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On the Gap Metric and Coprime Factor
Perturbations™

J. A. SEFTONY and R. J. OBER}

The normalized coprime factor model is compared with the uncertainty
model based on the gap metric. The connection between these two models is
fully clarified. This result is used to give a criterion for robust stabilization.
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Abstract—New conditions are derived for when the distance
between two linear systems in the gap metric is less than one.
By including a coprimeness assumption in the coprime factor
uncertainty description it is shown that an open ball in the
gap metric is equivalent to an open ball phrased in terms of
coprime factor perturbations. A new criterion is given for
robust stabilization.

1. INTRODUCTION

THE GENERAL PROBLEM in the area of robust
control is to find a stabilizing controller that not
only stabilizes the nominal plant but also
stabilizes perturbed plants if the perturbation is
not too large. In order to be able to treat this
problem from a mathematical point of view it is
necessary to have a formal description of the
plants that are considered to result from such
perturbations of the nominal plant. A great
number of such descriptions of plant uncer-
tainties have been proposed. Depending on the
chosen uncertainty description typically different
controllers will produce robust control designs.

Two forms of uncertainty have received
considerable attention. El-Sakkary (1985) intro-
duced an uncertainty description that was based
on measuring the distance between the graph of
the plant and the graph of the perturbed plant in
the gap metric. Vidyasagar and Kimura (1986)
independently introduced an uncertainty model
that is based on perturbations to the coprime
factors. Georgiou and Smith (1990) studied the
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connection between these two uncertainty
descriptions in some detail. In particular it was
shown that an uncertainty ball in the gap metric
coincides with a ball of identical radius in the
coprime factor description if the radius is small
enough.

One of the main results of this paper is that
uncertainty balls in the gap metric can in fact be
completely described in terms of coprime factor
uncertainty balls if the coprime factor uncer-
tainty description is restricted to only contain
plants that are described by a factorization that
is coprime. This result is based on a new
condition for which the gap between two plants is
less than one. A consequence of this condition is
also that the gap metric can be computed by
performing just one H. optimization rather than
two (Georgiou, 1988). These results are
illustrated by an example that shows that the gap
between a plant and a perturbed plant can in fact
be discontinuous if the coprime factor uncer-
tainty is changed linearly.

Ober and Sefton (1990, 1991) showed that if
the cosine of the minimum angle « between the
orthogonal complement of the graph of the plant
and the orthogonal complement of the transp-
osed graph of the controller is less than one,
then the control system is internally stable. In
the final section of this paper it is shown that the
control system can tolerate perturbations of the
plant in the form of a gap ball, if and only if the
size of the gap ball is at most sin a. This result
can in fact be seen to give a geometric
interpretation to the robustness result by
McFarlane and Glover [1989]. A related
geometric result can be found in the paper by
Foias et al. (1990). After submission of this
paper, the paper by Qui and Davison (1992)
appeared which also contains results related to
those presented in the last section of this paper.
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This paper is based on the report by Sefton
and Ober (1991).

2. NOTATION

The notation used throughout this paper is
standard in the control literature (Francis
(1987)). For a matrix M e RP*™ or €°*", M*
denotes its conjugate transposed, Opm.(M)
denotes its maximum singular value, and
Omin(M) its minimum singular value.

The Hardy spaces % and (%)*, contain all
rational p vector valued functions square-
integrable on the imaginary axis with analytic
continuation into the right and left half-plane
respectively. The Hilbert space #% is given by
=35 ®(H5)*, and the orthogonal projec-
tions P, and P_ map %5 onto ¥% and (¥%)",
respectively. The norm of a function f € #% is
denoted ||f|l,. The Hardy space #%*™ contains
all p xm bounded rational functions on the
imaginary axis with analytic continuation in the
right-half plane and is a subspace of £2™"™ of all
p X m bounded functions on the imaginary axis.
Clearly these functions all have finite Z.-norm
defined by ||G||.:=ess sup Omaxl G(Jw)]. For a

system G, G* denotes its complex conjugate
transposed, i.e. G(s)*=G(—5)". The symbol
RH5 denotes the subspace of #% containing the
real rational functions, similar definitions apply
to the other spaces.

The domain and range of an operator Z is
denoted by %(Z) and R(Z), respectively. The
orthogonal projection operator onto a closed
space, & of &% is denoted by P,. Givenap X m
symbol G the multiplication operator
Mg:D(Mg)— #3 is defined f—Gf. If Ge
F£X™ the Laurent operator Ls: %5 — %5, the
Hankel operator Hg: %5 — (#5)" and the
Toeplitz operator T : #5'— #% with symbol G
are defined by f+> Gy, f+> Psep).Gf and f+—
Py Gf, respectively.

3. PRELIMINARIES
In this section a number of basic definitions
and results are collected that will be needed in
this paper. First the notion of the graph of an
operator acting on a Hilbert space is introduced.
Consider two Hilbert spaces X, Y and a closed
linear operator A: X — Y then,

Definition 3.1. The graph %A) of the operator
A: X — Y with domain 9(A) is the totality of all
ordered pairs {(Ax, x);x € 2(A)} considered as
a linear subspace of the Hilbert space Y X X
with the naturally defined inner product.

The rest of the discussion will be devoted to
the multiplication operator with symbol G, a
p Xm matrix function; that is the operator
Mg %5 — #%, where Mg:f—> Gf. Clearly the
domain %(M;) is not the whole space #7' if G is
not in ..

An important object in the study of the graph
of the operator M will be the so-called coprime
factorization of the function G.

Definition 3.2. The pair (M, N), where M, N e
RK., constitutes a right factorization (r.f.) of G
(similarly, the pair (N, M) where N, M € R¥.,
is a left factorization (1.f.) of G) if

(1) M, (M), is square and det(M(®))#0
(det (M () #0);

(2) G=NM"Y(G =M""N).

If moreover, N and M are right coprime, i.e.
there exist X, ¥ € %, such that XN - YM =1
(N and M are left coprime, i.e. there exist
X, YeR¥. such that NX —MY=1I), then
(N,M) (N,M) is called a right coprime
factorization (r.c.f.) left coprime factorization
(l.c.f).

There are an infinite number of coprime
factors of a transfer function. However through-
out this paper a particular coprime factorization
will be used called the normalized coprime
factorization. A right (left) coprime factorization
of G=NM~! (G=M"N) is called normalized
if N*N+M*M=I(NN*+ + MM*=1). Note
that normalized right (left) coprime factors are
unique up to right (left) multiplication by a
constant unitary matrix.

The next proposition expresses a number of
results concerning the graph of the multiplication
operator with symbol G and the orthogonal
projection onto its graph space.

Proposition 3.3. For the transfer function G,
with right coprime factorization (N, M) and left
coprime factorization (N, M) we have

YMs)=R(Tin M), UMg)" = R(TT %))

Denote by Pgp,y: #5 X H5— #H5 X #;'  the
orthogonal projection onto the closed subspace
YUMg), and by Pygpy,ye: HE X H5— H5 X Hy'
the orthogonal projection onto its orthogonal
complement, then

Paoraey = Tine m[Tine s Tine sl ' Tine mav),
Py = T % [ T{ 5 Ty 517 T,

Proof. See Vidyasagar (1985) and Cordes and
Labrousse (1963).

Some geometric notions are now introduced.
A metric on the set of subspaces of a Hilbert
space H is the so-called gap metric.
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Definition 3.4. The gap between two closed
subspaces A and B of a Hilbert space H is
defined as

gap (A, B) := ||P4 — Pg|| = || P4+ — Pp.||-

The next theorem shows that the gap between
two subspaces can be expressed as the maximum
of two alternative expressions.

Theorem 3.5 (see e.g. Weidmann (1980)). Let
A, B be closed subspaces of a Hilbert space H,
then i

gap (A, B) = max {||P4Ps.||, || Pa-Pgli}.

If the gap between two subspaces is less than one
then we have the following simplified situation.

Proposition 3.6 (see e.g. Weidmann (1980)). Let
A, B be closed subspaces of a Hilbert space H
and assume that gap(A4, B)<1l. Then
gap (A, B) = ||[P4Pp:|| = ||Pa:Ps||-

The following Lemma (see e.g. Nikolskii
(1986)) summarizes a number of important facts
concerning projections onto closed subspaces of
a Hilbert space.

Lemma 3.7. Let H be a Hilbert space and let
A, B be closed subspaces of H. Denote the
orthogonal projection operator onto the space A
as P,: H— A and the orthogonal projection onto
A restricted to the subspace B as P, | B:B— A,
and use analogous notation for the similar
operations onto the subspace B. Then the
following of statements are equivalent:

(i) PsRA=B; (ii) H=B* + A; (iii) ||P4.Ppll <
1.

Also the following statements are equivalent:

(i) PsA=B, ANB*={0}; (i) H=B'+A,
H=B+A*%;

(iii) |PasPall <1, |P4Pa:ll <1.

Important tools in the study of uncertainty in
the gap metric are connections to . problems.
One of the identities we need to use frequently is
the following (see e.g. Doyle et al. (1989)).

Proposition 3.8. Let Gy, G, € &.. Then
“:Gl - Q] Hg, ‘
G, )

4. THE GAP METRIC ON LINEAR SYSTEMS
The notion of the gap metric on subspaces of a
Hilbert space can be used in a natural way to
introduce a metric on the set of transfer
functions by defining the distance between two
transfer functions to be the gap between the

inf
Qe#.

graph spaces of the multiplication operators
corresponding to the two transfer functions. This
metric on the set of transfer functions was first
introduced by El-Sakkary (1985) who used it to
model uncertainty of a plant in the context of
robust control.

In this section the gap metric on the set of
transfer functions is being studied in some detail.
A new proof is given that shows how the gap can
be calculated as an .-optimization problem.
The main result of this section is however a new
characterization of when the gap between two
systems is less than one. The characterization
will be central to the development in the later
sections of this paper.

The gap metric between two systems is defined
in the natural manner as the gap between their
respective graphs (El-Sakkary (1985)).

Definition 4.1. Given two p X m systems with
transfer functions G;, G, then the gap metric
between two systems, 8(G,, G), is defined by,

8(Gy, G;) == gap (4 Mq,), 4My,))
= || P,y — Pacao,ll-

This metric has received considerable attention
(see El-Sakkary (1985); Georgiou (1988); Geor-
giou and Smith (1990); Vidyasagar (1985)). It
was shown that this metric induces a topology on
the class of linear systems such that closed-loop
stability is a robust property. That is if (G,, K) is
internally stable then there exists an € >0 such
that if 6(G;, G,)<e then (G, K) is also
internally stable.
Clearly by the results quoted in Section 3,

8(G,, Gy)
= max { || Pom,): Pamoplls | Pocao,y Pacmopll}

where the two expressions are: equal if
8(Gy, G))<1. Georgiou (1988) called the
expression 0(G,, G2) := || Py, Pems)ll the di-
rected gap. Evidently we have that

8(Gy, G;) =max {8(G,, G,), 8(G;, G}

Georgiou (1988), using the commutant lifting
theorem, proved that the directed gap can be
calculated from an . optimization problem. In
the following proposition we give a more
elementary proof of this fact. We also prove the
result for the case when the factorizations are
not necessarily coprime. This result will allow an
interesting extension of the theory later. We
need the following lemma.

Lemma 4.2 (see e.g. Gohberg and Krein
(1978)). Let o and B be two closed subspaces
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of a Hilbert space. Then

|| PogrPgl| = sup dist (u, o),

eell=1

where dist (4, &) = inf ||u —v].
ved

Proposition 4.3. Given two pXm systems
G,, G, with normalized right coprime factors

(N, M,) and (N,, M,) respectively, then
P32 18,5y Pt o35

) N, N,
= int ][]
ot [ ]ei-[5: Jese

for any inner functions ©,, ®, € R¥7*",

oo

Proof. First the norm of

IP(( 210,005 P([ 3 Jou5e2) I

is expressed as an optimization problem using
Lemma 4.2,

P 1e,05) P[0 10,365 |

= sup inf |ld — o},
“E([M,lelx"') e[ le:57)
il =1

= sup mf ||T[-]9,u-—T[:,'z]ezv||2
we Iy, ullps1 VEHT

Let (N,, M,) be normalized l.c.f. of G, and note
that the function

[@;N; orM; ]
MZ _NZ

is all-pass. Now for any u € ¥7',

inf ||Ti¥1e,u — T{ 210, |l

veXy

= inf ||L{oi: e y(Titje,u — Tije,v)llz

veXy —M
= inf [L(es(zvfzvﬁmuoel“ - U]
vedy L(Mle_ﬁle)@)lu 2

[P - Lesvn+mme, u]
L(Mle ‘_NZMI)GI u

2

_ l'[H(ez(NaN.+M5M.)e.“]
l’(1‘7121\71-1‘~’21“’|)91 u

.
This implies that,
1P 210,50y - P12 10,55l

[H(ez(w~.+M5M1)el)“]

= sup
L(Mle—N2M1)91 u

ue Xy, |ullz=1

2
- [H(ez(NiN.sz.)e,)]
L(A?ZN] —NoMy O, | 96
'[@§(N§N1 +M3M,)0, — Q]
(MZNI - N~2M1)®1

= nf
QeRX,

o

= inf G;M;]
QeRH., “N’z

(L Je=[acle0)]

([ o[z Je-el.

where the third equality follows from Proposi-
tion 3.8.

As a corollary we obtain a result by Georgiou
(1988) which shows how the gap between two
systems can be calculated.

[°

= inf
QeRHK,

o

Corollary 4.4. Given two p X m systems G,;, G,
with normalized right coprime factors (N;, M;)
and (N,, M,), respectively, then

S(Glx G)= ”P‘S(Mgz)J-P‘Q(MGI)”

o)=L Jel

8(Gzy G1) = || Partg,): Pescaao, |

NZ - N] "

6(GI,G2)=maX{ inf “[ ] [ Q”

el

The next lemma states a necessary and
sufficient condition for the directed gap to be less
than one. A very similar result was obtained by
Zhu (1989).

Lemma 4.5. Given two p Xm systems G, G,
with normalized right coprime factors (N;, M,)
and (N,, M,), respectively, then the following
statements are equivalent,

(1) 8(G,, Gy <1,

() Tovmrmrrar(¥7) = 33

Proof. Applying Lemma 3.7 to this situation
gives, || Pom,,): Pamepll <1 if and only if

re[)22) - o

From the expression for the orthogonal projec-
N, .
[ M‘l]%g' in

N
Proposition 3.3 we have that, Pg(MG‘)<[M2]%'2") =
2

= inf
QeR¥H,

= inf
QeR¥,

inf

tion operator onto the space

[ z‘l] 7 if and only if
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But this is the case if
T+ mrm)(H3) = H7

and only if

The following proposition is central to the
further development. It establishes a criterion
for the directed gap 5(G2, G,) to be one when
8(G,, Gy) is less than one. Hence it gives a
condition for the gap between two transfer
functions to be one.

Proposition 4.6. Given two pXm systems
G,, G, with normalized right coprime factors
(M,, My) and (N,, M,), respectively, then if there
exists a Qg € R, such that
) 1!
[Mz 0

“ Qo

3(G,, Gy) = inf H[ Z‘

QeR¥,

a0

and Qg ¢ R, then this implies that,

w) =l JoL

3(G,, G)= inf “[

QeR¥,

=1.

Proof. Let Qg€ RH. be such that

3 )-[i)er <1

and Q;'¢ R¥*,.. It will first be shown that
ole RE.. Assume that this is not the case,

i.e. 0;'¢ REL.. Then ing‘ Omin(Qo(iw)) =0 and

therefore there exists a sequence (VU;);=), U; €
#7, llvill=1, such that lim ||Qov;ll,=0. But
j—»o

therefore we have the contradiction

[ )= Jeo

=lim

—roc

1>

-3

[ =],

and hence Q;' € RL...

Having established Qg'e #%., an inner—
outer factorization Q,= ©,U, can be obtained,
where Uye R¥, with Ugle R¥. and O, is a
square inner function. The assumption Q' ¢
R¥*., implies that ©,+# I. Now the result will be
proved, i.e.

3(G,, G)= it “ ]

QeR¥X,.

o

First note that by Proposition 4.3 and the

assumption

||P([,’3§](eoxz“))lp([ﬁ‘l]’fa")||
- [
UeR¥.

<[l -1 ]@o]vo

By Lemma 3.7 this inequality implies that

[ = e Joe] )

and hence

*Jeau].

<L

N,
H7 =Tinm Mrl[Ml

({8

N.
=Tz sy T30 1 Tie Mn([Mz]eo%'z">

= Tintny+ Mrm) (O X7).

It will now be shown that this implies that
Ker ('T(NfN2+MfM2)) +* {0}. Given xe€ (90%?)*,
x#0, let y:=Tgn,+mmyx- Now there exists
z € QX7 such that Txyn,+mrmyz =y and there-
fore Tyvn+mrmy(z —x)=0. But z —x+#0 and
z —x e Ker (Tivyn+mpmy)-  This  implies  that
T(N;N.+M;M.)(%5") # H7 as

Range* (Tingn+mzmy) = Ker (Tiapn, +mrmy) # {0}

and hence by Lemma 4.5, §(G,, G,) = 1.

Of particular interest in our context are
characterizations when the gap between two shift
invariant spaces is less than one. Nikolskii (1985)
gives a number of characterizations for the gap
between scalar shift invariant spaces to be less
than one. The proofs of those characterizations
can, however, not always be directly generalized
to the situation discussed here. One of the
reasons is that in contrast to the scalar case the
orthogonal complements of the shift invariant

e

N,
spaces O¥X;, ©O= [ M ] are infinite dimen-
sional. !

Theorem 4.7. Given two p X m systems G;, G,
with normalized right coprime factors (N;, M,)
and (N,, M,), respectively, then the following
statements are equivalent,

(2) the Toeplitz operator Tinyn,+mir,) 1S inver-
tible;

(3) there exists a QeRHK. such that

"[ ] [2] <1and Q7' e R¥.;

o0
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(4) there exists a Qe®RH. such that

N
“[Ml <1 and Q" 'e R¥.. For all
QeR¥. such that “[Zl]—[zz]Q <1,
0 e A 1 2 ®

(5) there exists a QeRH. such that

—_ < .
“[Mz M, QOli<land Q 'e RX.;
(6) there exists a QeR¥H., such that

i)~ L)l i
- < .
”[ M, M, Q<1 and Q7 'e R¥,.. For all

QeRH, such that H[Zz] - [g‘]g“ <1,
Q e RX,; i 1

D (ser) = Lar )22

and

[ 0

® ()L

and

Mk ”([ﬁ]""”)= ).

Proof. (1) (2) This is proved by Zhu (1989).
(1)=>(3), (4) Assume 6(G,, G,)<1, then this
implies by Corollary 4.4 that there exists
Q € R¥X., such that

<1

]~ lel.

L)~ L Jel.

and Q"' ¢ RX,. we have that 6(G,, G,) = 1. But
this contradicts the assumption that 6(G,, G,;) =
max {S(Gl, G,), 6(G,, G))} <1. Hence we have
that Q"' e RX..

(4)=> (3) is obvious.

(3)> () Assume QeR¥. is such that

N ] [ N, ] 4 )
- < .
' [ M, M, Q 1 and Q 'e R¥,.. This
implies that

1“1 1“2
"1’—(MN2+MrM2)Q”'

Therefore the operator I— T, n,+mpmpo =
Tinpnvy+ M0 18 invertible. However

<1

Now by Proposition 4.6 if

©

1>|

= || Tiv s T1-10210)l

0

Tivtmo+ Mimyo = Tintwy e mimn Tos

and as Q" 'e R¥., T, is invertible and hence
T npny+mrm) 18 invertible.

(1) () (6) is proved in an analogous
manner.

(1) (7) and (1) & (8) follow immediately from
Lemma 3.7.

The previous theorem also simplifies the
computation of the gap metric between two
plants. The expression in Corollary 4.4 due to
Georgion (1988) implies that two H,
optimizations have to be performed to compute
the gap between two plants.

As a consequence of the previous theorem
only one such computation has to be done. Let
G,, G, be two p xm plants with normalized
right coprime factorizations G,=N,M;' and
G, = N,M3'. In order to compute the gap metric
6(G,, G,) between G, and G, one has to
compute one of the directed gaps, e.g.

L)~ Jel.

If 5(G1, G,)=1 then 8(G,, G,)=1, since the
gap is the maximum of the directed gaps. If
8(G,, G,) <1, let Q, be any function Q,€ R

such that
][5 e

If Q' € R, then by the Theorem 6(G,, G;) <
1 and therefore by Proposition 3.6, 6(G,, G,) =
3(G,, G,). If Q;' ¢ R¥., then 8(G,, G,) =1 by
the theorem.

8(G,, Gy):= inf

QeR¥.,

5. GAP METRIC AND COPRIME FACTOR
PERTURBATIONS

In this section the connection between
coprime factor perturbations and the gap metric
is explored. There has been considerable interest
recently in phrasing robust stabilization prob-
lems in terms of these classes of perturbations as
this allows a greater amount of phenomena to be
modelled than in other uncertainty descriptions,
such as those using additive or multiplicative
perturbations (see e.g. McFarlane and Glover
(1989) and Georgiou and Smith (1990)).

Given a system G =NM~! then any other
system of the same input/output dimensions can
be written in the form G,=(N+ Ay)(M +
Ay) 7! for Ay, Ay € X.. Tt is shown here that if
the restriction is placed on the coprime factor
perturbations to lead to a coprime factorization
of the perturbed plant, then a coprime factor
ball of a certain radius coincides with a ball in
the gap metric of the same radius.

The definition of the gap ball and the directed
gap ball are now recalled.

Definition 5.1. Given a p X m system G, with
normalized r.c.f. (N;, M,) then the following
classes of transfer functions are defined for
€>0,

%Eh = {G2: G(Gl: GZ) < 6},
g, = {G,:8(G,, G)) <€},
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are called the gap ball and directed gap ball of
G,, respectively. Also define the following
classes

G5, = { Ny + A, + A) 7

AN]
%&p+m)xm.
[AM € ’

(N1 + Ap), (M + Ay))

right coprime;

[an]
%= {0+ a0+ a7 ]

Ay
Ay

[AM] LS 6} '

One of the main contributions of this paper is
a complete characterization of the gap ball in
terms of coprime factor perturbations. Georgiou
and Smith (1990) showed that for given € the
directed gap ball 4Z, and the coprime factor ball
‘?&, are identical. In the same paper it was also
shown that for small enough € the gap ball &g,
and the coprime factor ball 45, are identical. In
the following theorem we are going to show that
gap balls B, can be fully characterized in terms
of the balls 9g,.

<o,

€ mp+m)><m; ’

Theorem 5.2. Given a p Xm system G, with
normalized r.c.f. (N, M,) then for € >0,

(1) #BG, = %G,

() %5,= Y%,

Proof. (1) This statement was proved by
Georgiou and Smith (1990).

(2) Note that the result follows immediately
for € > 1. It is therefore assumed that 0 <e =<1.
It is first shown that G, e Bg, implies that
G, € 95,. If G, € B, then by Corollary 4.4 and
Theorem 4.6 there exists a Qe RH., with
0~ 'e R¥., such that

Il )-[sclel<e

where (N, M,) is a normalized coprime
factorization of G,. Let

[aa] =l -LigJe

N N; A
and therefore [ Mz]Q = [ Mll] - [ A:] is also a

coprime factorization of G, as Qe RH.. Now

(2]
Ay
It is now shown that G,e ¥, implies that

Gye BE,. If Gye GG, there exist Ay, Ay € ¥

as <€ this implies that G,e G,

A
such that “[AN] <e and G,=N,M;! is a
M

N.
coprime factorization of G, where [Mz] =
2

N, A
[ 1] —[ N]. This implies that there exists a
M] LAy

unit O € R, such that (N,O™', M,0™") is a
normalized coprime factorization of G,. Hence
S(Gl, Gz) = inf

) -[laclele
=[]l

-l

As O 'e R¥. we have that 8(Gy, G;)<1 by
Theorem 4.7. Therefore (G, G,) = 5(G,, G
< € implying 8(G;, G,) < € and hence G, € Bg,.

The following example illustrates the concepts
introduced in this paper and demonstrates that
the gap metric is not continuous with respect to a
linear addition of a perturbation to the coprime
factors.

o0

o

Example 5.1. Consider the system

V3

s2+1°

which has a normalized coprime factorization

G(s)=

()=l

Also consider the perturbation,

-1
[A"]= 2v3 where I[A"]
A, - A,

2

and define a perturbed system as,

Ga:=(n+€A,)(m+eA,)™
The function f(e) is defined as f(€)=

8(G, G, ). It is now shown that the function
f(€) has a discontinuity at € = 1 and further that,

_1

© %,

f(e)s% for0=e<1,1<e=V3
f(e)=1

A factorization of G,, is given by,

e ]=[n] ]
~2V3(s? +1\/?_.s' +2)
—(es®>+ €V2s —2(3 - ¢€))
% [\@((2 —€)s? — eV3s +2(1 - e))]'

fore=1.
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First it is necessary to show that this is a coprime
factorization of G, for all values of e #1. If
p.(€, s) and p,, (€, s) are the numerator polyno-
mials of n, and m,_ respectively, then
(na,mya) is coprime if and only if the
polynomials p, (€, s) and p,,(€, s) do not have a
common zero in the closed right half plane. Any
common zero is also a zero of the linear
combination

1
_pn(e, S) + %pm(e, s) = 2S2 —4.

This implies that any common zero must be at
the point s = V2. As equation p,(€, V2) =0 has
a unique solution, e€=1, this implies that
(ns, my) is a coprime factorization for all
€#1. Fore=1

[ ]
mAE

1
w1 2V3(E+ V25 +2)

[ (s+2\f)(s—\F)]

V3ss—Vv2) P

—(s+2
and therefore GA‘=—(S\/——3S\/_2—)-

and na_, ma,

are not coprime for e=1 as they share a
common zero at s = V2.

It is now possible to prove the claim. For
€<V3 and €+#1 (n,,m,) are coprime and

A,
G[A ] =<e€/V3 and therefore G, € 4% for

0

any & > €/V/3. This implies by Theorem 5.2 that
G, € B for any 6 > €/V3. In turn this implies
~ that 8(G, G,))< 9 for any 6> e€/V3 implying
(G, G, )< e/\/'_ Hence f(€)=06(G, Gp)=

€/ V3.
For e=1, GAE=_(%;\/§)

Now note that

e RE ]

m m,
1 1
=|| 2V3 =—=<1
L
2 oo

and hence there exists a g € R¥.. and g~ ' ¢ R¥K,.

L1 )
m a m1 ‘
Theorem 4.6 that 6(GA ,G)=1 1mply1ng that
f(e)=6(G, Gs)=1.

such that

< 1. This implies by

6. ROBUST STABILIZATION

In this section robust stabilization in the
context of uncertainty in the gap metric is
considered. Before analysing this situation a
number of results have to be recalled (Ober and
Sefton (1990, 1991)) concerning the formulation
of internal stability of a control system in terms
of projections and gaps involving the graphs of
the plant and the controller.

Theorem 6.1. Suppose the p X m transfer
function G has a r.c.f. (N, M) and the m Xp
transfer function K has a r.cf. (U, V) and a
lLc.f. (U, V). Then:
(1) the following statements are equivalent,
(S1) the pair (G, K) is internally stable,

vV N1!
(52) [U M] € R¥..,

(S3) (VM — UN) ' e R, X
50 (2] (1) )<
Moreover

oos [ 5] - [[5]] )

- ([l (5)) )

= 1P aep)- P b)) II-

(2) If (G, K) is internally stable then

SIMEA(MED
=||IN*V + M*U]||..
=V1 - (v(VM — UN))*>

where for FeY%. we  set
ess inf {Omin(F(s)) | Re (s) = 0}.

©o(F)=

Typically transfer function descriptions are
used in the context of dealing with observable
and controllable systems. In order to be able to
deal with robustness issues in a realistic setting it
is however also very important to allow the
description of systems with unstable unobserv-
able and uncontrollable unstable modes in the
uncertainty description. From a control point of
view these systems are the worst systems to be
encountered since they are internally unstable
and they cannot be stabilized by feedback. Such
systems can be described in the coprime factor
framework by allowing for non-coprime fac-
torizations of a transfer function. Let a system G
have a right factorization G =NM~' where
N, M e R¥., are not coprime. Therefore N, M
share a right-half plane zero, i.e. for s, with
Re (so) =0 there exists a non-zero vector x, such
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N X
that [ M](so)x0= 0. Hence in the product NM ™!

there is a right-half plane pole—zero cancellation.
This corresponds to an unstable uncontroll-
able/unobservable mode.

In order to be able to analyse the stability/
instability of control systems with perturbed
plant we summarize some instability results.
Before we state this proposition we need the
following lemma.

Lemma 6.2. Let (U, V) € R¥. be a normalized
right coprime factorization of a m X p transfer
function. Let N, M € R, be a not necessarily
coprime right factorization of a p X m transfer

function, such that [Z] is inner. If

WP ) Pai vt zep)+ 1l <1,
then N, M are right coprime.

Proof. From Lemma 3.7 we have that
P a2+ P 5ep)+ || <1 if and only if

(o)) = Paswo{[]o)

But

and

Pqy 1%’)*([ ]%m>
= T2 [T}2 ]T[V"]] 'TiE ]([ ]%m>

= T ETEN TN Tom-om 5

Equating these expressions implies that
# = [T TN Tom-om X3,
and hence
Hy = T(VM-[/N)%E" »
as
[TEn T

is bijective (see e.g. Ober and Sefton (1990))

This is the case if and only if (VM —UN)'e
R¥,.. This implies that N, M are right coprime.

We are now going to give characterizations for
when a control system (G, K) is not stable, i.e.
for when it is not internally stable or G has an
unobservable and uncontrollable mode in the
closed right half plane.

Proposition 6.3. Suppose the p Xm transfer
function G does not necessarily have a coprime
right factorization (N, M) and the m X p transfer
function K has ar.c.f. (U, V) and a l.c.f. (U, V),
then the following statements are equivalent;

(1) the pair (G, K) is not stable,

Y M ]_1 Rk

(3) (VM — UN)™" ¢ RH.;

@ s ([ ([p]m) )
= 1P oz Py oeg) 1 = 1.

Proof. The only part of the proof that is not
trivially covered by Theorem 6.1 is to show that
if G has an uncontrollable and unobservable
mode in the closed right half plane then (2), (3)
and (4) hold. But if this is the case, i.e. if the
factorization of G is not coprime then this
immediately implies (2) and (3). Lemma 6.2
implies (4).

Before we can prove the main theorem of this
section we have to prove the following
proposition which is an important part in the
construction of the proof for the theorem.

Proposition 6.4. Given a p Xm system G with
r.c.f. (N, M) and normalized l.c.f. (N, M), and
an m X p stabilizing controller with normalized
r.c.f. (U, V) and normalized l.c.f. (U, V) then,

T
Q.Qed. LM
U+ eR%

N
= inf inf “[ V][Q‘
Oen¥k. ea% LM UILQ,
U+Q)) '¢R¥

= ¢(MV — NU).

Further there exist Q;, Q, € R¥#. that achieve
the infimum in the above expression.

Proof. The first equality is standard. First note
that for any Q, € RI¥.,,

Al olle,

A ‘C][Z ollel.
(VN + UM = 0]
(VM - ON)Q,

n l
Qe RHn

— “ H(V‘N+U'M)Q| ]
Lom-omo,|sep

o

>

where the last equation follows from Proposition
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3.8. This imp!ies that,

A:= inf inf ||[ ][
Q]EQ’C‘” Q;eﬂx.,

U+Q) eR¥K
inf “ H(V‘N+U‘M)Q1 ]
(H%.ngzgl " Lom-onyoi|sep

Note that if (I+ Q,)"'¢ R¥. then ||Q|l.=1.
This implies that,

A= inf  |(VM-UON)Qll»
CeRHK.
U+Q) "eRH
= inf  {t¢(VM-UON)||Qill=},
QEeERH,
J+Q) e,
=t(VM-0ON) _inf  |Qsll.,
QeR¥H,
U+0)) e R,
= 1(VM — UN).

The reverse inequality is now proved by
construction. As V*N + U*M € RZ.. there exists
a factorization V*N+U*M=(V*N +
U*M)NO3,, with (V*N+U*M)y € RK.., Oy €
R ¥, right coprime and @,, square inner. Then,

A= inf [H(V-N+U'M)Nefou] %'2"“
a+ Dy e, Lom-ame,
- inf “[ Hyn+umod, ]
Or1eR%s, Lm-onye,0,) %63

I+Ou01) e RK

= inf (VM — ON)© 4,01,

O ERXKn
(+Oy01) ' eRX.

as (V*N+U*M)yQ,€ R¥,. Let Bp=VM -
UN, then as (Br®,) 'e RL. there exists an
inner—outer factorization Bz®, = OB, where
B, e R¥, with B;'e R¥. and © is a square
inner function. It is clear that, 0;(Bg)(jw)=
0/(BrOy)(j®) = 0(OB_)(jw) = 0(B_.)(jw) for
ali=1,2,...,mand for all w e R. As Br(jw)
is a continuous function in w, there exists wye R
such that, amin(BR(ij)) = amin(BL(ij)) = T(BR)'
At jawy, let the singular value decomposition of
B, be,

o 0 ... 0
0 o 0

B jwy=U| . . . |v~
0 o om,

It is always possible to construct a function
U, € R¥.. such that

00 --- 0
00 0
Uy(jwo) = -U . .. . v
0 Omin

and || V)|l = 0@t It is also always possible to
construct an inner function ©, € R¥, such that
0,(jwo) = O(jwo). It will be shown that the
function QM= B;'U,®,€ R¥,. achieves the
infimum in equation (1). To prove this it is
necessary to show that Q°P‘ satisfies ||(VM —
UN)@MQ°P'||w = 7(VM — UN) and a+
0,09 ' ¢ R¥K... Now note that,
(VM — ONY© 057

= 1BrOu Q5| = OB, Ol

= 1©BL'U:0,l= = || Uzl

= 1(VM — UN),
by construction of the function U,. Further,

(I + @, 05 (jwo) = (I + Oy BL U,0,)(jwo)

= [Ou(I + BL'U,)O,](jwo)
= Oy(jwo)V
(023,)! 0 0
o 0 e o
0 (am.n)‘
00 --- 0
00 0 .
x{. . L | ]V6jwo)
0 Omin
10 00
01 00
= 0Oy (jwg)V
00 10
00 00

X V*O,(jwy),

and hence (I+©0,0%) '¢ R¥.. This com-
pletes the proof of the reverse equality as

A= inf (VM- ON)@uQl.
(l+9MlQ§|)"¢9%n
=<[|(VM — UN)©» 05"l
= 7(VM — UN).
Summarizing note that Q,=0,B;'U,0, and
0,=(V*M + U*N)yB{'U,©, achieve this
infimum.

We also need the following lemma.

Lemma 6.5. Given a p X m system G with r.c.f.
(N, M), a m X p controller K with r.c.f (U, V)
and a perturbed system G,=N,M' where
(Na, M,) are not necessarily coprime, then

P2 106y P G1ae) 1l = 1,
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implies that

NP 5e5)+ P 1oe) PP
+ 1P sy P e 1oy I” = 1.

Proof. We assume without loss of generality

that there exists a function v e[ with

%:2;]
2
llvl.=1 such that the norm
"P([:i]xgl)lp([zlxg)L“ =1 is attained, i.e.

1P sy P 1 eg) -1l = 1.

If the norm is not attained the result can be
obtained by a perturbation argument. We

1
therefore have that vVeE ([Z] %5) N

([ﬁi]%’{')l. Now note that this implies
P13z Pa1oesy- I + P Toery PO 1aep)- I
= || P )sepy- P 1oy v 3
+ 1P sepy P 1o v I3
= |\ Pq R sepy-vllz + llP([meIl%
=|vl3=1.

We are now in a position to prove the main
theorem of this section. For a given control
system the theorem gives a characterization of
the uncertainty in terms of balls in the gap
metric that can be stabilized by the controller.
Notice that the theorem can be rephrased in the
following way. All perturbed plants such that
their graphs and the graph of the nominal plant
form an angle less than « are stabilized by the
controller if and only if sin o < sin o, where ay is
the angle between the graph of the plant and the
orthogonal complement of the graph of the
controller. A robustness result phrased in terms
of coprime factor uncertainty was given by
Vidyasagar and Kimura (1986). The following
result can be seen to be a geometric inter-
pretation of the robustness results by McFarlane
and Glover (1989). Another geometric approach
was given by Foias et al. (1990).

Theorem 6.6. Given a p X m system G, am Xp
stabilizing controller K then for all perturbed
systems G, € Bg,

(Ga, K) is internally stable,
if and only if
€ = (1-gap (UMo), (4" (Mx)) )L

Proof. Let (N, M) and (U, V) be normalized
r.c.f. of the transfer function G and K,
respectively. Let G, e B; and assume that

€= (1-gap (9Mo), (§"(Mk))*)’):. By as-
sumption there exists [2 ]e R¥. with
M

sl

Ay)~ . Then by assumption,

<€ such that Go=(N+Ay)(M+

PN 1oy Pt ez 1P + NP sy P e 1sepy NI
= gap (U Mc), (9" (Mx))*)* + 8(G, Ga)*
< gap (4Mq), (4" (Mk))*) + €
<1.

By Lemma 6.5 this inequality implies that
Py ]xp)lP([N+A~],,,..);||<l By Theorem 6.1
this shows that (GA, K) is internally stable if
(N + An), (M + Ay) is a coprime factorization.
But the coprimeness follows immediately from
Lemma 6.2 and therefore also G, € B¢.

To prove the converse direction it is necessary

A"’] € R¥K, with

to construct a perturbation [
M

[

such that

= (1 - gap (UMo), (" (Mx))*)):

=17(VM — UN),

L= Lol + 2]

is a not necessarily coprime right factorization
corresponding to a system G,, such that (G, K)
is not stable. Let

][ ollg]
Ay M UILQ,T
with Q,, O, as constructed in Proposition 6.4

such that [AN]” = 7(VM — UN). By construc-

tion (I + Ql) ¢ R¥K.. and therefore (VM, —
UN,) '=[(VM - UON)(I+ Q)] ' ¢ R¥.. Hence
by Proposition 6.3 the factorization (N, Ma)
represents a system G,, such that (G4, K) is not
stable.

As a corollary we can now recover a result
first obtained by Georgiou and Smith (1990).

Corollary 6.7. Let o,=||H{%}|l. Then for 0<
e<sVi-a3,

= B

Proof. In the proof of the theorem it was
shown that %G =R for € =(1— gap (9(Mq),
(97 (My))*)?)3, for any stabilizing controller K.
Ober and Sefton (1991) showed that there exists
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a controller K, such that gap (%Mo),
(9" (My,))*) = o,. This implies the result.

7. CONCLUSIONS

Normalized coprime factor uncertainty models
and the uncertainty model based on the gap
metric are studied. A new condition is given that
allows the calculation of the gap between two
plants to be reduced to the computation of the
directed gap. The connection between the
coprime factor uncertainty models is fully
clarified. The robustness of a control system is
analysed from a geometric point of view.

REFERENCES

Cordes, H. and J. Labrousse (1963). The invariance of the
index in the metric space of closed operators. J. of
Mathematics and Mechanics, 12, 693-719.

Doyle, J. C., K. Glover, P. Khargonekar and B. Francis
(1989). State-space solutions to standard %, and %,
control problems. IEEE Trans. Aut. Control, 34, 831-848.

El-Sakkary, A. (1985). The gap metric: robustness of
stabilization of feedback systems. IEEE Trans. Aut.
Control, 240-247.

Foias, C., T. T. Georgiou and M. C. Smith (1990).
Geometric techniques for robust stabilization of linear
tigng(e)-varying systems. Proc. CDC, Honolulu, December
1990.

Francis, B. (1987). A course in ¥, control theory. Lecture
Notes in Control and Information Sciences, Vol. 88.
Springer Verlag, Berlin.

Georgiou, T. (1988). On the computation of the gap metric.
Systems and Control Letters, 11, 253-257.

Georgiou, T. and M. Smith (1990). Optimal robustness in
the gap metric. IEEE Trans. Aut. Control, 673—686.

Gohberg, I. and M. Krein (1978). Introduction to the theory
of linear non-self adjoint operators. Translations of
Mathematical Monographs, American Mathematical
Society.

McFarlane, D. and K. Glover (1989). Robust controller
design using normalized coprime factor plant descriptions.
Lecture Notes in Control and Information Sciences, Vol.
110. Springer Verlag, Berlin.

Nikolskii, N. (1986). Treatise on the shift operator.
Grundlehren der Mathematischen Wissenschaft. Springer
Verlag, Berlin.

Ober, R. and J. Sefton (1990). Stability of control systems
and graphs of linear systems. Technical Report 202,
Programs in Mathematical Sciences, University of Texas at
Dallas, August 1990.

Ober, R. and J. Sefton (1991). Stability of control systems
and graphs of linear systems. Systems and Control Letters,
265-280.

Qui, L. and E. J. Davison (1992). Feedback stability under
simultaneous gap metric uncertainties in plant and
controller. Systems and Control Letters, 18, 9-22.

Sefton, J. and R. Ober (1991). On the gap metric and
coprime factor perturbations. Technical Report No. 208,
Programs in Mathematical Sciences, University of Texas at
Dallas.

Vidyasagar, M. (1985). Control System Synthesis: A
Factorization Approach. MIT Press, MA.

Vidyasagar, M. and H. Kimura (1986). Robust controllers
for uncertain linear multivariable systems. Automatica, 22,
85-94.

Weidmann, J. (1980). Linear Operators in Hilbert Space.
Springer Verlag, Berlin.

Zhu, S. (1989). Robustness of feedback stabilization: a
topological approach. Ph.D. thesis, Eindhoven, The
Netherlands.



