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Properties of optimally robust controllers
J. A. SEFTONYtf and R. J. OBERY

The robustness properties of controllers, which are optimally robust with
respect to normalized coprime factor uncertainty, are analysed. It is shown that
such optimally robust controllers admit perturbations which are, in size, larger
than the robustness measure. It is shown how such perturbations can be
constructed by solving Hankel norm approximation problems.

1. Introduction

The work in this paper was motivated by the results of Glover and
McFarlane (1989) and their solution to the Normalized Coprime Factor Robust
Stabilization Problem. Before introducing the actual topic of this paper we will
review this problem.

The robust stabilization problem was first introduced by Vidyasagar and
Kimura (1986) for the case of not necessarily normalized coprime factorizations.
It is formulated in terms of unstructured additive perturbations on the normal-
ized right coprime factors of the nominal system, G. A normalized right (left)
coprime factorization NRCF (NLCF) of a plant G is a factorization G = NM -1
(G=M"'N) with N, M € ¥.,, (M, N e ¥..), where ¥., is the Hardy space of
functions bounded and analytic in the open right half-plane (RHP). Moreover
M (M) is required to be invertible with a proper inverse and the factors are
coprime, i.e. there exist X, Ye¥#. (X, Y e¥K,) such that —~- XN+ ¥YM =1
(-NX + My =1). That the factorization is normalized means that
N*N + M*M = I (NN* + MM* = I).

Let the nominal p X m system, G, have NRCF (N, M) such that

G=NM"!
Then any other system of the same input/output dimensions can be written in
the form

Ga = (N + AN)(M + Ay (1)
where Ay, Ay € ¥, i.e. are stable transfer functions. It is possible to define

various families of systems by placing restrictions on the allowable perturbations
Ay, Ay. The robust stabilization problem considered here is to stabilize the
nominal system, G, with normalized right coprime factorization (r.c.f.) (N, M)
and the family of systems %, defined by,
Ay
[AM]

1l A
G = {(N + AN(M + Ap)7h: [Aﬂ e L,
using a dynamic feedback controller K.
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The normalized coprime factor robust stabilization problem is now to find
the maximal &y, such that all plants in 4,  can be stabilized by a controller K.
This controller is called the optimally robust controller. Ober and Sefton (1991)
showed that such a controller can also be interpreted as a maximally stabilizing
controller. A maximally stabilizing controller is a controller that maximizes the
minimum angle between the orthogonal complement of the graph of the nominal
plant and the orthogonal complement of the transposed graph of a controller.

The following Lemma (see Vidyasagar and Kimura 1986) gives a necessary
and sufficient condition for a controller K to stabilize all plants in %,.

Lemma 1.1: Let G be a plant and let K be a controller that internally stabilizes
G. Let G=NM ~! be a normalized right coprime factorization of G and let
K = V71U be a left coprime factorization of K, such that

VM-UN=1
Then K internally stabilizes all Gp € 4., € >0, if and only if
e< |V DI 3)

Glover and McFarlane (1989) showed that the normalized right coprime
factor robustness problem can be solved explicitly.

Theorem 1.2 (Glover and McFarlane 1989): Given a p X m system G, with
normalized r.c.f and l.c.f (N, M) and (N, M) respectively, then the controller K
stabilizes all plants in §,, € >0, if and only if K has a right coprime factorization
K = UV™! for some U, V € ¥, satisfying the Nehari extension

EARM

or, equivalently, if and only if K has a left coprime factorization K = V-io
satisfying the Nehari extension

[+

The maximum stability margin, €y, is given by

w = (1= IH[ 327 Py 2 ©®)

<@1-ée) )

< (1- ) &)

The above result may at first seem surprising. However, further understand-
ing of this problem can be gained by examining an equivalent problem.

The normalized right coprime factor robust stabilization problem can be
shown to be equivalent to finding a minimum norm solution of a Bezout
identity. This is demonstrated by substituting the Youla parametrization of all
stabilizing controllers (see for example Vidyasagar 1985), for K in (3). Finding
the optimally robust controller then amounts to finding the parameter Q that
attains the infinimum in the expression

Jof -0 - Qi) (V - oMl

The expression [— 0 V] [- (U QM) (V — QN)] parametrizes all solutions
to the Bezout identity VM — ON = I. Therefore, the optimization problem is
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equivalent to finding the minimum norm solution to this Bezout identity. The
following theorem links this problem to a Nehari Problem.

Theorem 1.3 (Sz-Nagy and Foias 1976, and Nikolskii 1986): Let F; € ¥,
1<i=<n, £ >0. The following statements are then equivalent:

(1) there exist functions G;, G; € ¥, 1 < i< n, such that

< g2

<

zFiGi =1, ‘ZGE'G;'

@) SilTesxl} = € for all x € #y, (Tezx = Py Fi).
If F = {F}}[, is inner function, then statements (1) and (2) are equivalent to

() infoex, |[F* — Qll< (1 — €.

The difficulty of the proof in Theorem 1.2 is showing that the suboptimal
extension of [M — N]* is a coprime factorization of a robust controller.
Theorem 2 of Georgiou and Smith (1990) offers an alternative proof of the
relationship between the ¥,-norm of the minimal solution to the Bezout
equation and the norm of the Hankel operator whose symbol is made up of the
normalized coprime factors of the plant.

In this paper, we will consider a particular controller, the ‘minimal Bezout
controller’, that solves the normalized right coprime factor robustness problem.
In particular, we will introduce and study certain perturbations, so-called
‘Bezout-perturbations’ that bring a control system, which is controlled by a
minimal Bezout controller, to the boundary of instability. The smallest such
Bezout-perturbation has size £y, and destabilizes the system. The other
Bezout-perturbations are larger in size, than the first and hence larger than the
maximal stability margin €y,,. This shows that there are specific perturbations
that are larger than the maximal stability margin and which do not destabilize
the closed-loop system. The largest Bezout-perturbation, in fact, perturbs the
nominal plant to the inverse of the controller.

The construction of the Bezout-perturbations is done by studying minimum
norm solutions to a Bezout equation whose coefficients are the normalized
coprime factors of the maximally robust controller. We will not only consider
stable solutions but also solutions with a fixed number of unstable poles. These
minimum norm solutions can be related to Hankel norm approximations of the
Hankel operator whose symbol is given by the normalized coprime factors of the
optimally robust controller. This, to an extent, generalizes the results of
Theorem 1.3.

2. Notation

The notation used throughout this paper is standard in the control literature
(Francis 1987). For a matrix M € ®?*™ or ¢?™™, M" denotes its transpose, M*
denotes its conjugate transposed, O (M) denotes its maximum singular value,
o, its ith singular value and Opy;,(M) its minimum singular value.

The Hardy spaces %5 and (%5)!, contain all p vector-valued rational
functions square-integrable on the imaginary axis with analytic continuation into
the right and left half-planes respectively. The Hilbert space £5 is given by
$E = %5 @ (%£)*, and the orthogonal projections P, and P_ map ¥5 onto %%
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and (#5)* respectively. The norm of a function f € #§ is denoted |f|,. The
Hardy space #5*™ consists of all p X m bounded functions on the imaginary
axis with bounded analytic continuation in the right half-plane and is a
subspace of £5*™ of all p x m bounded functions on the imaginary axis.
Clearly, these functions all have finite £.-norm defined by |G|l := esssupyeq
Omax[G(jw)] and a minimum value on the imaginary axis defined by, ©(G) :=
essinfyeq Omin[G(jw)]. For a system G, G* denotes its complex conjugate
transposed, i.e. G(s)* = G(—35)". The symbol R¥} denotes the subspace of %%
containing the real rational functions; similar definitions apply to the other
spaces. By . ; is meant the subset of £, consisting of functions that can be
written as the sum of a function in ., plus a rational function that has at most
k poles in the open right half-lane. The set &, denotes the set of rational square
inner functions in ¥, of McMillan degree at most n.

The domain and range of an operator Z is denoted by @(Z) and R(Z)
respectively. The orthogonal projection operator onto a closed space, & of £§
is denoted by Py. Given a p X m symbol G the multiplication operator
Mg: B(Mg)— K3 is defined by f— Gf. If G e $2*™ the Laurent operator
Lg: £7' — ¥4, the Hankel operator Hg: #5' — (¥#4)* and the Toeplitz operator
Tg: #3'— #5 with symbol G are defined by f— Gf, f+> Pgyp)Gf and
J > PysGf respectively.

3. Minimal Bezout controller

This section starts by defining a particular controller that solves the normal-
ized right coprime factorization robust stabilization problem. In the previous
section it was shown that the coprime factors of this controller are the minimum
norm solutions to a Bezout equation.

Definition 3.1: A rational stabilizing controller, K, will be called a minimal
Bezout controller of the p X m system G if and only if

a(M™(I - KG)[~K I])(i®) = ennx (7)
for all i=1, 2, ..., min(m ,p) and for all we R and there exists no other
stabilizing controller K of lower McMillan degree satisfying this condition. ]

It follows from our discussion below that in the single-input single-output
case the Bezout controller is, in fact, the unique optimally robust controller. In
the multivariable case there is, in general, no unique optimally robust controller.
Introducing the concept of a Bezout controller aims at picking certain optimally
robust controllers that have properties that are easy to analyse. From a design
point of view it might, however, be preferable to choose another optimally
robust controller.

This section aims at establishing the existence of a minimal Bezout con-
troller, and shows that the normalized coprime factors of this controller satisfy
various identities which will be useful in the later development. Some technical
results are needed for the Hankel and Toeplitz operators with symbol
[M —NJ*. For the first result, see Fuhrman and Ober (1993).

Proposition 3.2: Given a p X m rational transfer function G, with NLCF
(N, M), let Qe R¥. and 2 be the smallest inner m X m and p X p functions
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respectively (with respect to the usual ordering of inner functions) such that
[_%*] QeH, and Q[N* M*] € ¥.. 8)
then

Ker(H[_ig‘]) = Q¥

[@(H[ 5;?;])]* = ([%‘*J Bﬂ & )(gﬁgi)

It is possible to use the previous result in order to give a Schmidt decomposition
of the self-adjoint operator Zg := T #* :l Tl: :l %L — 5.

and

Theorem 3.3: Given a p X m rational transfer function G of McMillan degree n
with NLCF (N, M), and let the Hankel operator with symbol [M —NT* have
the singular value decomposition

l: :Ih = 20, > < fajs > 86

where g ;) € (¥5*™?, fu; € %5 and Zr,- =n and h € ¥4. Then the following
identities hold,

(1) the Schmidt vectors satisfy
[M -Nlgq, = oifi,

(2) the operator T*l: ‘_‘I T|: can be decomposed in the following manner

T :]TI:M*:Ih = TeToh+ 2(1 - 0)2 < fap» B > fap

where Q € ¥E*? is an inner function such that Ker(H[ :I) as
defined in Proposition 3.2.

Proof: The following Hankel and Toeplitz identity can be easily verified

HEANEARMES(Eak ©

Hence, for any input Schmidt vector f; ; we have

*[ ]T[M] fap = A = Dfap (10)

The first identity then follows from noticing that

L[_ig*]f(i,n - T[_A?ﬁ:l fan = H[ff},ﬁ]f(m

= o8 € (X5
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which implies

oL -m8a.j = Lia —ﬁ](L[fl]v‘;] fap — T[_A'?v“] fa, »)
= sy T ﬂ‘ ﬁt i
fip *[_ﬁ*:] T fap)
U?f(i,j) € %5

In order to prove the second identity, it is first necessary to decompose the
space #{ as HL= QLD (%) O Q%5). This implies that for any

he Ker(H[ A‘g‘]) = Q%Y , we have

:ITE ]h—h (11)

as a consequence of (9). The second identity is thus a combination of the

orthogonal decomposition, noting that f; ; € [Ker(H[ M :I)]l, as well as
(11) and (10). N 0
Identity (1) is basic for the following analysis. It states that

H *[_HN:I 8. = L*[_A‘g*] 8i.p = 9

and therefore, in the study of the Hankel operators with an inner symbol, the
projection operator does not complicate the analysis. In fact, the adjoint of the
Hankel operator can be considered simply as a Laurent operator on the Schmidt
vectors.

It is now possible to prove some results concerning the optimal Nehari
extensions of co-inner functions and, in particular, of [M —NJ*. This is first
done for the case when the system is single-input single-output (SISO), as the
extensions in this case can be expressed in terms of the Schmidt vectors. In
order to make this distinction clear in the notation, lower case letters are used
to denote all SISO transfer functions. The following technical lemma will be
required.

Lemma 3.4. (Coburn, see for example Nikolskii 1986): If 0 € RE, is a SISO
transfer function not almost everywhere zero, then either Ker(Ty) = {0} or
Ker (Tg+) = {0}.

The following Lemma will also be needed.

Lemma 3.5: Suppose the p X m function G has a normalized r.c.f. and lc.f
(N, M) and (N, M) respectively and a m X p function, K, has a normalized
rc.f. and l.c.f (U, V) and (U,V). If

C* S* . IYV* M: 174 _jj*
§ -C| | M -N]||lU V*

N*V + M*U (VM — UN)*
(MV — NU)  —(UM* + VN**
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then

(1) cc*+8*§=1, (3) CC*+388*=1,

() C*C+S*S=1, (4) C*C+S58*=1,

and if S, 8 e L,

(5) c*§1=5"1C* (6) CS"'=8"'C

and if 71, §7' € RHK,,

M S=U-ceHi =U-CeH ®) s=U - c*OF = (1 - TOf
where FYY(FY2y* = (FY*y*F{?=F.

Proof: The proof follows immediately from noticing that the function defined

in this Lemma is simply the product of two all-pass functions, and is therefore
all-pass itself. a

We can prove that for a SISO plant g there exists a minimal Bezout
controller.

Theorem 3.6: Given a SISO system g, with normalized coprime factors (n, m),
and assuming that the Hankel operator with symbol [m —n]* has the Schmidt
decomposition as defined in Theorem 3.3, there exists a unique minimal Bezout
controller for the plant g. The minimal Bezout controller has a normalized
coprime factorization (u, v) which satisfies the following identities

o] -a-de]s]

(2 mv—nu=Q- oHi2

3) wru+v*tv=1

(4) If ¢* = m*u + n*v then c*c = o}
() |Hell < 01

-

Proof: The existence of a controller that satisfies the all-pass condition in (7) is
proved by construction of its coprime factors from the Schmidt vectors of the
Hankel operator with symbol [m — n]*. It is shown that this coprime factoriza-
tion satisfies identities (2) to (5). Finally, it is shown that if a stabilizing
controller satisfies the all-pass condition in (7) then its normalized coprime
factors satisfy these identities. The uniqueness of the minimal Bezout controller
may then be deduced from the fact that the optimal Nehari extension [m —n]*
is unique.

Adamyan et al. (1971) proved that in the SISO case an optimal Nehari
extension of a transfer function can be calculated from the Schmidt vectors.
Foias and Frazho (1990) showed that the same results also hold in the case of
n X 1 functions. Therefore, an extension of [m —n]* can be calculated as

* ga.,
a-aye[ ] = ] -
u n fan

and, further, this extension is unique. It is now shown that the transfer function
[v u]" satisfies the identities (2) to (5). The second identity follows directly from
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the expression for the extension and the first identity in Theorem 3.3

1 =o)2[m —n] [u] =1-ofm —n] ELD
Jfa

=1-o0?

This also implies that (u, v) is coprime.
The third identity is also a straightforward calculation, as.

*
-yl w2 ] =(im -nl- o L) - o Sun)
u fty n fan
=1 - a% - af + a% ___gﬁ,1)g(1,1)
fanfa
=1- 0%
and g 18,1 = fli,nfa,1), see Foias and Frazho (1990). Identity (5) follows

immediately from identity (4) of Lemma 3.5. To show the final identity, note
that by construction

(['T”**:l - (1-oh*? [:Z]) fay = o180,y

which implies that

l:m —n:l l:m*:l — (1= P l:v:l fon = otfw
n* m* —n* 1 u (1,1) (1 _ 0%)1/2C*f(1'1)
m —n
= 0 [n* m*:l 8,1

and that therefore [m —njgq 1 = 01fq1 and [n* m*]guqy = (1 - af)lfzg(l,l)
€ %y where ||gqpll =1. Hence c*f; ) = 018(1,1), implying that [|H+|| = o, as
o1 = |lc*||. = ||Hc*ﬁ = ¢,. Using the identity

H%He + Th T, = o}

as c*/o, is all-pass, it is clear that Ja, € Ker(T+). By Lemma 3.4 this implies
that Ker(7.) = {0}, and therefore ||H0|r< 01 = |lc||l» as

HM. + T*T, = o*

thus proving the last identity. Finally, note that k = uv™! satisfies the all-pass
condition in (7) as for all w e R

o(m™(1 = gk) "' [~k 1])jw)

i

o((mv — nu) o u])(w)

(1 - o}) 12

i

and k is stabilizing as (mv — nu)"! e R¥,. To complete the proof it is
necessary to show that the normalized coprime factors (u, v) of every controller
that satisfies the all-pass condition in (7) satisfy these identities. From the
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definition of such a controller

1 - D) = o(m (1 - gk) Y-k 1](jw) Vwe R
o((mv — nuw) [-u v])(jow) VeoeR
o((mv — nu) H)(jw) VYo e R

As the controller is stabilizing, mv — nu is a unit in #,. Since mv — nu is also a
scaled all-pass this implies that mv — nu = (1 - 01)1 Usmg 1dent1ty (4) of
Lemma 3.5 this implies that ¢* = mu* + nv* satisfies c*c = o1. It is now clear

that (1 — (71)1 u] is the optimal Nehari extension for
o[-0 ) o (2 A0 -o- i)
=0 (|j 01 :l) = 01
(1 - od)2c*

As this extension is unique, the proof is thus completed. 0

These results can be generalized from the SISO case to the multivariable case.

Theorem 3.7: Given a p X m, system G where m < p, with normalized left and
right coprime factorization (N, M) and (N, M) respectively, then there exists a
minimal Bezout controller, K. Further, every minimal Bezout controller has left
coprime factors (U, V) that satisfy the following identities.

0 M] - - oy
() VM - ﬁN = (1 - o)1,

@) If C* = UM* + Vﬁ* then C*C = 0%1,
) [Hell < oy

where oy = ”H{:—A?T:*___I fl.

Proof: The existence of a controller satisfying the all-pass condition in (7) is
proved by constructing the left coprime factors (U, V) that satisfy all the
identities (1) to (5), from the parametrization of all solutions to the Bezout
equation VM — UN =1, and then letting K = V1T, Then, it is shown that
any controller satisfying the all-pass condition in (7) has normalized left coprime
factors satisfying identities (1) to (4), and the one of minimal degree satisfies
identity (5).

All solutions to the Bezout equation VM —UN=1 can be written
(0,V)= (U - M), (V — QN)) where (U, V) is any solution to this Bezout
equation. It is now possible to relate the singular values of [— 0 V] to the
singular values of a m X p transfer function,
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o[ % 3)

= a([-(OM* + VN*) I])

= (1 + o [UM* + VN*))2

= (1 + S} (UM* + VN* — Q) (12)
By Nehari’s Theorem there exists a Q € ®¥., which achieves the norm bound

. O™ + VN + Ollo = |H a2 75+
Q£&MUM + VN*) + Qllo = [|H@s+ 7|

Also, from Glover (1984), there exists a Q € R¥. such that (OM* +
VN* + Q) is a scaled all-pass transfer function and

o[- 0 ‘7]

|H (@ me+ 785+ 0| < |H@me+7 5%l

Further, the transfer function Q € R¥.. satisfying the bounds in the above
equations also minimizes the McMillan degree of the all-pass transfer function
Q. (This follows from Lemma 5.2 of Glover 1989). This can be shown by
padding the m X p transfer functions with zeros to make a square p X p
transfer function

0

Theorem 6.3 of Glover (1984) implies that there exists an extension

| &
Q &]
that makes the resultant sum a scaled all-pass transfer function. This, in turn,
implies that (U M* + VN* + 0,) (UM* + VN* + Qy)* = v, for a y € R. This
implies for such a Q; that [—-(U — 01 M) (V — Q1N)] is a scaled inner transfer
function from (12). From now on this particular coprime factorization may be
denoted as [-U V]. From McFarlane and Glover (1989) Theorem 1.3, the
#-norm of this factorization is

DUM*+VNﬂ]

1
(1 - o}

as it is the coprime factorization which achieves the infimum in (4). Therefore,
the coprime factorization (1 — o2 [—=0 V] clearly satisfies identities (2), (3),
(4) and (5). It can be shown to satisfy identity (1) by noticing that

RGN
7 0] e[
ai

B .[—(1 - )A(MO* + NV*)}
(

=0 V1l =

-]

0
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This also proves the existence of a controller satisfying the all-pass condition in
(7). Let K = V™1, then
o(M~(I - KG) ' [-K I])(jw)

oMY — VIONM Y [-K I))(jo)
1

o([—-U V]))(jw) = (1——0?—)_15 Yo e X

and K is stabilizing as (U, V) was constructed from solutions to the Bezout
equation (VM — UN) = 1.

In an analogous manner, it will be shown that every minimal Bezout
controller has a normalized coprime factorization (ij , V) which satisfies identi-
ties (1) to (4). From the definition of the minimal Bezout controller the
normalized coprime factors satisfy

( 12‘)1'/2‘ = o(M7'(I - KG)'[-K I])(jo) Yo eR, Vi=1,2,..,m
e

o (VM - UN) Y [-U V)(jw) YoeR, Vi=1,2,....,m
o((VM - UN) H(jw) VYoeR, Vi=1,2,....,m

As (VM - UN), (VM - UN) ' e R¥*, and (1 - 03)"2(VM - UN) is all-
pass, this implies that (VM — UN) = (1 — 0})*21,,. As [-U V] is normalized
and (VM — UN) = (1 — 0921, it is clear from identity (4) of Lemma 3.5 that
C = UM* + VN* satisfies C*C = 031,,. Given these identities it can be shown
that this coprime factorization satisfies identity (1) by the same argument as
above. To complete the proof it is necessary to argue that of the controllers
satisfying the all-pass condition in (7), it is the one of minimum degree that
satisfies identity (5). Theorem 11.1 in Sefton and Ober (1991) (see also Sefton
1991) shows that the McMillan degree of C*= UM*+ VN* equals the
McMillan degree of the system plus the McMillan degree of the controller K.
Hence, of all the stabilizing controllers satisfying the all-pass condition in (7) the
one of minimum degree also minimizes the McMillan degree of the associated
transfer function C*= UM*+ VN*. It was noted earlier that these are
precisely the transfer functions that satisfy identity (5). This completes the
proof. |

il

The next result is the analogous result for a p X m system G where m = p.

Corollary 3.8: Given a p X m system G where m = p, with normalized left and
right coprime factorization (N, M) and (N, M) respectively, then there exists a
minimal Bezout controller, K. Further, every minimal Bezout controller has right
coprime factors (U, V') that satisfy the following identities,

o |[ 2] -a-o[ 7]

() MV - NU = (1 - o))",
() U*U + V*V =1,
(8) If C* = M*U + N*V then CC* = o3,
) Hc| < o
where o, = ||H[™ i+
1=l EA I

w0
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Proof: This follows immediately by substituting GT = (MT)"'NT = NT(M")™!
for G in the previous Theorem. Then, the transpose of the identities (2) to (5)
derived from the transposed system, a right coprime factorization of the minimal
Bezout controller K = UT(VT)™!:= UV~! for the original system G is re-
covered. In a manner entirely analogous with the proof in the above Theorem,
it can be shown that this factorization also satisfies identity (1). The final part of
the proof can also be proved by substituting the transpose of the controller and
the transpose of the system into the definition of the minimal Bezout controller,
and then transposing the final closed-loop transfer function. O

These results are combined for square systems in the next corollary.

Corollary 3.9: Given a square m X m system G, with normalized left and right
coprime factorization (N, M) and (N, M) respectively, then there exists a
minimal Bezout controller, K. Every minimal Bezout controller has left and right
coprime factors (U, V) and (U, V') which satisfy the following

M* 1%
aa [ ] -a-ave[ ] =

N -U*
oo [(3]- - [&] -o
(2a) MV - NU =(Q - oD)21, (2b) VM - UN =@ - o)1,
Ba) U*U +V*V =1, @3b) UU*+ VV*=1,
(4a) If C*= M*U + N*V (4b) If C*=UM*+ VN*

then C*C = 0°1,, and then CC* = 031, and

(5a) ||Hcll< 0 where 0, = IIH[_A?V:*] I b)) lHell<a

Proof: Noting that given (2 a) and (2 b) then C = C by Lemma 3.5. The result
therefore follows immediately by combining the previous Theorem and Corol-
lary. O

The final result in this section relates the Hankel singular values of the
Hankel operator with symbol [M —N]* to those of the right coprime factoriza-
tion (U, V) of the minimal Bezout controller satisyfing equations (1) to (4). It
also establishes the McMillan degree of this controller. In order to prove the
result the following Lemma is required.

Lemma 3.10. (Nikolskii 1986, p. 409): Given 8 € RE%"" a square all-pass trans-
fer function, such that 6*0 = I, then if [Range (T)]* = {0}

0x(Hg) = 041(Hg) Vk =1
with the same multiplicity .

Theorem 3.11:  Given a square m X m system G, with normalized left and right
coprime factorization (N, M) and (N, M) respectively, let K be a minimal
Bezout controller of the system, G, with normalized right and left coprime factors
(U, V) and (U, V), then the transfer function

- L (2% §]-la-be[g] ml)
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is all-pass. Further, given the Schmidt decomposition of the Hankel operator with
symbol [M —N1* in Theorem 3.3 then

o(Hy+ yv) = ai(H[_Vl?:l)

= i+1(H[}7i;*:|)

with multiplicity r(;y,) and hence the McMillan degree of the minimal Bezout
controller is equal to n — ry, where ry is the multiplicity of the first singular value

of
gEd

Proof: It is straightforward to verify that E is an all-pass transfer function, as
[g] satisfies the relationships in Corollary 3.9. In order to prove the second

part of the Theorem, Lemma 3.10 is apphed to the transfer function E.
However, it is first necessary to check that Tg(J2™) = (%2 ). First note that for

any y € %5 that
0
T, = M
HRT
It is claimed that
. %7 (TVT] opm)*
) 6 | = (0] =)

It is now shown that this implies the required result. For any z € %%'", given the
claim, there exists an x € ¥3 such that

Ay = = 7L o |

Now let

Moy =P - (6] )

AHE RIS HIRH
=L)<

The claim is now proved, using an expression for the orthogonal projection
operator (see for example Ober and Sefton 1991),

) *TE[ - regerey ey w7
- -1 ][T[ ]T[ u*]] Tome+vin(¥7)

then
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implying the claim if T+ 7+(¥5) = (#3). As C*/oy = (UM* + VN*)/oy
is all-pass
TerTe + HSH = 031,

Therefore, a sufficient condition for T(Fa=+vi+(¥z)= (%) is that
|\ H @ 55=+7&+ell < o1 which is satisfied by Theorem 3.7, and that R(T(g3++7¥+))
is closed.

Now, applying Lemma 3.10 to the transfer function E gives

ai+r1(HE) = 0i+r1(H[_A’§;:|)
oi(Hg*)

R N,
U,(H[(l (‘;11)1 2] [v* U']):
= Gi(H[V* U*])
This also shows the claim on the McMillan degree of [VT UT|T since, by
Kronecker’s Theorem (Nikolskii 1986), the rank of a Hankel operator with
rational symbol is equal to the number of unstable poles of the symbol. As the
McMillan degree of the controller K is the McMillan degree of its minimum

normalized coprime factors (Ober and McFarlane 1989), this established the
final claim. The other equality is a known result (Ober and McFarlane 1989).

For an alternative proof of this result in the case of a scalar transfer function,
see Fuhrmann and Ober (1993).

4. Bezout perturbations

As a consequence of the results stated in the introduction we know that the
robustness measure of a control system in which the plant is stabilized by a
minimal Bezout controller is given by V (1 — 07). Since no further structure is
put on a perturbation other than the demand that it be norm-bounded, it is to
be expected that such a control design will be conservative.

This section investigates this point for the particular case when the controller
K is the minimal Bezout controller of the square system G. Certain perturba-
tions called Bezout perturbations of the system G are defined for this case, and
it is shown that these perturbations have some interesting properties. Further, it
is shown that these perturbations can be calculated explicitly, as they are related
to the optimal Hankel norm approximations of the normalized coprime factors
of the controller.

In order to facilitate the discussion, the following terms will be defined.
Given a square m X m system G with normalized r.c.f (N, M) and a minimal
Bezout controller K, a perturbation

AN 2ZmXxXm
I:AM:] € R,

is called stabilizing if (G,, K) is internally stable and (N + Ay), (M + Ay)) is
coprime where Gp = (N + Ay)(M + A u)"}, otherwise it is called destabilizing.
If the size of a perturbation refers to its ¥.-norm, a perturbation is called a
minimum norm destabilizing perturbation, if there does not exist a perturbation
of smaller size that also destabilizes the closed loop system (G, K).



Properties of optimally robust controllers 1205

The definition of the Bezout perturbations is motivated by the following
observation, which shows that a minimum norm destabilizing perturbation can
be calculated by solving a modified two-block . optimization problem. In this
modified problem the search for the optimal transfer function is performed over
the class ¥, ; rather than .. It was shown that this problem can be solved by
an extension of the existing ¥ optimization theory (Glover and Doyle 1989).

Proposition4.1: Given a m X m rational system G with normalized r.c.f.
(N, M) and normalized l.c.f (N, M), and a minimal Bezout controller K with
normalized r.c.f. (U, V) and normalized Lc.f. (U, V) satisfying the relations in
Corollary 3.9 then

. . N V][O . . 1% I:—@
= f f
Qllegtf%,, Qzé%ew M U :I Qz:l © Ole%ﬁnk Qzle%mm U ] 10))
(I+Q) leRr%,
— inf V-1 :l
Qe¥. U O ||l

where ny is the McMillan degree of the minimal Bezout controller. Further there
exists a Q°P' achieving the infimum in the final expression. If Q°" has an inner
r.c.f. Q% = QP(O°PY* where O ¢ B, , then Q1 = P and Q, = Q" achieve
the infimum in the first expression. Hence

Ay | _IN V et
Ay | | M U]|LO™
is a minimum norm destabilizing perturbation of this closed-loop system.

Proof: This observation follows from noticing that
:| [Qz@*
= inf inf

Aird
U Q2
N Vv
Ok, 0%, ||| M U Q2

Now, as 0,0* € ¥, ,,, and further any Q € ¥, ,, has an inner r.c.f Q= Q,6*

where O, € ¥, and O € R, , then
|4 - — inf N Vv -1 :I
U Q, oe., LM U Q

Since for any @€ %, , (I — ©) ! ¢ RHK.,, it remains to show that the norm of
the first expression and the norm of the third are equal. This can be proved
using the relationship in Theorem 3.7. Now

= inf inf
w0 OB, 0eR¥,,

inf  inf
OB, QeR¥,,

-

l

inf  inf
OB, 0eR¥K.,

-

ot ([N VI = e [V O [N
QG%m,nk M U Q ) Qe%,,,,,k - U . V M
= i = — oHr
ol¥. [ (1 - o) L=

as V*N+ U*M e¥,, and Q% = V*N + U*M achieves the infimum. By
Proposition 6.4. in Sefton an Ober (1991)

L

mf
Q1€
I+Q)" 1¢9m

=MV - NU)
Qzegt% o

= (1 — |[N*V + M*UJ2)"2 = (1 - o)'?



1206 J. A. Sefton and R. J. Ober

where the second equality is a consequence of Lemma 3.5. Since

[AN:I (1 - 01)

and

where (I + @°P)~1 # ¥., we have that

Ay
Aym
is a destabilizing perturbation. 0

The above argument motivates the definition of the Bezout perturbations.
First recall the following resuit from the preliminary section.

Lemmad.2: Given a square m X m system, G with normalized r.c.f (N, M)
and normalized l.c.f (N, M), and then let (8gtijy» feip) fori=1,2, ... r;bea
set of orthogonal (normalized) Schmidt pairs which span the ri® dimensional
eigenspace corresponding to singular value, o; of the Hankel operator with
symbol [-N M]*, that is for h € %2

[ ]h = 20,2 < fetiip» B > 8gtinp)

where gq; ;) € (5™t foiy € %2 and > r,=n, the McMillan degree of the
system G. Also given a minimal Bezout controller with left and right normalized
coprime factors (U, V) and (U, V) respectively then the Schmidt decomposition
of the Hankel operator with symbol [ U V1* can be written

|: ]h = 201 < -1, B > 8Bri-1.)
i=2 j=

where gii-1,j) € (5™, Juti-1,j) € %2 are a Schmidt pair corresponding to

singular value o;.

Proof: The proof follows immediately from Theorem 3.11.

Definition 4.3: Given the assumptions in Lemma 4.2 then

AN 2mxm
€ R¥
[AM:L '

is a Bezout perturbation in the ith direction i =1, 2, ..., k where k is the
number of distinct singular values of

A7
MEPR1lird

if and only if
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where (0;, Q;) is an inner r.c.f of a Qf" = 0,0} that achieves the infimum in

the expression

v vll7]

M U o
where n; = Zj-=2rj, n,=0. (]
It is apparent from the formulation of the definition that

<]l == <,

It will be shown in the next theorem that these are, in fact, strict inequalities,
and that the norm of these perturbations can be calculated explicitly in terms of
the Hankel singular values o;.

The Bezout perturbations in the kth direction is clearly a minimum norm
destabilizing perturbation from Proposition 4.1. The Bezout perturbation in the
first direction perturbs the system G to the inverse of the controller. Note that

N Ay | _| N N |4 1V
HMEHNHMESFMEHDENE
and therefore Gp=(N +Ay)(M + Ap) '=VU 1=K and (I - GaK)
= 0. It could be argued that this is the worst or most destructive perturbation as,
in this case, every input signal into the closed-loop system (G,, K) will result in
an unbounded output signal. The Bezout perturbations in the other directions
are also destabilizing. These Bezout perturbations can be seen to lic between the
minimum norm destabilizing perturbation and the worst case perturbation in the
first direction in degree of severity.
However, any perturbation

AN _ AN . _
(A ] o[ ], i-1.2

is not destabilizing if & < 1. Therefore, the Bezout perturbations can be seen as
describing alternative perturbation directions where the size of the perturbations
that preserve closed-loop stability can be larger than the stability margin. There
is one further perturbation direction of interest, of the form

[&]-[7]

which is called the harmless direction. Any perturbation in this direction is not
destabilizing whatever its size.

The next theorem proves the earlier claim that the Bezout perturbations are
optimal Hankel norm approximations of the normalized coprime factors of the
controller.

inf
Q€K n,

0

<. .. <

=

=
®

-3 -

Theorem 4.4: Given the assumptions in Lemma 4.2 and the notation of Defini-
tion 4.3 then

i=12,...,k

I _ (1-dh”

”[iﬂi © (1= o)
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where 0y := 0. Further, the Bezout perturbations satisfy the extension

Kl

Proof: First note that the r.c.f (U V) satisfy the identities in Corollary 3.9. Let
(N, N) =((1l-o )'1/2N (l-o0 )'1 2M), then (N M] satisfy the Bezout iden-
tity VM — UN = I. In Fuhrmann and Ober (1993) it is shown that the singular
values of the Hankel oprator with symbol H(y«q,y+f) are invariants of the
closed-loop system, and that

o(Hwa+urin) = (0 Hpy+ y))/(1 = 65(Hiye yo)?
In Theorem 3.11 the Hankel singular values of Hy» y+) are expressed in terms

1,2,...,k

Oiv1 =

of the Hankel singular values of H[ ] Using this information it is clear that

Oi+1
a- 012+1)1/2
with multiplicity r,;;. Therefore, by the theory of Hankel norm approximation,
(see for example Glover 1984), this implies that

(1 - o)™V o(Hw*niumy) = 0i(Hysgrur+ ) =

(1- 01) Oi+1
. - ‘7i+1)l/2
where n; = E}=2rj. The norm of the Bezout perturbations follows from this fact

me [V*N + U*M + Qll» =

as
Ay . N V
'“:AM = ot Wl M
. B U*
B Qelgcqf.,n,. - v :' [M
. [V*N + U*M + Q
B Qelgfi_,., (1 - oD :|

1/2
= {(1 - oY)+ inf |V*N + U*M + Qlli,}
Qe¥y,

where n; = >, _,r;. Therefore, if i < k — 1
. 1”2 Z A2 .
" ={u—ob+u—ab e } - L-d
ifje - 0i+1)/? (1 - ot
o]

as V*N + U*M € ¥., ,,,. It is now shown that

]

also satisfies the extension in the statement 01 the theorem. Note from the
definition of the Bezout peturbations that, [-T V][AN A%]T = (1 - o})}@,.

andifi = k

= (1 - o})"?
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This implies that

A R

_ [ V¥AN): + U*(Am)i
- “[ a - e, ]"

o«

= (1 — )Y + |V¥(Ay)i + U Ap)il2)?

and hence
0;41(1 — oD
IV*(Ax)i + U*(Ap)ille = ———5—"—
N " (1 - )

It is now clear that

[—17*] _ (- AN] o
v* a- 0%)1/2 Ay |;

@

- o%
_ (‘li—;%)l% (VD) + U(Aw)) O}
- 01

I1-(1 - o)l

4 2 2
= (041 + oin(l - o)) = 0.1

B o«

v I - e

1209

O

This theorem shows that it is possible to calculate explicitly the size of the
Bezout perturbations and that they are, in fact, scaled optimal Hankel-norm
approximations of the normalized coprime factors of the controller. If the
system G is single-input single-ouput then the Hankel norm approximations are
unique and therefore the Bezout perturbations are the unique optimal Hankel
norm approximations of the coprime factors of the controller. In the multivari-
able case, it would be necessary to construct a particular optimal all-pass
approximation, using an argument similar to the one used in Theorem 3.7. It is

also apparent from this theorem that as

o= [ ] - = an ) o

oo

a minimum norm destabilizing perturbation of this closed-loop system is

AN o e =0
l:AM:Ik—(l oY) |:V* Oy

where ©, is the inner function of minimal degree such that
_I7*
[ e ] 0, € R¥..
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