT)R™C| P + P[ Ay — (B,D + PCT)RIG,)
+ B,S™ BT+ PCTR™'C,P
= (Ao — ByDIR™'G,)P + P(A, — B,DIR'C,)"
— PCTR™IC,P + B,S™ BT (1)
and
0=ATQ+ QA +CIC,
= (Ao — B,DIR™'C,)"Q + Q( A, - BODgR—ICO)
+(I - QP)CTR™'C,(I - PQ) — QPCTR™'C,PQ
= (Ao~ ByDIR™1C,)Q~* + Q~Y(A, - B,DIR™'G,)"
+(Q7' = P)GTRT'C(Q™* — P) — PCJR'C,P. @)
Subtracting Equation (1) from Equation (2), we obtain
0= (Ao - BoDoTR_lCo)(Q_l - P) + (Q_l = P)(Ao - BoDoTR_ICo)T

+(Q7' = P)GR™IC(Q ™!~ P) = B,S'Bs. (3)
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If (A, By, Cy, D,) is not controllable, then there exists a vector x,# 0 and
A € C such that xJA,=Ax¢} and x$B, = 0. Then by (3) we have

0=Ax3(Q™'=P)xo+Ax(Q '~ P)x,
+23(Q7' = P)CR™'C(Q ™!~ P)x,
and hence

ReA = — 1 xo(Q_ = P)CRIC(Q™' - P)x,

2 (0 T-P), <0

noting that x(Q ™! — P)x,> 0 by Proposition 3.7.
But by (1) we have that

Ax2Pxy+ AxiPx,— xPCIR'CyPxy =0
and hence

1 x3PCIR™IC,Px
ReA = — 90 %0 0,
2 x3Px,

which implies that Re A = 0 and hence that
xFPCT=0.
But, since A, = A, — (B,Dj + PC§ )R™'C, we now have that
xdA, =x3[Ao— (ByD + PCT)R™'Cy| = x3Ao=Ax{,

which implies that A, has an eigenvalue with Re A = 0, which is a contradic-
tion to the asymptotic stability of A, and hence (A, B,, Gy, D,) is control-
lable.

The observability of (A,, B,, G, D,) follows by a straightforward applica-
tion of the Popov-Belevitch-Hautus test.

The minimality of (A,, By, Cy, D,) now implies that P = PT> 0 is in fact
the unique stabilizing solution of the GFARE as given in (1).

Now let Nl(s) M i(s) be the normalized left coprime factors of G(s) as
given by the construction in Proposition 3.5. If (A D ) is the

c? 0’
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corresponding realization of [Ny(s), My(s)], then, since the filter gain of
(Ag, By, Co, Dy) is given by

H=-(PCI+B,DI)R"'=B_,

Co

it follows immediately that

(A..B,.C,.D,)=(A

c? T¢?

B.C,D,),

which shows that N(s)= Ny(s), M(s)= M,(s) are normalized left coprime
factors of G(s). [ ]

4. CANONICAL FORMS FOR MINIMAL SYSTEMS

We are now going to derive a canonical form for systems in L?™ on the
basis of the results in Section 3. We will exploit the relationship between the
transfer functions in TL?*™ and coinner functions in TCI?>™*? and make use
of the canonical form for systems in CI?>™*? given in Theorem 3.1.

The relationship between TLP?'™ and TCI?*™*? which was partially
established in the previous section is precisely formulated in the following
proposition.

ProrosiTion 4.1.  The map
CF:TL?™ - TCIP-™*?,
G(s)~ [N(s), M(s)],
which assigns each G(s) € TLE'™ to the coinner transfer function consisting
of the normalized left coprime factors N(s), M(s) [i.e. G(s)= M(s)"IN(s)],
with M(o0) = M(o0)" > 0, is a bijection.

If (Aq, By, Gy, Dy) € L2™ is a realization of G(s) € L2™, then CF(G(s))
has a realization (A, B,,C,, D,) given by

D,=[R~Y2D,,R"'/?],

C,=R-'/%G,, e
B,=[B,+ HD,, H],
A=A, + HC,

with R =1+ DD} and filter gain H= — (B,Df + ZCT)R™ .. 5
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Conversely, if (A, B.,C,, D,)€CIF'™*? is a realization of a transfer
function G(s) € TCIP»™*?, then CF~YG(s)) has a realization
(Ag, By, Gy, D) given by

D, = Dc; chl,
Co= Dc;‘Cc,
B,=B, - B, D;'D,,

A,=A,-B D:IC

cg'"cg C

with D,=[D,,D,), D, eR"*™, B,=[B,, B, ], B, ER"*™,

Proof. It was shown in Proposition 3.8 thdat CF is surjective. The fact
that CF is injective follows from Proposition 3.3 and Remark 3.1. The state
space formulae have been established in Proposition 3.6 and Proposition 3.8.

]

The state space formulae of this proposition allow us to derive a canonical
form for L?™ from the canonical form for CI»™*?,

THEOREM 4.1. The following two statements are equivalent:
1) G(s)eTLE-™,

(2) G(s) has a realization (A, By, Cy, D)) ER™ " XR"*™ XRP*" X RP*™
given in the following way: There are positive integers

k
n(1),...,n(j),....,n(k)  suchthat Y n(j)=n

j=1
and numbers

1>0,> - >0;> - >0;,>0
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such that if (A, By, Gy, D,) is partitioned as

A0=:(A0(i:j))l<i,j<k: Ay(i, j) eRPOXD,

By

By= | B, Bj<Rmm,
B;

C,=(C...,Cj,....,C¥), Ci eRP*"),

(i) D, e RP*™,
(ii) We have

. , A12f 17
Bj=\1-a?|(c))"R"'c}| ( ((7)’)31/2,
with Ui € R™D*™ such that UU =1, ,,
(j) = rank[(C({)TR_ICJ] < min(p,m),

and R=1+ D,Dj, S=1+ D{D,.
(iii) (R™'2CJ, Ay(j, j)) is in standard all pass form with

20-2—'1 AT . . : ~
Ay(j,j) = ;o (C§) R™'C§+ B{DFR™'Ci+ Ay(j. §)-
i

(iv) We have

Ao(i,j)=(A°(é’j) g), 1<i,j<k, i#j,

with

Aq(i, i) = (ao(is j)st)l<s<fo(i) SR
1<t <re(f)
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such that
1
a(i, j)st = 02— o2 [ojbo(i)ss_lbo(j):T - "i(l - Uiz)co(i)fR‘lco(]')t]
i i :

+ bo(i)sDoTR_lco(l')n

where by(i), is the sth row of B} and cy(1), is the sth column of C{.

The map which assigns to each system in L2™ the realization given in
(2) is a canonical form.

Proof. The proof is based on the canonical form for CIP>™*? and the
bijection CF between TL?™ and TCIP-™*? given in Proposition 4.1.

To show (1) implies (2) let G(s):=CF(G(s)) have the realization
(A, B,,C,, D,) given in the canonical form of Theorem 3.1 with gramian 2.
Then by Proposition 4.1 a realization (A, By, Cy, D,) of G(s) is given by

D,=RY2D,,
1
C,= R2C,,
B,=B, — B,R2D,,
1 2 1
A,=A,— B RC,,
2

where R-/2=D, , with D,=[D,, D, ], D, €R"*™, and B,=[B,,B, ],
B, € R"*™ Note that D,=R"2D, corresponds to the D,, matrix in
Theorem 3.1 and that (i) is satisfied.

If we partition the systems in the standard way according to the struc-
tural indices n(1), n(2),..., n(k), we obtain, noting that R =(I — D, DI)~',
S=(I- DZ;Dc,)_l»

B{=Bj - BjR'?D,

— ﬁjs_1/2+ BjS_l/zDZ;RDcl— oj(ch)TDcl+ UI(CJ)TDCI

- Bisl2,

where B is as in Theorem 3.1. This shows that B, is as postulated in (ii).
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Now since
B.RV°C,= - [o,(C})"R-V2+ BiS~/2D] ],
- - [a(c)" + BDF| R G,
we have that
(i Yo = aclis )+ oico(i) R () + boli) DR ()
= ﬁ[ojbo(im"b(f)f— oi(1= 07 )eofi) R o )
+0feo(i) R o), — i 7eo(1) R ool ).
+by(i) DgR Yeo(§),
= sl 5T 1= o)) )
+by(i) Dy R~ eo( ) -
Similarly, for the block diagonal entries A, j) we have

A(j.j)=Ajj)— BiRV2C]

1 ) o ) ) ) )
(CHR-'Ci+ A (j, §)+ oj(cg)TR-lcg+ BJDIR™'C}

=
207 -1 AT ; ; .~
= —5.—(G) R7'C{+ BIDJR™'C{+ A((j, j),

]

where we set A(j, j)=A(j, j). Since (A, By, Cy, Dy) is uniquely deter-
mined by (A, B,,C,, D,), we have thus constructed a canonical form for
TLP™,



CANONICAL FORMS 53
We will now show the converse, i.e. that (2) implies (1). Given a system
(Ao, By, Gy, D) which is parametrized as in (2), construct the system
(A, B,C,D,)by
= =[Rr-12 -1/2
Dc_'[Dcl’Dcz]—[R 1 D09R / ]:
C,=RV2C,,
Bc = [Bcl’ B02] = [BO + HODO’ HO] 4
A ,=A,+HC,,
\ where R=1+ D,DJ and

Hy= —(B,DI+=CI)R™!

with 2, = diag(oyL,qy,-- -5 01z -5 Okl nry)-
We have to show that (A, B, C,, D,) is parametrized as in the canonical
form of Theorem 3.1. Partitioning in the standard way, we have

B} = Bj+ H{D,
~ . ~ _ AT
= Bi§'/2~ BiS'*DIR~'D, - 0,(C§) R~'D,
= Bis=2— g,(c})"R"'/2D,,

B} = H}

= —(B!S~V2DI + 6,CTR™1/2),

and hence, since Bi:= BjS~1/2 is of the demanded form, B/ as in Theorem
3.1, where we set D, = D,. It is also easily verified that A_ is parametrized
as in Theorem 3.1. Thus (A, B,,C,, D,) € CI?*™*?, and hence by Proposi-
tion 4.1 (A,, By, Gy, D,) € L™, n

~ Specializing the statement of the previous theorem to the case of single
input, single output transfer functions, we obtain the following corollary.
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CoroLLARY 4.1. The following two statements are equivalent:

(1) g(s)e TLLL

(2) g(s) has a realization (Ag, by, ¢y, dy) ER™ M XR™™ ! XRY" X R,

which is given by the following parameters:

n(L),...,n(j),..., n(j), n(j)eN, 5 _n(j)=n
Spreees Sjrenes S sj=il,1<j<k,
1>0,> - >0;>-- >0, >0, o0,€ER, I<j<k

epe@)y...a)y a1 €>0, al);>0,1<j<nl) -1,
j<n@-1

Co 0(2),, ..., a(2)].,..., apg-1 >0, a(2)]. >0,1<

Ca(k)y, ooy a(k)ye s a(k) gy, >0, a(k); >0, 1< j<n(k) -1,

do,eR

in the following way:

(i) doER.
(i) ¢, =(¢;,0,...,0,. c],O, ,0,..., ¢,0,...,0).
————— P —— [ S ——
n(1) n(j) n(k)
(iii)

=( sl\/lr— 0fc,,0,...,0,..., syfl— 0/ ¢;,0,..., 08,1 -0ic,,0,...,

n(1) n(j) n(k)

(iv) For Ay =:(Ag(i, }1<i, j<k we have
(a) Block diagonal entries A(j, j), 1< j<k:

a(j.j) —a(j) 0
"‘(i)l 0 ‘“(j)z
a(f)s 0
A 1) = e
0 o j)nip-1 0

—a(f)ncp-1

N
N~

[



CANONICAL FORMS ) 55

with

. of [1-29f | 2
ali- )= 13 gE| s, V1T )

(b) Off diagonal blocks Ay, j), 1 <i, j <k, i # j:

ay(i,j) 0 - 0
. 0 o --- 0
AO("’]) = : : :
0 0 --- 0
with
L. chv V \/ —Oj s‘s 00
ao(i,j)=—

1+ d2 0\11—0 +8;5;0,1 -

The map which assigns to each system in C' the realization given in (2)
is a canonical form.

Remark 4.1. In Glover and McFarlane (1988a, 1988b) the problem of
robustly stabilizing a transfer function G(s) is considered. The aim is to
design a feedback controller which guarantees closed loop stability for a
maximum amount of uncertainty in the plant. In this case the uncertainty is
modeled as additive perturbations on M(s) and N(s), the normalized left
coprime factors of the transfer function. Thus a perturbed model is given by

Ga(s) = [M(s) + Ay(s)] ~'[N(s)+ AN(s)],

where A, (s), Ay(s) are asymptotically stable, unknown transfer functions.
The aim is to find a controller for which

€= :1::1:‘ "[AM(i“’)’ AN(i‘*’)] "

is maximized while guaranteeing closed loop stability. It can be shown that
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the maximum margin for stability, .., is given by

1.2
€max =V1—0y,

with o, as in Theorem 4.1. [ |

o

ReMark 4.2. It also follows from the derivation of the canonical form of
Theorem 4.1 that for a system parametrized in this canonical form, the same
parameters yield a state space realization of the normalized left coprime
factors of this system via the parametrization of CI?»"™*? in Theorem 3.1.
The canonical form of Theorem 4.1 can therefore be said to be in normalized

left coprime factor balanced coordinates. N

~.

We are now going to use the parametrization given in the previous
theorem to obtain a parametrization of so called Riccati balanced systems
introduced in Jonckheere and Silverman (1983).

DeFmviTioN 4.1, A system (A,, B,,C,,D,) in L™ is called Riccati
balanced if

X=Z==M=:diag(u1,...,pj,...,un)>O,

where X = XT> 0 is a solution to the GCARE and Z = ZT > 0 is a solution
to the GFARE.

For an interpretation of Riccati balancing in the context of linear quadratic
control design see Jonckheere and Silverman (1983). The following proposi-
tion states that if a system is in the canonical form of Theorem 4.1, it can be
brought to an equivalent realization in Riccati balanced coordinates by a
diagonal state space transformation.

”

i

ProrosiTion 4.2. Let (A,, By, C,, D) € LP'™ be given in the canonical
form of Theorem 4.1 with

2, = diag(oll,,(l),..., ol okln(k)). S
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Then X =2 (I — £2)7! solves the GCARE, and Z = 2 solves the GFARE.
The system

(A,,B,,C,, D,)=(TA,T~,TB,,C, T}, D),

r> T

with T =(I — 22)~Y4, is Riccati balanced, and the corresponding positive
definite solutions to the GCARE and the GFARE of (A,, B,,C,, D,) are

~1/2 .
M=3(I1-3%) " =diag(p Loy s Ly > Balaiy) -
Proof. The proof follows immediately from Proposition 3.6. ]

ReEMARK 4.3. Using the notation of the previous proposition and noting
that

b =ai-a)

for all 1 < j <k, it is easily verified that for 1 < j<k—1,
0;>0;,, ffandonly if p;>p;,).

Following this remark and the previous proposition, we can now write
down a canonical form for L?™ in terms of Riccati balanced systems.

TueoreM 4.2. The following two statements are equivalent:

1) G(s)eTL:™

(2) G(s) has a realization (A,, B,,C,, D,) ER™*" XR"*™ XRP*" X RP*™
given in the following way: There are positive integers

k
n(1),...,n(j),...,n(k)  such that Z n(j)=n
ji=1

and numbers
—

P> >pp> e > >0
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such that if (A,, B,,C,, D,) is partitioned as

A,=’(Af(i,]'))1<i,,~<k’ A, (i, j) e RMOIXnD),
B.=|Bil, Bi e Rm)*m,

C,=(CL...,Cj,...,CF), CieRP*n0),

then:

(i) D,eR?P>™,
(ii) We have

=iy roe] ) Jo

with Ul € R™D*™ such that UUH)T = 1, ;) where

n(j) = rank{(C/) "R-1¢/] < min(p, m)

and R=1+D,D}, S=1+ DD,
@) (R~Y2Cj, A,(j, i) is in standard all pass form with

2

A, §) = =5 (C/)TR~C/ + BIDTR-'C}+ 4 (1. ).

(iv) We have

o _ A, ) o) . L
A (i, j)=|"" s I1<i,j<k, i+i,
(i, ) ( 0 0 i i
with

A'r(i’ j) = (ar(i’ j)st)l<s<ro(l') € R'O(i)xr()(j)
l<t ()

P

Y S )
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such that

1
ar(i: j)st = 9 2 ["“](1+ p‘%)br(l)ss_lbr(j){
By — 1y
— (14 82) (i) TR e (3). |
+b,(i),DIR"Yc,(j).

where b(i), is the sth tow of B} and c/(i), is the sth column of C;.
Moreover, (A,, B,,C,, D,) is Riccati balanced such that

M= diag(plln(l),...,;len(j),..., pkln(k))

is the unique positive definite solution to the GCARE and GFARE of
(A,,B,,C.,D,). The map which assigns to each system in L2'™ the
realization given in (2) is a canonical form.

Proof. The proof follows immediately from Theorem 4.1 by performmg
a state space transformation with T = (I — £2)~'/4 and by setting C, = C,T~"

aswellas p; = ]./1/1—01.2 for1<j<k. [ ]

The case of single input, single output transfer functions is considered in
the following corollary.

CoroLLARY 4.1. The following two statements are equivalent:
(1) g(s)eTLLL

(2) g(s) has a realization (A,,b,,c,d,) ER"" xR XR™*" XRI¥Y
which is given by the following parameters:

n(L),..., n(j),..., n(k), n(j)eN, Zi_n(j)=n

Spses Sjoeees Sho sj=:t1,1<j<k,
M1>"'>I‘j>"'>ﬂk>0 .eIR 1<j<k,
cl,a(l)l,...,a(l)j,...,a(l)n(l)_l, ¢;> 0, a(l); >0,1<j<n(l)—1,
€y () 150005 4(2)}5 -, A2y >0, a(2);>0,1<j<n@)~ 1,

Cro (kg alk)joe s alk)pry-1s €> 0, a(k);>0,1<j< n(k)—1,
d,€R,
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in the following way:

@) d, =R.
@) ¢ =(1,0,000,0 1.0, 60,00 ..., €4,0,...,0).
—— e —_——— —————
n(l) n(j) n(k)
(i) b =(s,,,0,...,0,..., $i¢;,0,...,0 ..., 8;¢;,0,...,0).
S —— t— -
n(l) n(j) n(k)

(iv) For A, =:(A(i, )1, j <k we have
(a) block diagonal entries A (f, j), 1< j<k:

a,(j.j) = a(j) 0 N\
a(j), 0 ~a(j)2 ~
a( j)e 0
A ) = (e
: _“(f)n(i)—l
0 a(j)niy-1 0
with
c: [1-p?
P A= — ] —] _ .
ar(]’]) 1+ d?( 2”4] S]dr)9

(b) off diagonal blocks A (i, j), 1 <i, j <k, i # j:

a(i,j) O 0
A= 0 0 ° :
0 0 0 )

.
L]

with

a(i, )= — GGy l—sisjl"iﬂj_sd . o
e 1+d? | pitssp; 7
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Moreover, (A,, b,,c,,d,) as defined in (2) is Riccati balanced such that
M = diag(py Ly o B Ingjy o> Brlngey)
is the unique positive definite solution to the GCARE and GFARE of

(Ar’ bf’ Cf’ df)'

The map which assigns to each system in LYY the realization given in (2)
is a canonical form.

Note that (A, b,,c,,d,) as given in the corollary is sign symmetric with
sign symmetry matrix

S= diag(sxln(l),..., sjln(j),..., skfn(k))
ie.
AT = SAS, b=S5cT,

and hence the Cauchy index of the system g(s)=c/ (s —A,)~ b, +d, is

Ca(g(s)) = trace(S).

5. MODEL REDUCTION

Balanced realizations as defined in Definition 2.1 were originally intro-
duced to provide a simple method for model reduction (Moore, 1981). The
basic idea is to consider a balanced n-dimensional system (A, B,C, D) and to
partition it conformally as

Ay Ap B,
= Cc, C
A (!21 e B B, (G G)

so that for 1< N<n we have A, €R¥N, B eRN*™, C,€R”*". The
principal subsystem (A}, B,,C;, D) is considered as an approximant of
(A, B,C, D). It was shown in Pernebo and Silverman (1982) that this scheme
has the important property that it preserves the minimality and asymptotic
stability of the original system. This is restricted to the case where none of
the retained singular values are identical to any of the neglected singular
values.
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This method of model reduction can also be applied to other types of
realizations of systems. The following theorem summarizes results when this
scheme is applied to systems given in one of the canonical forms of the
previous sections.

A

Tueorem 5.1. Let (A,B,C, D)€ R " XR™™™ XRP*" XRP*™, and
let (A, B,C, D):=(A,,, B,,C}, D) be the N-dimensional (1 < N < n) princi-
pal subsystem of (A, B,C, D).

(1) If (A, B,C,D)€ CP'™ is in the balanced canonical form of Theorem
2.2, then (A, B,C,D) is in C¥™ and in the balanced canonical form of
Theorem 2.2. The gramian of (A, B, C, D) is given by 3, €RY*N, where
2 = diag(2,, 3,) is the gramian of (A, B, C, D).

@) If (A,B,C,D)ECIP™ is in the_canonical form for the coinner”
systems in CIP?*™ of Theorem 3.1, then (A, B,C, D) is in CIZ™ and in the ~
canonical form of Theorem 3.1. The gramian of (A, B,C, D) is given by
3, €RNXN where I = diag(Z,, =,) is the gramian of (A, B,C, D).

(3) If (A,B,C,D)e LE™ is in the normalized left coprime factor bal-
anced canonical form of Theorem 4.1, then (A,B,C, D) is in L™ and in
the normalized left coprime factor canonical form of Theorem 4.1.

4) If (A,B,C,D)eLlr™ is in Riccati balanced canonical form of
Theorem 4.2, then (A, B,C, D) is in L¥%™ and in Riccati balanced canonical
form of Theorem 4.2. The unique, symmetric, and positive definite solutions
to the GCARE and the GFARE of (A, B,C, D) are given by M, € RV,
where M = diag(M|, M,) is a solution to the GCARE and GFARE of
(A, B,C, D).

Proof. The proof of the four statements is an immediate consequence of
the parametrization results concerning the four different canonical forms and
of the observation that the reduced order systems are parametrized in the
canonical forms. [ 43

-

RemaRrk 5.1. The previous theorem asserts that if a system is given in  ~
any of the canonical forms introduced in this paper, then each principal
subsystem has the desired properties such as minimality and asymptotic
stability in the case of balanced systems in CP'™. Hence, for balanced systems
which are in canonical form, the restrictive assumption that truncation has to /\
be performed at places of nonrepeated singular values (Pernebo and —
Silverman, 1982) can be dropped.
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RemaRk 5.2. For the case of Riccati balanced systems which are not
necessarily in the canonical form of Theorem 4.2, Jonckheere and Silverman
(1983) proved a truncation result analogous to that of Theorem 5.1(4) for the
case when the truncation is such that none of the retained “characteristic
values” p; coincides with any of the neglected ones.

REmARK 5.3. Meyer (1988) introduced a model reduction scheme for
transfer functions G(s) in TL?-™. The first step is to obtain a normalized left
coprime factorization of G(s)=l\7(s)M(s)‘1. The system [N(s), M(s)] is
then reduced to a lower order system [N(s),, M(s),]. The transfer function
G(s),= N(s),M(s); ! is taken to be the lower order approximant of the
transfer function G(s).

The results of Section 3 and 4 imply, however, that this reduction scheme
in fact produces the same lower order approximants as the Riccati balancing
technique. In the same way, the schemes of Theorems 5.1, part (3) and part
(4), produce the same results.

ReMaRK 5.4. In Remark 4.1 a robust stabilization problem was dis-
cussed. The following result for a system (A, B,C, D) given in the normal-
ized left coprime factor canonical form of Theorem 4.1 with parameters
0,>0,> -+ 0, is an immediate consequence of results by McFarlane,
Glover, and Vidyasagar (1988).

Let G(s)= C(sI — A)"'B+ D be the reduced order model obtained by
truncating (A, B, C, D) according to Theorem 5.1(3). Let K(s) be a feedback
controller designed to robustly stabilize G(s) with a corresponding maximum
robustness margin €, =y1— o} . Then, if

k
2 Y o,<y{l-0f,

K+1

the transfer function G(s) = C(sI — A)"'B+ D of (A, B,C, D) is also stabi-
lized by K(s). The robustness margin, €, of this closed loop system is now
given by

K
c;,ax=\/l;612 -2 Y o,

i=K+1
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