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In a series of papers [e.g. (I-3)], it was suggested that
methods based on singular-value decomposition techniques
of Hankel matrices could be used to analyze data in NMR
experiments. We will review the basic idea behind this
method from a general point of view. By means of an ex-
ample we will show that the method can lead to poorly
phased spectra, despite the fact that the Fourier transform
of the unprocessed data leads to a well-phased, albeit noise-
corrupted, spectrum. It is then shown that the general scheme
can be modified in a way that such problems will be reduced.
It follows from results in the area of stochastic realization
theory and stochastic model reduction that, in the infinite-
data case, the processed data are always correctly phased if
the proposed modification of the method is used. By means
of an example it is shown that this can also be expected in
the finite-data case. This new methodology could be useful
for the improvement of the quality of NMR spectra, partic-
ularly for the avoidance of the introduction of phasing prob-
lems that might arise during automated processing using the
current Hankel-matrix-based methods.

The basic idea of the Hankel-matrix-based method is as
follows. Let a sampled free induction decay be given as

k
FID(n) = 3 ce®iord)n=DAT 4 o(n — 1)AT),
j=1
n=12,...,

where w; € [0, 1/AT] is the frequency of the jth component
of the signal, d; is the corresponding damping factor, AT is
the sampling interval, [e(AT(n — 1))],-, is the noise se-
quence, and c; are the coefficients that are weighting the fre-
quency components.

The coeflicients of the FID are then placed in the Hankel
matrix
FID(1) FID(2) FID(3) FID(4)
FID(2) FID(3) FID(4)
FID(3) FID(4)
FID(4)
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IfH =~ O, R, is an approximate factorization of the Hankel
matrix H such that the finite matrices @, and R, are of full
rank k, then we set A; such that O§°*"A; = O}, B, as the
first column of Ry, and C; as the first row of @,. Here
O1* is the matrix obtained from O, by deleting the first row
and O$°"" is the matrix obtained from @, by deleting the
last row. Clearly, the identity O §°*"A, = @ }® can in practice
not be expected to be precise and an approximate solution
must be found.

Given the matrices (A, By, Ci), the FID is then assumed
to be modeled by

FID(n) ~ CA} 'B,, n=1,2,....

If the matrix A, is diagonalized, i.e., if for some invertible
T, TAT ! = diag(ay, ..., o) =: dA,, then with dB, :=
TBy, dCy := CkT_l,

k
FID(n) ~ dCdA;'dB, = 2 v;8a]",

j=1
n=12,...,

where dB; = (B8 - - - Bx)T, dCi = (7,
setéj]:=‘ylﬁ_l’j= 1,...,k

+++ v¢). Hence we

Asajm e mer AT j—1 3 . k,wesetd; = —log|a;|/
AT, @; = angle(a;)/2xAT, j = 1, 2, ..., k. The typical
implementation of the scheme is as follows. Let

FID(1) FID(2) FID(3) FID(N)
FID(2) FID(3) FID(N+1)
HN = :

FID(3) : : ’

FID(N) FID(N+1) FID(2N) FID(2N+1)

where N is generally chosen as a compromise such that Hy
provides a “good” approximant of the semi-infinite Hankel
matrix H and Hy is not too large for reasonable computational
speed. Then a singular-value decomposition is performed,
Hy = UEV, where £ = diag(o,, 02,..., 0) EC™ ¢, > 0,
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= « <« = g;> 0, is diagonal with strictly positive entries, U
€ @M guch that U*U = 1,, V € @>¥, VV* = |,. Note that
if the measurements of the FID were not corrupted by noise
then the dimension of £ would equal the number of fre-
quency components in the signal; ie., / = kif N= k =
rank (H) (Kronecker’s theorem). Due to the presence of noise
we typically have that / > k.

In order to account for the noise in the signal we use the
following heuristic. The noise level is considered to be “low”
with respect to the signal. It is then argued that the small
singular values o441, ..., o; are due to the noise and the
larger singular values are due to the signal. Therefore the
small singular values are truncated away and only the fol-
lowing reduced matrices are considered: E, = diag(s,, 07,
..., 0y), Vi the first k rows of V, and Uy the first & columns
of U. We then set O, = U,EL/?, R}/? = EV?V, and apply
the above described method to estimate the parameters of
the signal from O, and R,.

In the following example, we demonstrate a possible
problem with this method. We give an example of an FID
that is phased; i.e., the real part of the Fourier transform of
the signal is positive. But the real part of the Fourier trans-
form obtained from the simulated FID using the estimated
parameters &, Ry, ¢ is no longer positive. This might lead
to problems in the interpretation of spectra that have been
processed using this method. This problem arises due to a
fundamental shortcoming of the approximation step in
which E, V, U are replaced by E;, Vi, U. Such problems
were previously recognized in the econometrics literature
(4), where related Hankel based methods are used to analyze
time-series data.

Figure la shows the real part of the Fourier transform of
a simulated FID with noise added. In Fig. 1b, the Fourier
transform is shown of an FID that was calculated based on
the estimates obtained using the method discussed above.
While the unprocessed Fourier transform is well phased, the
phasing is completely destroyed by the estimation technique.

We now introduce a modification of the previously de-
scribed method to ensure that proper phasing is preserved

gt ot

FIG. 1.
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by the data-processing method. In this context, functions of
positive type play an important role. A rational function

F(z)= 2 fz", lz| =1,

n=—coo

is said to be of positive type if F(z) = 0, |z| = 1. The ap-
plication of this definition to NMR is as follows. Let
[FID(n)],>, be the sampled FID of an NMR experiment,
with sampling interval AT. Let

DFT(w) = 3 FID(j)e 22700, wE[O,—]
st AT

be the discrete Fourier transform (DFT) of the FID. In many
experiments the FID is such that the DFT is positive real,
i.e., has positive real part,

Real[DFT(w)] =

N | =

[ % HD(j)e—znwAT(j'—l)
j=1

FID(_]) e2riwA T(j—l)]

+
Ms

~.
It

[FID(1) + FID(1)

N —

FID(]) e—21riwA T(-1)

Ms

+
2

.
U

+ 2 FID(_]) e21riwAT(j—1)] > 0,
j=2

forall w € [0, 1 /AT]. Note that typically FID( 1) is real and
hence

(a) Real part of DFT of noisy FID. (b) Spectrum after processing with the “standard” Hankel-matrix-based method (k = 2).
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2Real [DFT(w)] = 2FID(1) + 3 FID(j)e 2rieaTG-1)

j=2

Ms

+ FID(]) e21riwAT(j—l)_

Jj=2

Now set f := 2FID(1); f,:= FID(n),n= 1, f,:= FID(n),
n<-—1;and F(z) = 23 _ f:2", |z| = 1. Then for z =
e?™AT and w € {0, 1/AT], F(z) = 2Real[DFT(w)]. This
shows that F is of positive type if DFT(w) = 0 for all w €
[0, 1/AT].

Now let

A Soa
S
[
S
CFID(2) FID(3) FID(4) FID(5)
FID(3) FID(4) FID(5)

= | FID(4) FID(5)

FID(5)

S
s
S

S
S
HF =

i

be a semi-infinite Hankel matrix. Note the slight modification
of the definition of the Hankel matrix. Under the assumption
that F is of positive type, it can be shown (5) that a facto-
rization T = T¥T, exists for

" S fa

S A
=
Loh b
K . .
[ 2FID(1) FID(2) FID(3)
_ | FID(2) 2FID(1) FID(2)
FID(3) FID(2) 2FID(1)
and
Vo 0 0
T,- v, v O
vy U Vo
forsome vy >0andv, €@, i =1, 2,.... By analogy with

stochastic realization theory (6) we call (TT) 'H,T;! the ca-
nonical correlation operator. In practical situations we must
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work with finite approximations of these semi-infinite ma-
trices. Therefore the n-dimensional approximant Ty of T,

T L S Sin
ho ok S Sren
W=l s & %5 -
_./;r—l fi j(‘)
F2FID(1) FID(2) FID(3) FID(n)
FID(2) 2FID(1) FID(2) FID(n — 1)
=| FID(3) FDQ) 2FID(1) : ,
: : : FID(2)
| FID(n) FID(2) 2FID(1)

and the Cholesky factorization Ty = L*L, is formed, where
L is a lower triangular N X N matrix with positive diagonal.
Now set

FID(2) FID(3) FID(4) FID(N + 1)
FID(3) FID(4) " FID(N + 2)
Hy=| FID(4) :
FID(N + 1) FID(N +2) FID(2N)

and use HY := (L") THAL ™! as a finite-dimensional approx-
imation of the canonical correlation operator. Then the sin-
gular-value decomposition Hy = UEV is formed; i.e., E is
diagonal with strictly positive diagonal entries VV* = | and
U*U = I. Now consider the approximation of Hjy given by
E,, the principal k X k submatrix of E; U, the matrix made
up of the first k columns of U; and V,, the matrix made up
of the first k rows of V; i.e., HY = (L")THL™! = U EV,.
Hence Hy ~ LTU,E VL. Setting O, := LTUE}?, R, :=

'EL/?V,L, we obtain a full rank factorization of Hy, Hy ~

O, R, and the method described earlier to estimate the pa-
rameters of the FID from O,, &, can be used with the slight
modification that Cy is such that C,A, is the first row of O,.
This modification is necessary to deal with the redefinition
of the Hankel operator.

It follows from the theory of stochastic realization and

- approximation (6, 7) that the parameters obtained give rise

to a simulated FID whose Fourier transform is positive real,
1.e., is properly phased in the infinite-data case. The above-
mentioned references are applicable to our situation since
the stochastic realization and approximation problem is
mathematically equivalent to the problem of analyzing an
FID whose discrete Fourier transform has positive real part.

However, in the finite-data case, this is only approximately
guaranteed. It should also be pointed out that, in the infinite-
data case, the approximation step of going from U, E, V to
U, E;, V, does not destroy proper phasing if U, E, V is a
singular-value decomposition of the infinite data matrix. This
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FIG. 2. Spectrum of FID as in Fig. 1 after processing with the modified
Hankel-matrix-based method (k = 2).

is the essence of the “stochastic balanced-approximation
method” (7).

For example, due to noise and other disturbances, F may
not be of positive type, even if this were the case in the noise-
free situation. But if F is not of positive type the factorization
Ty = L*L may not exist. Then a positive diagonal matrix
should be added to Ty to ensure that the factorization exists.
If this alternative method is applied to the simulated FID
that was used in Fig. 1a and Fig. 1b, a properly phased Fourier
transform is obtained as shown in Fig. 2. The algorithms
were implemented in MATLAB Version 4.1,

In summary, it is demonstrated that NMR spectral analysis
methods using a singular-value decomposition of the Hankel
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matrix made up of the elements of the FID can lead to phas-
ing problems. We propose modifying this method by suitably
weighting the Hankel matrix. In the infinite-data case this
modification is guaranteed to produce a correctly phased
Fourier transform. Using an example it is shown that also
in the finite-data case the method leads to a well phased
spectrum. This method could be of general use in automated
data processing since it has the well-known noise-reduction
properties of the singular-value-decomposition-based meth-
ods and avoids one of its shortcomings.
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