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INFINITE-DIMENSIONAL CONTINUOUS-TIME LINEAR SYSTEMS:
STABILITY AND STRUCTURE ANALYSIS*

RAIMUND J. OBER' AND YUANYIN WU

Abstract. The question of exponential and asymptotic stability of infinite-dimensional continuous-time state-
space systems is investigated. It is shown that every (par)balanced realization is asymptotically stable. Conditions
are given for (par)balanced, input-normal, or output-normal realizations to be asymptotically and/or exponentially
stable. The boundedness of the system operators is also studied. Examples of delay systems are given to illustrate
the theory.
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1. Introduction. For a finite-dimensional linear system with transfer function G, there
are standard ways to obtain a minimal, i.e., reachable and observable, state-space realization:

x(t) = Ax(@)+ Bu(?),
y(t) Cx(t) + Du(t).

This realization is unique in the sense that every other minimal realization is equivalent to it.
The spectrum of the state propagation operator A is precisely the set of poles of the transfer
function G(s) = C(sI — A)~'B + D, which is proper rational. Hence the realization is
exponentially stable if and only if the poles of G are all in the open left half plane. Furthermore,
exponential stability of the system is equivalent to asymptotic stability.

This paper is concerned with the question of stability for infinite-dimensional systems.
If the transfer function G is not rational, then we have an infinite-dimensional system of
the above form, where the system operators A, B, and C are usually unbounded oper-
ators. In general, it is no longer true that all observable and reachable realizations are
equivalent. The correspondence between the spectrum of the realization and the singular-
ities of the transfer function does not necessarily hold. In general the exponential stability
of a system cannot be determined by the location of the singularities of the transfer func-
tion (see, e.g., [18]). Also asymptotically stable systems are typically not exponentially
stable.

There have been attempts to extend the results for finite-dimensional systems mentioned
above to the infinite-dimensional case by restricting the transfer functions to a certain class. For
example, Curtain [4], Yamamoto [29], and several other authors considered the equivalence
between input/output stability and internal stability. We refer to [4] and [29] and the reference
therein for the work in this direction. Inevitably, the stronger the resuits are, the smaller the
class of transfer functions is.

Here we present another approach. Instead of putting too stringent restrictions on the
class of transfer functions to be studied, we restrict the class of realizations to (par)balanced
realizations and the closely related input-normal and output-normal realizations. These types
of realizations have been advocated by several authors [20], [13], [14], [30]. They were intro-
duced in the finite-dimensional case as a means to perform model reduction in an easy fashion
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[20]. Glover, Curtain, and Partington [14] derived infinite-dimensional continuous-time bal-
anced realizations for a class of transfer functions with nuclear Hankel operators. Young
[30] developed a general realization theory of balanced realizations of infinite-dimensional
discrete-time systems. The results were generalized to the continuous-time case by Ober and
Montgomery-Smith [23]. The results by Young were also used by the authors to conduct an
analysis of the stability and structural properties for infinite-dimensional discrete-time systems
in [24].

In this paper we extend our analysis in [24] to the continuous-time case. The exponential
and asymptotic stability properties of parbalanced, input-normal, and output-normal realiza-
tions are studied in detail. It is shown that all parbalanced realizations are asymptotically
stable. For a subclass of transfer functions—namely, strictly noncyclic functions—results
that are reminiscent of the finite-dimensional case are obtained. For this class of transfer
functions the location of the singularities of the transfer function determines the exponential
stability properties of parbalanced systems. The stability properties of parbalanced realiza-
tions are studied without the explicit presentation of the realizations. Structural properties of
the realizations are also analyzed. In particular the boundedness of the system operators
of the input- and output-normal realizations is investigated.

Most of the results presented in this paper are in terms of the properties of the transfer
functions and the Hankel operators with the transfer functions as symbols. This may there-
fore be regarded as expressing the internal properties of a system in terms of input/output
properties. Related topics can be found in Dewilde [7], where systems with strictly non-
cyclic transfer functions are studied from an input/output point of view. We also refer to
Baras, Brockett, and Fuhrmann [2], [3], [11]. For realization theory of nonrational trans-
fer functions, Fuhrmann [11] and Helton [16] reference for transfer provide general refer-
ences.

Our main tool is a bilinear map that maps discrete-time systems to continuous-time sys-
tems. This bilinear map is routinely used for finite-dimensional systems to translate discrete-
time results to continuous-time results and vice versa. In [23] properties of this bilinear map
were studied for infinite-dimensional systems (see also [11]). Some continuous-time ques-
tions, however, such as exponential stability, cannot be directly answered by simply applying
the bilinear transform to a discrete-time result. In such cases a more detailed study of the
problem is necessary.

The contents of the paper can be summarized as follows. In §2 we review the set-
tings of infinite-dimensional continuous-time systems we will deal with. We restrict our-
selves to so-called admissible systems. We relate continuous-time systems to discrete-time
systems in §3, using the above-mentioned bilinear map. As Hankel operators play an im-
portant role in our approach, we discuss Hankel operators in §4 in both the discrete- and
the continuous-time case. Concrete constructions of the continuous time restricted and
*_restricted shift realizations are given in §5. They respectively represent the classes of
input-normal and output-normal realizations and are intimately related to Hankel opera-
tors and translation semigroups. In §6 we establish the asymptotic stability of all par-
balanced continuous-time realizations. Conditions for input-normal or output-normal real-
jzations to be asymptotically stable are also given in terms of the cyclicity of the transfer
functions. The topic of §7 is exponential stability. Necessary and sufficient conditions are
given for the input- and output-normal realizations to be exponentially stable. These con-
ditions are based on the spectral properties of the transfer functions. They also hold for
parbalanced realizations as long as the transfer functions are strictly noncyclic. In §8 we
investigate when the system operators are bounded, and finally some examples are given in
§9.



INFINITE-DIMENSIONAL SYSTEMS 759

The following symbols are used:

D the open unit disk,

oD the unit circle,

D, the complement of (313) U D,

D;"y admissible discrete-time systems (§3),

C ;” admissible continuous-time systems (§3),

DAYCX the domain of an operator A on X,

(D(A), |- la)  the space D(A) equipped with norm ||x |3 = [lx})> + | Ax]|)?,

DA, -1 {f1 f:(D(A), || - lla) > C, antilinear, bounded),

G; () :[G4(3) — G4(0)), z € D, for G4 € TLDVY,

Ge(+00) lim e G.(r),

Hy ‘the Hankel operator with symbol X,

HPty (W) {F| F:W — L(U,Y) analytic, sup,cy | F(2)l| < o0}; W =D
or RHP,

H}(D) {f| f : D — Y analytic on D and sup,._, ., fy" Il f(re")|%dt < o0},

H(RHP) {f| f: RHP - Y analytic on RH P and

i SUp, . [ oo If (x +iy)|I7dy < o0},

K(2) (K@)*,

L the Laplace transform (§3),

LWU,Y) {A| A : U — Y abounded operator},

L2(A) {f| f : L = Y square integrable on A}, A = dD or iR,

LHP the open left half plane: {s € C: Re(s) < 0},

P, The orthogonal projection of L2 (A) onto HZ(W); A = D, W =D,
orA=iR,W=RHP,

Px the orthogonal projection of HZ(W) onto X € HZ(W); W =D
or RHP,

RHP the open right half plane: {s € C: Re(s) > 0},

S the forward shift: (Sf)(z) = zf(z) for f € H}(D),

s* the backward shift: (S* £)(z) = z~'[f(z) — f(0)] for f € H}(D),

S(Q) Pyx S|x, the compression of S to X, where X = H2(D) © (QHZ(D)),

S(Q)* 5| 12 @ocoH2 @) the restriction of §* to HZ (D) © (QH; (D)),

o(A) the spectrum of an operator A,

o,(A) the point spectrum of an operator A,

(@) the spectrum of an inner function Q € Hy°(W) (Lemma 7.3),

o;(G) the set of points in C where G has no analytic continuation (§7),

TLDYY {G4]1 G4 : D, = L(U, Y) has a reachable and observable admissible

- realization},
TLCYY {G¢| G. : RHP — L(U, Y) has a reachable and observable
' admissible realization},

XvYy closed linear span of subsets X and Y of a Hilbert space,

(F,G)p =1y F and G are weakly left coprime (§3),

(F,Gr=1y F and G are weakly right coprime (§3).

2. Admissible continuous-time state-space systems. The main aim of this section is to
briefly set out the notation and introduce the most important system theoretic concepts for this
paper. More details can be found in [11], [23], [27], and [6]. In the first subsection, admis-
sible continuous-time systems are discussed. Input-normal, output-normal, and parbalanced
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realizations are defined in the second subsection. It is these classes of systems that are being an-
alyzed in detail in later sections. What is meant by system equivalence for infinite-dimensional
systems is defined in the third subsection.

2.1. Admissible continuous-time systems. It is well known that if A is the generator of
a strongly continuous semigroup of operators (€'4);>0 with domain of definition D(A), then
D(A) is a Hilbert space with inner product induced by the graph norm

Ix12 = lxl} + lAxl}, x € D(A).

Since | x|, > llx|l forx € D(A), we can embed X in D(A)Y, the set of antilinear continuous
functionals on (D(A), ll-l4), by

E: X — DA,
x— (y—> (x,¥).

Note that D(A) is a Hilbert space with norm || f ' := supy;, < | f(*)]. Since (-, -) is linear
in the first component, the embedding E is linear. By the above, we have the rigged structure

D(A) € X € D(A)".

If (A, D(A)) is the generator of a strongly continuous semigroup of contractions (€*)r>0 On
a Hilbert space, then the adjoint (A*, D(A*)) of (A, D(A)) is the generator of the adjoint
semigroup (¢’ "):20 (see [26]). Hence, we have similarly that

D(A*) € X € D(AMY.

We are now in a position to define admissible continuous-time systems.

DEFINITION 2.1. A quadruple of operators (A, Bc, Ce, Dc) is called an admissible
continuous-time system with state space X, input space U, and output space Y, where X, U,
and Y are separable Hilbert spaces, if

1. (A, D(A,)) is the generator of a strongly continuous semigroup of contractions on
X

2. B.:U = (D(AHY, || - |I") is a bounded linear operator;

3. C.: D(C.) - Y is linear with D(C.) = D(Ar) + (I — A)"'B.U and
Copa : (D(Ac), I-)l4,) — Y is bounded,

4 C.(I—-A) 'B. e L(U,Y);

5. A, B., and C. are such thatlim ser Cc(sI — A.)~'B. = 0 in the norm topology;

6. D € LU, Y). e
We write C;” for the set of admissible continuous-time systems with input space U, output
space Y, and state space X. 0

By the resolvent identity, part 4 of the definition implies that G.(s) := C.(s] — A)7'B. €
L(U,Y) foralls € RHP and G, is analytic on the RH P. The function G, is called the
transfer function of the system, and (A, B., C., D) is called a realization of G..

2.2. Duality, observability, reachability, and parbalanced realizations. In order to
define observability and reachability for continuous-time systems we need to introduce the
notion of the dual system of an admissible continuous-time system.

DEFINITION 2.2. Let (A., B., C., D¢) € C;l'y . Then the dual system (A, B,, C., D,) of
(A, B;, C., D.) is given by

1. (A., D(A;)) = (A, D(AY)), the adjoint operator of (Ac, D(Ac));

2. B.: Y = D(A)?; y ¥—> B[] := (3, Cc()) 3
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3.C.: D(C,) = U, D(C,) = D(A,) + (I — A,)~'B.Y, where C.xq is defined by

(u, Coxo) = B.(u)[x0), xo € D(AY,u e U,
(Coxo, u) = (Yo, CcI — A)™'But), x0=(I — A) " B.yo, yo€ Y, u € U;

4. D.:=D:Y—->U. O

It can be directly verified that the dual system (A, B,, c., ch) of an admissible continuous-
time system (A, B, C., D,) is admissible. If the continuous-time transfer function G(s) :
RHP —> L(U, Y) has an admissible realization (Ac, Bc, C¢, D.), then the dual system (A,
B., C., D) is a realization of the transfer function G(s) = (G(5)*,s € RHP,i.e., forall
s € RHP,

G(s) = (GG)* = C.(sI1 — A,)"'B. + D..

The definition of observability and reachability of admissible continuous-time systems is
now given.
DEFINITION 2.3. Let (A, Bc, Cc, D) € Cy'¥; then the operator

O.:DO;) — L%([O’ 00)),

x > (Ccex)50
is called the observability operator of the system (A., B,, C., D.), where
D(O,) = {x € X | C.e'*x exists for almost all t € [0, 00), and C.e'*x € Lf,([O, o0))}.

We say that (A, B., C., D.) has a bounded observability operator if D(A.) € D(0O,) and
O, extends to a bounded operator on X. This extension will also be denoted by ..

If (Ac, B, C., D.) has a bounded observability operator O, such that Ker(©O,) = {0},
then the system (A, B,, C., D,) is called observable.

Let (Ac, Bc, Cc, D,) be the dual system of (A., B., C., D.). If the observability operator
0. of (A, B,, C., D.) is a bounded operator on X, the adjoint of O, is called the reachability
operator, denoted by R, of (A., B, C., D,), i.e.,

Re = 0,*.

If R exists and range(R ) is dense in X, the system (A., B., C., D.) is said to be reach-
able. O

The set of all reachable and observable continuous-time systems with input space U,
output space Y, and state space X is denoted by LC%‘Y. We mainly deal with this set of
systems.

The reachability Gramian W, and the observability Gramian M, of a continuous-time
system with bounded reachability operator R. and bounded observability operator O, are
defined to be

W, =RR:: X > X,
M =00, X - X.

When W, = M, and the admissible system is observable and reachable, we say that the
system is parbalanced. A reachable and observable admissible system is said to be bal-
anced if W, = M, and W, has a diagonal representation with respect to an orthonormal
basis of the state space. If W, = I, then a reachable and observable admissible system is
called input-normal. If M, = I, then a reachable and observable admissible system is called
output-normal.
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2.3. System equivalence. The concept of an equivalent state-space transformation of an
admissible continuous-time system is slightly more complicated than in the discrete time case
as the system operators are in general unbounded.

Two systems (A%, B, Ci, D) € Cgfy, i = 1,2, are called equivalent if there exists a

boundedly invertible operator V € L(X1, X2) such that
(4%, D(AY)), B, (C2, D(C), D) =
((VAlV=1,VvD(4L), VB, (CIV™!, VD(C,)), D).
where

L NO )
B} =(VB):U ((D(A% ) -l )
is given by
[B2a))(x) = (VBHG[x] := BXw[V*x], u € U, x € D(42) = (V) 7' D(A).
If V is a unitary operator, then the two systems are said to be unitarily equivalent.
We have the following results concerning equivalent systems.
PROPOSITION 2.4. Let (AL, Bi, Ci, Di) € Cy'” i = 1,2, be two equivalent systems such

that ¢
((42, D(4Y), B2, (C2, D(CD), DY) =

((vAV-1, vD(A), VBL, (CIV™!, VD(CD), D;)
with V € L(X,, X2) a boundedly invertible operator. Then
1. both (A, B, C!, D) and (A%, BZ, C2, D) realize the same transfer function.
2. if (AL, B, CL, D}) € C¥.” has observability operator O and reachability operator R,

then the observability and reachability operators of (A%, B2, C2, D?) € CY;" are respectively

ov-! and VR.

Proof. The proof is straightforward. O

Thus equivalent systems have the same transfer function as well as the same observability
and reachability properties. Moreover, it can be seen that unitary equivalent systems have the
same Gramians. Hence unitary equivalence preserves parbalancing.

We point out that for an admissible system (AL, DA}, BL,C}l,D}) € C;’;Y and a
unitary operator V : X; = X>, the system

(A%, D(AY)), B2, (C2, D(CH), DY) =

((VALV=1,VD(Al), VBL, (C}V™!, VD(CY)), D;)
is also admissible, where V B! is defined as above. Therefore ((Al, D(AY), B}, C}, D)) and
(A%, B2, C2, D?) are unitarily equivalent.

The class of continuous-time transfer functions that we are interested in are those that
have reachable and observable continuous time realizations on some state space X, where X
is a separable Hilbert space. This class will be denoted by TLCYY, where U and Y are the
input and output spaces, respectively. We characterize those transfer functions in terms of
their Hankel operators in §4.

3. Connection between continuous- and discrete-time systems. What is essential in
our development is to relate discrete-time systems to continuous-time systems using a gener-
alization of the well-known bilinear transformation for finite-dimensional systems. Thereby
it is possible to carry some of the results in [24] for discrete-time systems over to continuous-
time systems. It should be noted, however, that not all results of discrete-time systems can
be translated to the continuous-time case in this way. For example, under this bilinear map
an exponentially stable continuous-time system does not necessarily correspond to a power
stable discrete-time system.
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3.1. Admissible discrete-time systems. We recall [24] that an admissible discrete-time
system with input space U, output space Y, and state space X, with U, X, and Y being separable
Hilbert spaces, is a quadruple of operators (A4, By, Cy4, D) that satisfy the following:

1. Ay € L(X) is a contraction and —1 ¢ 0,,(Ay);

2.B;eL(U,X),Cse L(X,Y)and D; € L(U,Y);

3. the limit lim, .1, C4(r] + A4)~! B, exists in the norm topology.

The set of all such systems is denoted by Df(/‘y . For (A4, B4, C4, Dy) € Dg‘y, the function

Gu(z) = C4(zl — Ag)™'B;+ Dy : D, —» L(U,Y)

is called the transfer function of (A4, By, Cy4, D;) and (A4, By, C4, D) is called a realization
of G,. Evidently, the transfer function G, is analytic on D, and at infinity.

For (A4, B4, C4, Dy) € Dg'y, its observability operator O, : D(O,) — H; is defined
as

©x)(2) = Z(CdAsx)z”, x € D(Oy) := [x | Z(CdAZx)z" € H,%] .

n=>0 n>0

If D(O4) = X, Oy is bounded and Ker(O,) = {0}, then the system (A4, By, Cz, Dy) is
said to be observable. The system (A4, By, C4, Dy) is said to be reachable if its reachability
operator Ry : D(R4) — X defined by

Ra (Z u,,z") = ZAZBdu,. (Z unz" € D(’Rd)> ,

nz0 n>0 n>0

where D(R,) = {Z,’,"___o u,z" [N =0,1,..., u, € U} canbe extended to a bounded operator
with range dense in X. The set of all reachable and observable discrete-time admissible
systems with input space U, output space Y, and state space X is denoted by LD,’{‘Y. The set
of all discrete-time transfer functions that have realizations (A4, By, C4, Dy) € LD,’{‘Y for
some state space X is denoted by TLDV-Y. A characterization will be given of this class of
transfer functions in the next section.

For (A4, By, Cy4, Dy) € LDg‘y , we define its reachability Gramian W; : X — X as

Wax =R Ryx, x € X,
and its observability Gramian My : X — X as
Mux =00,x, x € X.

W,y = My and (A4, By, Cy4, D,) is reachable and observable, then (A4, By, Cy, D) is said
to be a parbalanced realization. If the Gramian of a parbalanced realization has a diagonal
representation with respect to an orthonormal basis, the realization is said to be balanced.
If Wy = 1, then the reachable and observable admissible system is called inpuz-normal. If
My = I, then the reachable and observable admissible system is called output-normal.

3.2. Bilinear transform. In the following theorems (see [23]) we introduce the map
T : Dg‘y - C;j‘y » which transforms discrete-time systems to continuous-time systems.
Throughout the rest of this paper T will denote this map.

THEOREM 3.1. Let (Aq, Bs, C4, Dy) € Dy'"; then T((A4, By, Ca, Dy)) := (Aq, B, Ce,
D.) € CYY, where the operators A., B., C., and D, are defined as follows:

LA =0+A0" As—=1) = (Aa— DU + A", D(Ac) := D(U + Ap)™). It
generates a strongly continuous semigroup of contractions on X given by ¢,(Az), t > 0, with

p=t }

@i (2) = €'+,
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2. The operator B, is given by

B.:=+2(I+As)"'Bs:U - D(ADY,
u — 2+ Ag)"'By(u)x]
= 2 <By), (I + A7) >x .

3. The operator C, is given by
C.: D) — Y,
x > limioy V2C,(M I + Ag) 7',
where D(C.) = D(A;) + (I — A)"'B.U. On D(A.) we have
Copiag = V2Ca + A"

4, D.:= Dy — lim;i_,ln Ca(WI + Ag)"'B,.
Moreover, let the admissi>ble discrete-time system (Ag4, B4, C4, Dy) be a realization of the
transfer function

Gys:D,—» LU,Y),
ie, Gy(z) = Cy(zI — Ag)"'By+ Dy for z € D,. Then
(Ac, B, Cc, Do) = T((Ad: Ba, Ca» Da))
is an admissible continuous-time realization of the transfer function

145
1—5

G.(s) :=Gy4 ( ) :RHP - L(U.,Y). o

The inverse map is considered in the next theorem [23].

THEOREM 3.2. Let (A, B, C., D;) € c;”; then T~ ((A., B¢, Cc, D)) :==(Aq, By, Ca,
Da) eD,L("Y, where the operators Ag, By, Cy4, and Dy are defined as follows:

1. Ag:=U+A)UI—A)"", andforx € D(A;) wehave Agx = (I —A) YU +A)x.

2. By:=+2(I-A)"'B..

3. Cyq:=+2C.(1 —A)7L

4 Dy:=C.(I—-A)"'B.+D..

Moreover, let the admissible continuous time system (Ac, Be, Cc, Dc) be a realization of
the transfer function

G.:RHP — L(U,Y),
ie, Go(s) = Co(sI — A)"'B. + D fors € RHP. Then
(Ag, Ba, Ca, Dg) = T ((Ac, Be, Ce, D.))

is an admissible discrete-time realization of the transfer function

-1
G4(2) .= G¢ (E—-—) :D, — L(U,Y). o
z+1
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We recall that two discrete-time systems (Ay;, By, Cgzi, Dyi) € Dgi'y (i = 1,2) are
equivalent (unitarily equivalent) if there is a bounded operator (a unitary operator) V from X,
onto X, such that

(Aa1, Ba1, Ca1, Dg1) = (VARV ™, VBa, CoV™!, Da).

In [23] it was shown that T preserves (unitary) equivalence of systems and respects duality of
systems.

Note that in the previous two theorems the state spaces for the continuous- and discrete-
time realizations are the same. As will be seen in later sections for continuous-time systems it
is more natural to work on a different yet unitarily equivalent state space that is a subspace of
HZ(RH P). Here we point out the equivalence of the Hilbert spaces HZ(D) and H2(RHP),
where Y is a separable Hilbert space (see [25, Thm. 4.6]).

PROPOSITION 3.3. The spaces Hi (D) and HZ(RH P) are unitarily equivalent by the map

Vy: Hi®) - HZRHP),
— — 1 1 -
fa = (Vyfo)(e) == fo(e) := ﬁ(1+0)fd(1+:)'

The inverse of V is given by
vyt HI(RHP) — H(D)
oo (VL)) == fa(e) = (%_%fc (} = :) o

The next result shows that observability and reachability properties as well as the Gramians
are preserved under 7. This implies that the transformation preserves parbalancing of systems.
This result is the translation of a result in [23] to the frequency domain.

THEOREM 3.4. Let (A, B, C., D) € Cy'" and (A4, B4, C4, Ds) € DY'Y be such that

(AC7 BC’ CCs Dc) = T((Ad, Bd’ Cd9 Dd))'

Then

L. (Ac, B, C;, D.) isobservable (reachable) ifand only if (A4, By, Cq, Dy) is observable
(reachable). In fact, if O, (R.) and O4 (Ry4) are the observability (reachability) operators
of (A, Bc, Ce, D.) and (Ay4, By, Cy4, Dy), respectively, and if either (A, B,, C., D.) or (A,
By, C4, Dy) has a bounded observability (reachability) operator, then the following relations
hold:

ViOux = LO.x, x € X (RaVy'u=R.L7'u, u e HYX(RHP))

where Vi : H{(D) - HZ(RHP) and V,: H}(D) — HZ(RH P) are unitary transfor-
mations as defined in Proposition 3.3:

1 1-5
‘lii= i ’ H2 R nd HZ , .=1’2,
f ﬁ(1+s)f(1+s) fi € Hy(D), and f; € Hy(D), i
and L is the Laplace transform.

2. If the reachability Gramians W, and W, (observability Gramians M. and M) of
(A4, By, Cy4, Dy) and (A, B., C., D,.) are defined, then

We=Ws  (Mc=My).
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Proof. In [23] a “time domain” version of this result was proven. The present result
follows from the result in [23] by applying the z-transform (respectively, Laplace transform)
and using the unitary transformation of Proposition 3.3. 0

Therefore if G4(z) = Gc(ﬁ—{), then G, € TLDVY, i.e., G, has a reachable and observ-
able discrete-time admissible realization, if and only if G, € TLCYY,ie., if and only if G,
has a reachable and observable continuous-time admissible realization.

The combination of Theorems 3.1, 3.2, and 3.4 gives us an effective machinery to trans-
form discrete-time results to the continuous-time case. Before doing this, we need to study
Hankel operators which will be important in the analysis of parbalanced, input-normal, or
output-normal realizations treated in the sequel.

4. Linear systems and Hankel operators. Inthe study of discrete-time systems Hankel
operators on H 2(D) play an important role [11]. Given a discrete-time transfer function, a
Hankel operator can be associated with it in a natural way. The so-called restricted shift
realization of the transfer function is constructed by using the range of the Hankel operator
as its state space (see [11], [30], [24], and §5 below). When the Hankel operator is compact,
a balanced realization can be obtained whose Gramians have diagonal representations with
diagonal entries equal to the singular values of the Hankel operator {30]. In the continuous-
time situation Hankel operators on H*(RH P) will be of equal importance. We therefore
examine the relationship between discrete-time Hankel operators and their continuous-time
counterparts.

4.1. Hankel operators and realizability. Let G, be analytic on D, and at infinity so
that G1(z) = 7~HGq(z™!) — G4(00)] is analytic on D. We define the operator Hgip *
D(Hg; p) - H}(D) by

(Hos p)@ = P+GHIf (f € D(Hg)),

where D(Hg: p) = {f € H2(D) : f polynomial, G J f has nontangential limit in D aimost
everywhere (a.e.) at 3D with limit in L%,(BD)} and (Jf)(z) = f(1/z). The operator HG:
is called the Hankel operator with symbol Gj. If D(Hg: p) is dense in HZ(D) and Hg: p
extends to a bounded operator on HZ (D), this extension is also called the Hankel operator
with symbol G and is denoted by Hg: p-

The following lemma [24] relates the existence of a reachable and observable realization
of a discrete-time transfer function G to the boundedness of the Hankel operator Hg: p-

LEMMA 4.1. The transfer function G4 isin TLDY"Y; i.e., G has an admissible reachable
and observable realization if and only if (i) G4 is analytic on D, and at infinity, (ii) the
limit lim R G, (r) exists in the norm topology, and (iii) the Hankel operator HGj,D is

-1, rer—

bounded. O
We analogously define Hankel operators for continuous-time transfer functions.
DEFINITION 4.2. If G isan L(U, Y)-valued function analytic on RH P, then the operator

Hg,rup: D(Hg.rHP) — HZ(RHP),
f > P+MGch’
where

Rf(s) = f(=s),

Mg, is the multiplication operator by G,

P, is the projection on H}(RH P),
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with D(Hg, rup) ={f € le,(RHP) : frational, G.Rf has a nontangential limit in RH P
ona.e.oniR thatisin L%, (iR)), is called the Hankel operator Hg,_ gy p Withsymbol G.. O

If D(Hg, rup) is dense in H,ZJ(RHP) and Hg, ryp extends to a bounded operator on
HZ(RH P), this extension is also called the Hankel operator with symbol G, and is denoted
by Hg, ,ruP-

If it is clear from the context that the Hankel operator is defined on RH P, we will drop
the subscript RH P and write Hg instead of Hg grup.

It is important in our context that Hankel operators defined on the disk are unitarily
equivalent to Hankel operators in the right half plane in the following way (see, €.g., [25,
Thm. 4.6]).

PROPOSITION 4.3. Let Vi and Vy be the unitary operators defined in Proposition 3.3.

1. Let Gy € TLDYY and G. e TLCU'Y. If

z—1
G4(z) = G, (Z—+—1-) Jorz € D,
or equivalently
1
G.(s) = Gq (1+z) fors € RHP,

then the Hankel operators_HGj'D and Hg_ gy p are unitarily equivalent, i.e.,
-1
Hg rup = VyHg:pVy >

where G;(2) = 27 [Ga(z™") — G4(c0)] (z € D).
2. LetK; € HE?U'Y)(D) and K. € Hpy, y(RHP) be such that

Ki(2) =K. (%;—2) , z €D,
or equivalently
Kc(s)=Kd(l's), s € RHP.
1+s
Then

Vi(KsHE(D)) = K. HE(RHP), Vy ((KaHZ(D)') = (KH(RHP))*
and
V; YK H2(RHP)) = K4H (D), V' (K-HR(RHP))') = (KaHG D)™ .

Proof. The proposition follows from direct verification. O

Using this proposition we can give a characterization for a continuous-time transfer func-
tion G.tobein T LCY"Y, i.e., tohave an observable, reachable, and admissible continuous-time
realization.

COROLLARY 4.4. The following two statements are equivalent.

1. G. € TLCUY, that is, G has a reachable, observable, and admissible realization on
some Hilbert space.

2. G.(s) is analytic on RH P, the limit lim, cR ;—, 400 G (r) exists in the norm topology,
and the Hankel operator Hg, : H3(RH P) — HZ(RH P) is bounded.

Proof. This follows from Theorem 3.4, Proposition 4.3, and Lemma 4.1. 0
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4.2. Range spaces of Hankel operators and factorizations of transfer functions. It
is known that the orthogonal complement,

(rangeHg,)* = H}(RH P) © TangeHo, ,

of the range of the Hankel operator Hg, is invariant under any multiplication operator with
symbol in H{°. Hence by Beurling’s theorem, the subspace (rangeHg,)* is either {0} or
QH;(RHP), where Q € H{°(RHP) is a rigid function. A rigid function is a function
O # Osuch that Q(iy) is for a.e. y € R a partial isometry with a fixed initial space (see, e.g.,
[11, p. 186], and [15]). In particular, inner functions are rigid functions.

Using the above-defined notions, we introduce the concept of cyclicity of continuous-time
transfer functions, which relates Hankel operators with their symbols. The discrete-time case
was studied in, e.g., Fuhrmann [11]. A general study of strictly noncyclic transfer functions
can also be found in Dewilde [7].

DEFINITION 4.5. Let G. € H{Yy y)(RHP). Then G. is called

1. cyclic if (rangeHg, rup)* = {O};

2. noncyclic if (rangeHg, pup)* = QHZ(RH P), where Q € H(RHP) is a rigid
Sfunction;

3. strictly noncyclic if (rangeHg, rup)t = QH%(RHP), where Q € H°(RHP) isan
inner function. O

Evidently in the scalar case G, is strictly noncyclic if and only if it is noncyclic.

In the sequel it will be seen that the cyclicity of the transfer functions has much to do with
the stability and other properties of their realizations. Here we present more information on
cyclicity of H* transfer functions. )

DEFINITION 4.6. Let G be in Hi( y)(RH P). Then the L(U, Y)-valued function G
defined on L H P is called a meromorphic pseudocontinuation of bounded type of G if

1. G is of bounded type, i.e.,

- F
G= R
where F is a L(U, Y)-valued function and h is a scalar-valued function and both functions
are bounded and analytic in LH P.
2. G and G have the same strong radial limits on iR, i.e., fora.e.y € R
Kl&gl_’oG(x +iy) = x>lol,gl->o G(x +iy). a

The following proposition summarizes the connection between discrete- and continuous-
time transfer functions in terms of cyclicity, meromorphic pseudocontinuation of bounded
type, and factorizations. We refer to [11] for a discussion of these concepts for discrete-time
transfer functions, which are analogous to those that have been defined here for continuous-
time transfer functions.

PROPOSITION 4.7. Let G, € TLCYY, G4 € TLDVY, and set G§(z) = 27 [Ga(z™") —
G 4(00)]. Assume that

z—1
G4(2) =G, (m) (z € D),

or equivalently

G.(s) = Gy (1 ti) (s € RHP).

Then
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1. G isstrictly noncyclic (cyclic, noncyclic) ifand only if G.. is strictly noncyclic (cyclic,
noncyclic).

2. Let Q4 € HL(Y)GD) Qu2 € HL(U)(D) Q1 € Hf?y)(RHP) and Q. €

HLU (RHP) be inner functions. Let F;; € HL(YU)(]D), Fiz € HL(U Y)(D) F. €
Hy vy(RHP), and F.; € Hiy, v (RH P). Assume

1-z 1
Fi2@)=F, (1+ ) Gc(l)*ch(l+§), zeD,

Fy2(z) = F, (i+ ) ch(

1-z .
Qa.i(z) = Q. (m) , zeD, i=1,2,

G.(D*, ze€D,
+Z) c() Z

or equivalently

+
1~

I’/,

+

S

1— 1—
Fox(s) = Fa, ( s) + Ga(00)* Qa1 ( S) . seRHP,
1+5

Foa(s) = Fis (1 + Qus ( )Gd<oo) s e RHP,

b)

1+
Then G can be factored on iR as
Ge= Qc1F} = F 5,02
if and only if G can be factored on 3D as
G; () = Q4,1)@F112)* = (2F42(2))*Qu2(2) (z € D).

3. Assume that G, € H L.Y) (RHP) and Gd € Hf?u Y)(ID) Let F; (F,) bea L(U,Y)-
valued analytic function in D, (LH P) and hy (h.) be a scalar-valued analytic function in D,
(LH P), both bounded, such that

1 1—z 1-z
F;(7) = ; [Fc (-I_-T-_z) G.()h, (1 2 )] , z€D,,

1-2
h =h{——1}, eD,,
a(2) = h¢ (1 " Z) z
or equivalently

-5 1—s 1-s
F.(s) = 1+ Fy (1+ )+Gd(oo)hd( +s), sE€ELHP,

Qc,i(S)=Qd,i( ), SERHP, i=1,2.

1—5
ho(s)=h , LHP.
(s) d<1+s) s €

Then G} has a meromorphic pseudocontinuation G+ of bounded type in D, which is given
by
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ifand only if G, has a meromorphic pseudocontinuation G, of bounded type in LH P, which
is given by

A

G. =

=

Proof. The results can be directly verified. 0

The next theorem provides some convenient ways to determine whether a transfer func-
tion is cyclic, noncyclic, or strictly noncyclic. Note that 0 € Hf(, yy(RHP) and F €
Hg%, y(RH P)aresaidto be weakly left coprime if QHZ(RH P)VF Hj(RH P)=H}(RH P),
where Vv denotes the closed linear span. In this case we write (Q, F). = Iy. If two functions
0: € HYy, y(RHP) and Fi € HYy; ;(RHP) are such that 0, and F are weakly left
coprime, where O(s) = (Q:1(5))* and F1(s) = (F1(§))* (s € RH P), they are said to be
weakly right coprime, and we denote this by (Q1, F1)r = Iy (see Fuhrmann [11]).

THEOREM 4.8. Let G, € HZ‘()U,Y)(RH P) with finite-dimensional U and Y. Then the
Jfollowing statements are equivalent:

1. G, is strictly noncyclic.

2. G, has a meromorphic pseudocontinuation of bounded type on LH P.

3. On iR the function G can be factored as

G.= O:\Ff = F;Qa,

where Q) and Q, are inner functions in H ,f‘(’y)(RH P)and H ,‘f?u)(RH P), respectively. The
functions Fyand F, are in H(y ,,,(RH P) and HiYy, y(RH P), respectively, and the coprime-
ness conditions

(@1, F)p = Iy, (@2, )L =1y

hold. If part3 holds, then O, H3(RH P) = (tangeHg,)* and O, H} (RHP) = (rangeHg )*,
where Q,(s) = (Q2(5))* and G¢(s) = (G(5NH*.

Proof. Analogous results are shown in [11] for discrete-time transfer functions. Thus the
theorem follows from Proposition 4.7. O

The factorization in the theorem is Fuhrmann’s generalization of the Douglas, Shapiro,
and Shields factorization [8] to matrix-valued functions. For a given function, part 2 of the
theorem may be easy to check. For example, the function e~ R(s) is strictly noncyclic, where
a > 0 and R(s) is any rational function in HE?U,Y)(RHP). This is because e~** R(s) has a
meromorphic pseudocontinuation of bounded type on L H P of the form F(s)/e* h(s), where
ifay, ..., a, denote the poles of R(s), then,

_(—a)---(s—an)
T (s+a)--(s+an)’

and F(s) = h(s)R(s). Part 2 of the theorem also gives the following corollary.
COROLLARY 4.9. Under the assumption of the theorem, G € Hpy, y)(RH P) is strictly

noncyclic ifand only if G € H Loy (RHP) is strictly noncyclic. o

h(s)

4.3. Hankel operators with closed range. Similarly to Theorem 4.8, the following
theorem (see [11]) gives necessary and sufficient conditions for the Hankel operator to have
closed range.

THEOREM 4.10. Let G. € Hyy,yy>(RHP) with U and Y finite dimensional. Then the
Hankel operator Hg,_ has closed range if and only if on iR the function G . has the factorization

Ge(s) = Q()F ()",
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where Q € H,‘j‘(’y)(RH P), Fe HI??Y,U)(RH P), and the equality
WQ+VF=1Iy

holds for some W ¢ H,‘_’?Y)(RHP) andV ¢ H,‘f?u_y)(RHP); that is, Q and F are strongly
right coprime. In this case

Hg, (Hiy)(RHP)) = H},(RHP) © QH}y(RHP). O

This section essentially established that the unitary equivalence of the spaces H2(D) and
H?(RH P) implies the unitary equivalence of the Hankel operators Hg. and Hg, , where
Gy(z) = Gc(ﬁl—}), z € D. Therefore the spaces fangeH;. and fangeHg, are unitarily
equivalent. As a consequence, the discrete-time transfer function G and the continuous-time
transfer function G. have the same cyclicity properties.

These results will be repeatedly used in the next section when we obtain the restricted shift
realization of a continuous-time system by applying the bilinear map in §3 to the corresponding
discrete-time system.

5. Continuous-time shift realizations via a bilinear transformation. As a direct ap-
plication of the bilinear transformation T given in §3 the continuous-time restricted and
*-restricted shift realizations can be obtained from the corresponding discrete realizations.
These realizations can be further analyzed via the connection between continuous and discrete-
time transfer functions shown in §§3 and 4.

Restricted and *-restricted shift realizations are central to the development here since
they serve as prototypes of output-normal (respectively, input-normal) realizations. It will
be shown in Proposition 6.2 that each output-(input-)normal realization of an admissible
transfer function G is unitarily equivalent to the restricted (*-restricted) shift realization.
The concrete representations of the continuous-time shift realizations obtained in this sec-
tion will allow us to analyze input- and output-normal realizations in some detail in later
sections.

Another important result of this section is Proposition 5.11, in which the state spaces
of the restricted shift realizations for strictly noncyclic transfer functions are characterized
through the inner factors in the Douglas-Shapiro-Shields factorizations of the transfer func-
tion.

5.1. Discrete-time shift realizations. We first recall the discrete-time restricted and
*-restricted shift realizations of a discrete-time transfer function (see {111, [30], and [24]).

THEOREM 5.1. Let G4 € TLDYY. Then G, has two state-space realizations:
(A4, B4, C4, Dy) with state space X4 and (Ag v, By v, Ca », Dy ) with state space X4 ,, i.e.,
forzeD,

Ga(2) = Cy(zl — A))'By+ Dy = Cax(zl — Ad,,.)_le,* + Dy 4.

They are given in the following way:
1. The state space X, is given by X4 = fangeHg. © HZ(D), where

1 1
Gi(2) =~ [Gd (—) - Gd(oo)]
Z rd

and HG# is the Hankel operator with symbol G+. The operators Ay, By, C4, and D, are given
as follows:
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— (0
M@ = (S )@ = @—Zf—(l feX zeD,

(Bau)(z) :=G3(@u, uelU, z€D,
Cif =f0), feX,
Dgu := Ga(+oo)u, u €U,

where S is the (forward) shift operator (Sf Yz) =2f(2), f € H;‘;(ID), z€D.

The realization (A4, Ba, Ca, Dg) is called the restricted shift realization of the transfer
function G4. It is admissible, observable, and reachable, and the observability and reacha-
bility operators R4 and O, are, respectively,

Os=1Ix,, R= HG;}--

2. The realization (Ag s> Ba s Cax» Das) IS given as follows: The state space Xg . is
given by X4, = rangeHéj with

Gi(2) = (G4@))* and G;(2) = % (G} (%) - dd(oo)) , zeD.

The operators Ag «, Bax,» Cax and C, , are defined as

Adx = Px,.Six4.

Bis :U— Xguur> Py, u,

Com +Xan = ¥ix o> o [ @63z = PrHoyx = Hay) O,
aD
Dy, = Gg(+00),
where Y is considered a subspace embedded in H,2,(1D>): Y = {y+0z+ 0z2+---|yo €
Y} C H,Z,(]D), and Px,, and Py are orthogonal projections from H,%(]D) onto X4, and Y,
respectively.
The realization (A4 s, Bax» Cax» Da,+) S called the *-restricted shift realization of the

transfer function G4. It is admissible, observable, and reachable, and the observability and
reachability operators O, and Ry« are, respectively,

Ruw= Py, H® — X. and Ouu = Hg,Ix,. = Hoylxar: O

5.2. Continuous-time restricted shift realization. Now we apply T to the realizations
given in the theorem to get the continuous-time realizations. We need some simple lemmas.

LEMMA 5.2. Forany x € H%(]D), lim, e ro—t1, ro—1(1+7)x(r) =0in the normof Y.
Forany f € H}(RHP), im,er, r—>+00 f(r) =0in the norm of Y.

Proof, For x € H2(D) and z € D we have x(2) = Y,502"%n, where &, € ¥ and

2112 = 2
ano "xn" - "x"HIZ’(D)' Thus

172 172
Ix@ly <Y 12" 12l < (Z |z"|2) (Z ufcnuz)
n>0 n>0 n=0

=1 - 1z)72Q + 12D 2 lx .
Hence lim,»_1, y»-1(1 +1r)x(r) = 0.
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Now for f € HZ(RH P) and any s € RH P, it is shown in [22, p. 254] that

If (I < 8(Re(s))™2,

where § is a constant depending on f. Thus the lemma is proven. a
LEMMA 5.3. With the notation of Theorem 5.1 we have

1 h(z) — RO

1. range(l + Ay) = xlx(z)=( +2) (ZZ) (), (zeD), hEXd},

and for x € range(l + A,) the limit Lim, er po—y, ps—1 x(r) exists;
1 1
2. I @) = — ),
[AI + A)~'x1(2) 1+Azx(Z) + e +Az)x ( A)
where x € X4, AeD,, zeD;
1 1
3. Cil I+ A 'x = o* ("I) , xeD,, xeXgy
1
4. [ + Ad) " x1(z) = i iz [x(z) + zx(—l)] , x € range(! + Ay),

where x(—1) = lim,eR y5_1,_1x(r).

Proof. 1. Since range(] + Ag) = {x + Ayx| x € Xz} = {M +x(2)]| x € Xy}, we
have the equality in 1. If x € range(I + A,), then x(z) = w&gu_@z for some k € X,. By
Lemma 5.2,

1 h(r) — h(0
= im0

reR, r>—1, r—>-~1 reR, r>=1, r>-1 r

2. First we show that for x € X,; and A € D,, the element

1 1
l+A (Z)+A(1+Az)x(_X)=P (1+A x(Z))

is in X;. Take any y in the invariant space HZ(D) © X,. Since z—i_I € H*® for A € D,, we
have z_%xy € HZ(D) © X4. Therefore,

1
e A

This shows that P, (1 ey x(z)) € X,4. Since A, is a contraction, (L] + A;)™! is a bounded
operator on X, for A € D,. Then the equality in 2. follows from the equality

z 1 1
O + Ay) [1 O+ (‘X)] = x(@).

3. Using 2. and the definition of C; we get 3.
4. If x € range(I + Ay), then by 1. and its proof there exists & € X, such that x(z) =
(40O and lim,eg, r>-1, r—12(r) = h(0). Set

x(—1) = lim lx(r) = h(0).

reR, r>-1, r—>—

We have

1
132 [x(z) + zx(—l)] = h(z),
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which is in X ;. Note that —1 ¢ 0,(Az). Thus (1 + Ag)~! is defined on range(/ + A,). The
equality in 4. then follows from

1 h(z) — h(O
(I+Ad)(1+ [ (Z)+x( )]> =[(I + A)hl(z) = (d+2) (:) h©) = x(2). |
LEMMA 5.4. Let f € L2 %(iR). Then in L% $(iR) norm,
. s . s
nl—lgon-{-sf—nll»nolon—sf—o'

Proof. Since || 75 fF®)IIF < I f()|3 forany s € iR and n > 0 and

=0

f(s)

n—>oo

n+s

fora.e.s € iR, the lemma follows from the Lebesgue dommated convergence theorem. 0
LEMMA 5.5. Let G, € TLCV-Y. Set X = tangeHg, and D = Px{{; : v € U} Then
the map

M:D - Y,
Pyi= — [G.(1) -Gl
is well defined and the map
M,: X - X,
f = PxiL
is injective.
Proof. Assume Pyt s = Pxi%. Then P42 = 0. This shows that 472 +s €

H2(RHP) © X. Therefore, forany f € Hi(RHP),

e

("; —2, PiGe - Gc(+00)]f(—5)>

<[Gc(5) - Gc(OO)] » f (S)>

0

uy—u
=( 1+S s P+GCf(—s))

o )Hf,(RHP) HL(RHP)

» [Ge(s) — Ge(+00)1f (-S)>

={[G(s) = Ge(+o)* 57— d f(—s))

Hence [G(s) — G(1)]4=2 = 0. So we have [G(s) — G(1)](u; — uz) = 0. Taking the limit
on the real line, we get

[Ge(l) — Ge(+00))(uy — uz2) =0.
This shows that indeed M is well defined.
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Toshow that M, isinjective, assume Py 542 = Py %20 ), k) € X. Then Py 26020l —
0. Hence

h1(s) — ha(s) 2
— - € H,6X.
1+s €Hy O
By Lemma 5.4, we have
1+4+s hi(s) = ha(s ) -5
1) =226 _ = o = lim | =y — )| =0,
nsoo|1+4s/n 1+ HXRHP) "®|n+s

Hence lim,_, oo pXs- 2E=h6) — p, _ p,y in H%. Note that H}% © X is an invariant space

1+4s/n 1+s
and {5 € H® forn > 0. So i¥5- Mk ¢ H) o X, and hence b1 — h € H} © X.

Since hy — hy € X, we therefore have h; — hy = 0. This shows that M, is injective. 0
We will need the following result on the reproducing kernel in H2(R H P) (see, €.g., [10]).
LEMMA 5.6. For f € H2(RHP), u € U, and « € RH P the following hold:

(f, - ) = 27 (f (@), wu,
s+a/p2rup

s+a’

( u f> =27 (u, f@)u-
HX(RHP)

We are ready to present the continuous-time restricted shift realization using the bilinear
transform 7. For a continuous-time transfer function G, we first realize the discrete-time
transfer function G, defined by

z—1
Gi(2) =G, (z T 1)

in terms of the restricted shift realization. Applying T to this discrete-time realization we
obtain a realization of G, with the same state space. Then we use a unitary transformation to
get the continuous-time restricted shift realization with state space tangeHg. .

THEOREM 5.7. Let G. € TLCYY. Then G, has a state-space realization (A., B., D.,
Co) € Cg‘y , which is given in the following way:

1. The state space is given by

X = tangeHg, rup € HZ(RHP).
2. The semigroup (e'4<),> corresponding to the realization is given by

i X X,

f (&4 1)) = Pre” f(s).
The infinitesimal generator (A., D(A.)) of the semigroup (e'A<),»¢ is given by

A DA)— X,
fr (A6 =5f() —lim @ rf ().

The domain D(A.) is dense in X, and we have

1
D(A;) = [f[ f@) = :[h(s)—h(l)]: (s€ RHP), he X} .
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The domain of the adjoint A} of the operator A is

DAY = {fl fs)=Px h(s) . (s€ RHP), he X}
145
and
h
ALf = f—hfor f© = Prro € D(AD.

On L71(X) € L}([0, +00)) the semigroup is given by
¢ L7NX)~> LX),
fr (@4 )@ = P2 o +oon(f (T +1))rz0-

3. The input operator is given by

B.: U— D@ANY,
7 BC(u)s

where for u € U and x(s) = Pxﬁ% € D(AY),
[Bo@)](x) = J—% (l—i—;[Gc(s) — G, (1 - A:)x>

s
= J—liz?' <ch1—i—s-, (1- A:)x>
1 u
- 7 (et )
= /27 (u, (Hg, B)(D)),, -
4. The output operator is given by
C.:D(C) =DA)+UT - A)'BU — 7,
x> «/2_7tlimrr_e.1;° rx(r).

5. The feedthrough operator is given by

D,: U— Y%,
U G(+oo)u :=lim reR G.(Nu.

The realization (A¢, B., Cc, D) of G is called the restricted shift realization.

Proof. These results are obtained by applying the map T of Theorem 3.1 to the restricted
shift realization (A4, By, Ca4, Dy) of G4(2) = G¢ ﬁ}-), (z € D,), with the state space then
transformed by the unitary operator V = Vy defined in Proposition 3.3.

1. Let (Ac1, Bet, Ce1, De1) = T ((Ag, By, Ca, Da)) and

(Ac, Be, Cey Do) = (VAaV ™Y, VB, CV™L, Dey).

We use the following notation: G5 (z) = 1[Ga() —Ga(00)] = LGB -G.(DI(z e D),
X4 = TangeHg;, and ¢ (2) = ¢S, ¢ > 0. Then by Proposition 4.3 X = VX, and ¢;(A,) is
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the semigroup of contractions on X, with infinitesimal generator (A; — I(Ag+ )" = A,
(see [28, p. 141]). Specifically, for x € X; we have

1 r4zt N
$:(A)x = Py ( )x _ Pty = Py

Thenitiseasytoseethat A, = V A, V~! generates the semigroup of contractions V¢, (A4)V !
on X. If we extend the unitary transformation V : H?(D) — H?(RH P) naturally to

V:L?@D) - L*(iR),
i Vx)@ = =i (15e)

we still have a unitary transformation. Moreover, by considering z*y forn € Zand y € Y we
can show that

VPP = pRHPY

where PP : L2(3D) — H*(D) and PR¥P : L2(iR) — H2(RHP) are the orthogonal
projections. From this it follows that for f € X,

e f = VoAV f = VPP y-1f = PREPY SRV f = P

Clearly, D(A.1) = range(Ay+1),andby Lemma 5.3 range(Ay+1) = {12220=20) | ¢ x,}.
Since D(A.) = VD(A.) and x(0) = 2./ (Vx)(1) for x € X4, we have

{ (1 +2)x(z) ~x(0)
z

D(A;) = Vrmange(A;, + )=V

]xeXd]

s
14s

1—s
={V((1+z)x(zz)—x(0))|xexd]= [(1+1+,)f(s) LD fe X}

{f(S) £

=10, o]

For x € D(Ac1) = range(Ay + I) the limit lim,eg ,»—1 ,——1X(7) exists by Lemma 5.3.
Denoting it by x(—1) and using Lemma 5.3, part 4, we have

(Aa1x)(@) = [(Ag ~ D(Ag + D7'x)(z2)

[X(z) + %x(—l)]) = 1=-9x@) - 2x(=1)

z
=(Ag—-1
(4a = 1) (1 +z 1+z
From this we obtain, for f € D(A.) = VD(A.1),

((1 - (V1@ - 2(V'1f)(-1)>
1+z

(A =VAaV sy =V
=sf(s)— lim rf(r),

reR, r—++o00

where we have used the fact that for f € D(A,)
(VHD =V Bp A+0 () = V7 lim rf ().

r—>+400
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Now we show the form of A*. Recall that A is the generator of the strongly continuous
semigroup (e'4<)*. Let

D(A) = {fl f(s) = Py () tor some h € X}
145
and
A:D(/i) - X,
A h(s) A
Af = f—h (f:Px eD(A)).
1+s

By Lemma 5.5, the operator A is well defined.
For f € D(A) and g € D(Ao) there are v and w in X such that f = Px15 and

1+s

g= "’—I—%sm By the definition of A, and A, we have A.g = w and A f = v. It then follows

that
_ v \ [ w Jw-—w® \_ 2
(ACg9f)-<w7PX1+s>—<1_s’v>—< l—S ,U>—(8,Af)-

This shows that D(A) € D(A?) and A = A?lp- On the other hand, we clearly have
(I — A)D(A) = X and hence

(I — AHD(A) = X.
Let x € D(A?). Then there exists x; € D(A) such that
I-ADx = - ADx.

Since A? is the infinitesimal generator of a semigroup of contractions, the number 1is not in
the spectrum of A?. Thus we must have x; = x. This shows that

D(A?) € D(A).

Therefore D(A]) = D(/i) and hence AY = A.
2. For the operator B, we first compute B, following the definition of T':

B :=~2(I + As)"'Bs: U — D(ADY,
u > 2 + A Ba@I],
=2 <Bg),  + A7) >x, -
Note that V* = V=1, (I + A}~ = 3( — A7), and

(VBau)(s) = T/I—EEC(S_%:-—SGAE" (s € RHP).

Thus for x = Py ™2 e D(A?) C X, we have (I — A?)x = hand
1+s c ¢

(B.uw)(x) = (VBa)(x) = (Bau)(V*x) = V2(Bau, I+ ANV x)x,

1
= V2(VBau, VI + A~ 'V ix)x = ﬁ(VBdu, SV - :1)V—1x>
. X

1
= '_E(VBdu, I —AD)x)x
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1 (GC(S) —G.(D)

T T u, (I - A:)x>

X

_ﬁ..
S

<Gc(s>—Gc(1)u h)
, X

1—s

u
= —={(Hg,——, h} .
«/27[( C1+s >x

Since (Hg,)* = Hg_, we have

1 u
(B ) = —= (1_+? H(-;rh>.

By Lemma 5.6 the right-hand side is v/27 (u, (Hg h)(D)y.
3. To compute C,. we use Lemma 5.3, part 3, to get

1 1
Ca(MI + Ad)'lx = ')‘:x (_I) , AeD,.

So for x € D(C.1) = D(Aq1) + (I — Ac1) !B, U we have
Cox = V2UmCi(M + A7 'x

A=l
1 1
= +2lim =x(—=) = /2 lim x(A).
ZATA T

The existence of the limit for x € D(A,;) follows from Lemma 5.3, part 1, because D{(A.;) =
range(Ay + I). Forx € (I — A¢1)™' B, U we have that the limit

V2EmCy I + Ag)™'x
A=l
also exists by the admissibility of G, since (I — Ac1)Bou = %Bdu = -\}—iG;,Lu (see [23]).
Now it can be verified that V.D(C,;) = D(AJ) + (I — A.)~'B.U, ie., VD(C) = D(C.).
Hence we get, for f € D(C,),
27 1-A
= V_l = im ——— —
Cof =CaV™ f =v2 lim 1+Af(l+k)

Aepr ]

= V27 lim (1 +1) () = ¥2r m rf ().

r=>+00 re»+00

Finally, the obvious expression D, = G.(00) can also be verified as follows:

Dcu = Doyu = Dgu ~ im Ca(AI + Ay~ 'Buu

A=l

1 1
= Ga(00)u — Eim C4(I + A)™'Giu = Ge(Du — lim -Gy (_i) “
A=l

A=l

. A+1 ) A+1
= Gc(l)u - IEP(—I) [GC ()\.—-—_T) - Gc(l)] u= ];"lg‘: Gc (K_——l)

A=l

= Gc(400). o
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Regarding the expressions for the operator B, in the theorem we have the following
corollary.

COROLLARY 5.8. B.u € X, (u € U) ifand only if [G; — Gc(+00)Ju € X (u € U). In
this case

1
(Bcu)(s) = E[GC(S) = Gc(+o0)}u (u € U).

In particular, if G satisfies

+00
sup f 1G(x + iy) — Ge(+00)lI2dy < 00,

x>0 J—00

where for s € RHP the expression ||Gc(s) — G (+00)|| denotes the operator norm of the
operator G.(s) — G.(+00) € L(U,Y), then Bcu € X and

(Beu)(s) =

1
— G (+00)]u
.\/2—7; C( )]
foranyu e U.
Proof. First we assume that [G. — G.(+00)Ju € X (u € U). Define F(s) = G.(s) —
G.(+00). Then Fu € X. It follows from the formula for D(A.) that

! [Ge(s) = G(D]u = —I-[F(S)u — F(l)u] € D(A.)
1—s 1-—s5

and hence for x € D(A}),

1
[Be(0)](x) = E(l -

=—1-(<1— A T—[Ge(s) = GelDlu, x)

-G.(Du, d —- A:)x>

HX(RHP)

V2r

-—1(1-—S)[G)—Gl) lim ——[G.(r) - G (D]
—m I—s 1—s (s e( ]u+,_',efm1—r (r c(Du, x
—-—1—([G (s) — G(+00)]u x)'—-—l—(Fu x)}
T V2w ‘ T Vm T

Here we have used the definition of A, and the fact that the limit lim R G.(r)u exists,
which follows from the admissibility of G.. Thus we have shown that B (u) € X and
B.(u) = fFu foranyu € U.

On the other hand, if B.(«) € X, (4 € U), then there is f, € X such that [B.(w)](x) =
{(fu» x) for any x € X. Therefore

1 1 . _
7’_2_—';<1 — S[GC(S) - Gc(l)]u, - Ac)x> = (fu, x) (x € X).
This shows that ;i—s[Gc(s) — G.()Ju € DI — AD*) = DI — A;) = D(A,). So there is
h € X such that

h(s) — h(1)
1-s

1
—[Ge(s) = Ge(Dlu =
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Hence G.(s) — G.(1) = h(s) — h(1). Since lim sz h(s) = O (see Lemma 5.2), we have
G.—G.(+00) =h € X. o

To complete the proof of the corollary, it suffices to show that the condition that G is
analytic for Re(s) > 0 and satisfies

-+00
Supf IGc(x +iy) — G.(+00)|Pdy < o0
x>0 J—00
implies that [G. — G.(+00)]u € X forany u € U.

Again let F(s) = G.(s) — G.(+00). We have the equality of Hankel operators:

Hg, = Hr.

The assumption on G, implies that Fu € LZ(iR) for any u € U. Now we show that in
L%(iR) norm
n

Fu = lim HF
n—00 n+s

u
and hence Fu € X = tangeHr. The proof will then be complete.
Consider

n
n+s

Fu—Hp

u

LI(GR)

P+F U

n—s
By Lemma 5.4, we have lim, o0 | 7= Ful| L2GR) = 0. Therefore

s

lim [|Py Ful| = 0.
n—00 s

n—
So we indeed have Fu = lim,_, ., Hr n"?u, converging in Lf,(i]R) norm. 0

5.3. Continuous-time *-restricted shift realization. If we apply the map T in The-
orem 3.1 to the *-restricted shift realization of G4(z) = GC(%}-) and then transform the
state space by the unitary operator of Proposition 3.3, we obtain the *-restricted shift realiza-
tion of G.. Alternatively, we can find the restricted shift realization of the transfer function
Gc € TLCYV first, and then the dual system of this restricted shift realization will be the
*_restricted shift realization of G..

THEOREM 5.9. Let G, € TLCY"Y. Then G. has a state-space realization (Ac . Bc
Cexs Dcs) € Cg‘y, which is given in the following way:

1. The state space is given by

X, = fangeHg_gpp € H3(RHP),

where G.(s) = (G(§))* fors € RHP.
2. The semigroup (e'4<*),5o corresponding to the realization is given by

el X, > X,
f (€% f)s) = Px,e™ f(s),
where the operator A, has domain

1
1+

D(A...) = Py, { h(s): h e X,,]
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and for f(s) = Px,1i5h(s) € D(Ac.),
Acxf=f—h
On L™Y(X,) € L% ([0, o)) the semigroup is given by
eher s L7N(X) > LX),
fr (€ f)(s) = Peyx), f(s — 1),
3. The input operator B., : U — D(A? )" is given by
u+> B.(u)
with

1 1
[Be.w)] x) = J_<1 L Oy A:,)x>

1 1
= — , h
./27[(1+Su >

=21, k(D)y, x = h—(si—:ggl € D(AL,), he X"

4. The output operator has the following form:

D(Ce) = D(Ay o) + (I — Au) ' B U

=Px,{h(s)|hex}+1>x_{

|u€U}

1 1+s

Ifx = Px 29 then

. l+s
Ccax = 2r(Hg h)(1),
and if x = Px,1;, then

Ceax = V21[G (1) = G(4+00)]u.
5. The feedthrough operator is given by

D.,: U—> Y,
ur G (+oo)u = lim rer G(r)u.

The realization (Ac s, Bc.«, Cexs Dex) Of G is called the *- restricted shift realization.
Proof. Let (A, B,C, D) be the restricted shift realization of the transfer function G.(s) =
(G(®))*. Take (Acx, Bews Cens De.s) to be the dual system (A, B,C,D) of (A, B,C, D).
Then (Ac., Bews Cenr Dex) is a reahzatwn of G (see Definition 2.2). We show that
(Acix, Bc.+» Cc.v» D...) obtained this way has the expressions as given in the theorem. Notice
that A = A%, ie., A, = A"
1. By Theorem 5.1 the state space of the realization (4, B, C, D) is TangeHg . Thus the

dual system (A', B,C, f)) has the same state space. That is,

X, = rangeHg .
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2. The semigroup generated by A is defined as

etf =P’ f (f € X.).

It is easy to verify
EXf=(*)'f=Pxe"f (f X))
That is,

i f =Py e ™ f (f € X,).
By Theorem 5.1,

D(Ac.) = D(A") = {Px. g h(S)I he X*] ,

Acxf = f —hfor f(s) = Py,

T Sh(s) € D(Ac.»),

and A, is well defined.
3. By the definition of the dual system (Definition 2.2), we have

B: U— DAY, ur—> B@WI[] = @, CE).
For x(s) = t=[h(s) — h(1)] € D(A) (h € X.), we have

B)[x] = (4, Cx) <u,~/—hmrx(r)>=~/27(u,h(1)).

By Lemma 5.6, v/27 (u, A(D)y = —={5i5%: M) u2(rup)-
4. Now we compute C, , = C. Again use Definition 2.2:

D(C) = D(A) + (I — A)™'BU = D(Acs) + (I — Ac) ' Be.uU,

and Cx, is defined by
{y, Cx0) = B(y)[xol, x0 € D(Ac)
(Cxo, y) = (u0, CI — A)'By),  x0=( — Acs)"'Bestto, uo €U, y €Y.
Since by Theorem 5.7
h(s)
B(y)[x] = vV2n(y, (Hc.m)(1))y {x=Px T+s € D(Ac) | »
we have
= h(s)
Cx = ~/2n(Hg h)(1) for x = Py T+s € D(A;.4)-

From Lemma 5.5 it follows that C js well dgﬁned forx € D(Ac.).
Note that C(I — A)~'By = [G.(1) — G.(+00)]y. Thus

Cxo = [Gc(1) — Ge(+00)uo for xg = (I — Ac.) " B suo.
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Now we show that (I — A.)"'Beuito = 7=Px. 1. Letx € D(A7,). Since by
Theorem 5.7 (I — A%, 'x = 1‘%‘9, we have
(I - Ac,*)-ch,*uO, x)=[{- Ac,*)-ch,*MO](x)

= [Beauol(( — A7,)"'%)

= [Bc,*uO] (x_—x'(_ll)

1-s

= , = " , X).
2 \l+s S22 1 +s
This shows that (/ — Ac,) "' Be.lto = %Z;;Px_ {-‘f; Hence, to sum up, the operator C, , = ¢

is defined in the following way:

h(s)
1+s

D(Cc,*)'—'PX,[ 1+s

|hex*}+Px,{—i‘—|ueU].

fx= Px,'l'—ff}, then

Cenx = ~27(Hg h)(1),

and if x = Py, 155, then

Conx = V27[G:(1) — G (+00)]u.

Note that by Lemma 5.5 C, ,x is also well defined for x € Px.{ﬁ—sl uelU}.
4. It is straightforward to get

D.. = D* = (G.(+00))")* = Gc(+00). O

Note that the restricted and *-restricted shift realizations of admissible transfer functions
in H*® are well posed in the sense of Curtain and Weiss [5] and Salamon [27]. Indeed we
have the following corollary concerning the reachability and observability of the restricted
and *-restricted shift realizations.

COROLLARY 5.10. 1. The reachability operator of the restricted shift realization is given

by
R : L3[0,+00) — X, f+> Hg, ruprLf.
The observability operator of the restricted shift realization is given by
O.x : X = L2[0,4+00), x> L7x.
2. The reachability operator of the *-restricted shift realization is given by
Rew : LE[0, +00) — X4, f > PxLFf.

The observability operator of the *-restricted shift realization is given by

Oix: Xu = L";,[O, +00), x> L Hg, rupx.

Here L denotes the Laplace transform.
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Proof. This follows from Theorem 3.4 and Theorem 5.7 D

We categorize the state spaces of the restricted and *_restricted shift realizations here for
later use.

PROPOSITION 5.11. Let X and X, be, respectively, the state spaces of restricted and
*_restricted shift realizations of G. € TLCY-Y. Then

1. if G. is cyclic, then X = H}(RHP) and X, = H;(RHP);

2. if G. is noncyclic, then X = HX(RHP) © QiH3(RHP) and X, = H3(RHP) ©
QZH?,(RHP), where Q) € H,‘j‘(’y)(RHP) and Q; € HY,(RHP) are rigid functions;

3. ifG.isin Hpy, y(RHP), is strictly noncyclic, and has factorization G, = Q1 F} =
f’;éz, where Q1 € Hp,,(RHP) and Q, € Hy(RHP) are inner, Q1 and F, are left
coprime, and Q; and F, are also left coprime, then X = H;(RHP) e Q,H,%(RHP) and
X, = HX(RHP)© Q:H}(RHP).

Proof. This follows from Definition 4.5 and Theorems 4.8,5.7,and 5.9.

6. Continuous-time input-normal, output-normal, parbalanced realizations and
their asymptotic stability. Recall that a reachable and observable admissible system
(A., B., C., D) is said to be input-normal if W, = I. It is output-normal if M, = I.
The reachable and observable admissible systems are said to be parbalanced if

W, = M..

Here W, and M., are, respectively, the reachability and observability Gramians of the system.
Given a transfer function G, € TLCV'Y, by Corollary 5.10 the restricted and *-restricted
shift realizations are examples of, respectively, output-normal and input-normal realizations
of G,. Proposition 6.2 shows that up to unitary equivalence all observable input-normal and
reachable output-normal realizations of an admissible transfer function G are up to unitary
equivalence *-restricted and restricted shift realizations, respectively.

In this section we establish the existence of a parbalanced realization for any G, €
TLCUY and study the stability properties of input-normal, output-normal, and parbalanced
realizations.

A parbalanced realization of a continuous-time transfer function G. € TLCYY can be
obtained from the map T in Theorem 3.1 applied to a discrete-time parbalanced realization
of the corresponding discrete-time transfer function G,. The existence of parbalanced real-
izations was shown by Young [30]. In {23] Young’s results are cast into the continuous-time
situation and the following theorem is proven.

THEOREM 6.1. 1. For G, € TLCYY, there exists a parbalanced realization
(A.,B.,C.,D,) € C,L("y of G.. The state space of this realization is given by the closure
of the range of the Hankel operator with symbol G, i.e., X =rtangeHg,. If (A.., B, C., D)
is another parbalanced realization of G. with state space X, then (A, B.,C., D.;) and
(A-c, B., C., D,) are unitarily equivalent.

2. Ifin addition G.(s) is continuous on the extended iR (i.e. on iR U {ioc}) and is
a compact operator for each s € iR, then there is a basis of X = rangeHg, on which the
Gramians of the above realization have a diagonal matrix representation with its diagonal
consisting of the Hankel singular values of G.. We will call this realization a balanced
realization of G.. 0

6.1. Characterization of the realizations. Concerning the equivalence of different re-
alizations, we have the following proposition.

PROPOSITION 6.2. 1. Any two input-normal (output-normal) realizations of G, € TLCY"Y
are unitarily equivalent. Hence every input-normal (output-normal) realization of G. is
unitarily equivalent to the *-restricted (restricted) shift realization of G.
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2. An input-normal realization and an output-normal realization of G. € TLCY'Y are
equivalent if and only if the Hankel operator Hg, has closed range.

3. All reachable and observable admissible realizations of G are equivalent if and only
if the Hankel operator Hg,_ has closed range.

Proof. Analogous results in the discrete-time case are shown in [24] (see Theorem 3.1,
Corollary 3.1, and Proposition 4.1 therein). Applying Theorem 3.1, Theorem 3.4, and Propo-
sition 4.3 to these results we have the proposition. a

A consequence of the proposition is that the study of input-normal (output-normal) real-
izations reduces to the study of the *-restricted (restricted) shift realizations. This point will
be used repeatedly.

Part 2 of the proposition shows when the state-space isomorphism theorem holds. Note
that the Hankel operator Hg_ to have closed range is a very strong condition. This condition
can be stated in terms of the Douglas-Shapiro-Shields factorization of the transfer function
G (see Theorem 4.10 and [11]).

6.2. Asymptotic stability. Now we turn to the study of stability properties of continuous-
time systems and use the classes C; ; to describe different asymptotic stability properties of
systems [28].

DEFINITION 6.3. Let (¢'%<),50 be a semigroup of contractions on the Hilbert space H.
Then

1. (€');50 € Co. iflim,_, o, e'*h =0 forallh € H,

2. (€")50 € Cg iflimy_, 00 €'4h = O forall h € H,

3. (€"4)1»0 € C1. iflim,_, oo €'A<h £ O forall h € H,

4. (e"A)>0 € C.p iflim,_, o €'4h # O forallh € H.

We further set

C,'j = C,‘. ﬂC.j, l,_] = 0, 1 D

The notions of stability that we consider are the following.
DEFINITION 6.4. A continuous-time system (A, B., C., D.) € cj(” is
1. asymptotically stable if for all x € X,

eétx >0

ast — oo, i.e., (6459 € Co;
2. exponentially stable if

w = inf{a € R| there exists M, > 0 such that ||e'4<|| < My e* (¢t > 0)}
< 0.

The number w is called the growth bound of the semigroup. 0

We comment that the asymptotic and exponential stability of a system is preserved by
system equivalence. Moreover, if two systems are unitarily equivalent, they will have the same
growth bound.

An important result in [28, Prop. 9.1, p. 148] implies that a continuous-time system is
asymptotically stable if and only if the corresponding discrete-time system is asymptotically
stable.

PROPOSITION 6.5. Let (A4, By, C4, Ds) € DY and (A, B., C., D.) € CZY such that

(Ac, B, Cc, Dc) = T((A4, Ba, Ca, Dy)).
Then forall x € X,

Lim |ASx|l = lim ||e'x||
n—»oo =00
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and
lim [[(A%)"x|l = lim |le#x]. O
n—00 =00

Therefore, the study of asymptotic stability of a continuous-time system reduces to the
study of the asymptotic stability of the corresponding discrete-time system.
Now we state the main result of this section, which asserts that any admissible parbalanced
realization of an admissible continuous-time transfer function is asymptotically stable.
THEOREM 6.6. Let G, € TCU'Y. Let (Ap, By, Cv, D), (Ai, Bi, Ci, D), and (A,, B,,
C,, D,) be, respectively, a parbalanced, an input-normal, and an output-normal observable
and reachable realization of G.. Then
L. () (e'Ai)tzo € Co,
(®) (e'4),50 € Coo if GL is strictly noncyclic,
(¢) (€50 € C1o if G¥ is cyclic,

2. (a) (€"*);»0 € Co, i.e., asymptotically stable,
() (¢'4);0 € Coo if G is strictly noncyclic,
(c) (€'%°)1»0 € Cor if G, is cyclic,

3. (e'A”),Zo € Coo.

Proof. The corresponding asymptotic stability results for discrete-time systems were
obtained in Theorem 3.2 and Theorem 4.2 of [24]. Hence, combining those theorems with
Proposition 6.5 and part 1 of Proposition 4.7, we have the theorem. O

Since by Proposition 6.2 all reachable and observable realizations of G are equivalent
when the Hankel operator Hg, has closed range, and equivalent realizations have the same
asymptotic stability properties, the theorem has the following corollary.

COROLLARY 6.7. If the Hankel operator Hg, has closed range, then all reachable, ob-
servable, and admissible realizations of G are asymptotically stable. o

7. Spectral minimality and exponential stability of input-normal, output-normal,
and parbalanced realizations. This section aims to examine the exponential stability of
continuous-time input-normal, output-normal, and parbalanced realizations of certain classes
of transfer functions. The results are mainly based upon a detailed spectral analysis of
input-normal and output-normal realizations. While the asymptotic stability properties of
continuous-time systems can be obtained directly from the discrete-time case as we did in the
previous section, exponential stability properties of continuous-time systems do not follow in
the same way. However, we can relate the spectrum of the discrete-time system to that of the
continuous-time system and thus establish the exponential stability results.

Recall that a continuous-time system (A, B, C¢, D¢) is exponentially stable if

inf{a € R| there exists M, > 0 such that lle'Ae|| < Moe* fort >0} <O.

The following proposition gives an interpretation of the growth bound of a semigroup in
terms of the spectral radius of the semigroup (see, e.g., [21, p. 60]).

PROPOSITION 7.1. Let w be the growth bound of the semigroup (¢’ Ac),50 and r(e'#) the
spectral radius of e'A<; then

r(etAc) = ewt

fort = 0. 0
Note that it follows from this proposition that equivalent systems have the same growth
bound.

7.1. Spectral analysis. Thus we have to investigate the spectral properties of a
continuous-time linear system (A, Bc, C., D) in order to study its exponential stability.
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The way we do this is to relate the spectral properties of (A, B., C., D.) to those of the
corresponding discrete-time system (A4, By, C4, Dy). First we have the following relation
between o (A,) and o (A,).

PROPOSITION 7.2. Let A, be the infinitesimal generator of a semigroup of contractions
and A, the co-generator such that A, = (Ag — (A4 + I)~L. Then

-1 1

op(Ap) = zﬁz zeap(Ad)} and U"(Ad):{l_i—%: secp(Ac)},

o(A) = -1, zea(Ad),z;s—l} and o(Ad)\{—-l}zllj—s: sea(Ac)}.
z+1 l1—=s

Proof. First note that 1 ¢ o (A,) since ¢’ is a semigroup of contractions and that by
Theorem 3.1,

Ax=As-D(Az+ D 'x = (Ag + I)_I(Ad — Dx for x € D(A,),
where D(A;) = range(A; + I). Hence the following relations hold:
(7.1)  (sI—A)Ag+ Dx =[sI - (Ag — )(Ag+ D7 N(As + Dx

=[s(Az+ 1) — (Aa — Dlx

1
=(1—s)(1+;I—Ad)x, x€Xy s#F1,;

(72) (Aa+ DI —A)x = (Ag+ DIsI — (Ag — I)(Ag+ D7 'Ix

=({1-3%) (1%1 - Ad) X, x € D(A), s# 1.

The equations (7.1) and (7.2) show that

1
0p(Ay) = { I i.z N = ap(Ac)}.

Now if {£ ¢ 0(Ay), ie., if (321 — A4)~! exists and is bounded, then

1-s

1 -l -1
(Ad+1)(1‘_*;1—.4d) =(1'_*21—Ad) (Ag+ D).

Thus by (7.1) and (7.2)

~1
(7.3) I-A)x=QQ-5"YAg+ D (; ijz - A,,) x

-1
=(1-s)"" (i ti[ - Ad) (Ag+ Dx, x € D(AL).

So (sI — A.)~! is bounded and densely defined, i.e., s ¢ o (A.). Hence

7.4 { i ‘: ise or(Ac)} C o(Ay).
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On the other hand, if s # 1 and s ¢ o(Ac), then (s] — A;) lisa bounded operator. It is easy
to verify in this case that

1 -1 1—s5)? 1-
( +SI—Ad) x=( 2s) (sI—Ac)'l+ sx, x € D(Ap).

1—-5 2
In fact from (7.3) we have
1 1—s)? 1-
+5 A WO 61 — a0+ =1 |
1—5 2

1-5)2 /(1 1—-s (1
= 25) (-l—t—;I—Ad)(sI—AC)'lx+ s( +SI—-Ad>x

1—s)? 1-5 (1
- £_2_s_)_(1 — 5 (Ad+ Dx + —— (—*_—'%1 - Ad)x

2 1

=x, x € D(A.).
Similarly,

1-7s)? 1- 1

A=8) (T Ay +——x ( TSy _a ) x=x  xeD(A).
2 2 1-5
Thus i—‘:f ¢ o (Ag)- Sowe have
1+s

a.5) s: T—s e o(Ag)} Co(A).

Combining (7.4) and (7.5) we have that

1 1
o(A) = {s: lti ecr(Ad)} = {i—-i—_l ZGG(Ad)qZ#“I],

which implies
s(A)\ (-1} = [1—}% sea(AC)}. 0

In our application of the proposition, A is the state propagation operator of a continuous-
time system (A, B, Co, D) e Cg‘y and Ay is the state propagation operator of the corre-
sponding discrete-time system (A4, B4, Ca, Do) € Dg‘y, which is related to (A, B, Ce¢, De)
by

(AC, Bm CC? DL‘) = T((Adv Bd? Cdv Dd))v

where T is the bilinear mapping in Theorem 3.1.

A powerful tool in spectral analysis is the spectral mapping theorem for C, operators (see,
e.g., [22, p. 74]). A contraction W € L(M), where M is a separable Hilbert space, is called
a C, operator, denoted W € Co, if there exists no subspace V € M suchthat Wy : V> V
is unitary and if there exists an inner function m € H®(D) such that m(W) = 0. The least
common divisor of all such inner functions is called the minimal function of W, denoted
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my, which is still an inner function such that my (W) = 0. Note that if W is a Cy operator,
W is unitarily equivalent to a left shift S* restricted to a left invariant space of the form
H,? M e QH,%(ID)), where Q is inner (see, [22, p. 72]). It can be seen that minimal functions
are the generalizations of minimal polynomials of matrices. As inthe matrix case, the spectrum
of a Cy operator is given by the “zeros” of its minimal function in the following sense (see
22, p. 72D.

LEMMA 7.3. If W € Cy, then a(W) = o(mw) and 0,(W) = o(mw) N D, where for an
inner function Q € Hygy (D), Y is a Hilbert space, and the spectrum of Q is defined as

o(Q) = {A €D| lim inf inf |Q)yl = o
1{3] yeY

Given a Cy operator W and a function ¢ € H* (D), the operator

¢(W) = r<}ilrl'1—>1 ¢(r W)

is well-defined. The following theorem relates the spectra of these two operators (see [22,

p. 74)).
THEOREM 7.4 (the spectral mapping theorem). Let ¢ € H*® (D) and W € Co. Then

o@(W)) < {E eC| ziglfm(|¢(2) — &l +Imw()) = 0],

where my is the minimal function of W. O

7.2. Spectral minimality. We are going to use these results to transpose the spectral
properties of the discrete-time input- and output-normal realizations to those of the continuous-
time case. First we recall the discrete-time results. Assume that the input and output spaces
are of finite dimension. If the transfer function G, is such that G5 is strictly noncyclic,
then G, has a pseudomorphic continuation of bounded type to the unit disk D (see [11]).
Take this continuation as the definition of G, on D, wherever defined. Consider the analytic
continuation of the extended G,. Let 0;(G4) be the set of points at which G, has no analytic
continuation. We are interested in the relationship between o, (G,4) and o (A4). The following
theorem shows 0,(G ;) = 0 (A,) for input-normal or output-normal realizations. If G is not
strictly noncyclic, the spectrum of A, can also be characterized (see [24] and [11]).

THEOREM 7.5. Let G4 € TLDYY with U and Y finite dimensional and let
(Ad.05 Ba.o» Ca00 Do) (Ad.i» Bais Cai» Da.i), and (Aap, Bap, Caps Dap) be, respectively,
an output-normal, an input-normal, and a parbalanced realization of G,.

1. If G;}- is in H}(y)(D) and strictly noncyclic, then (A4,0, Ba.o» Ca,or Da.o)s (Ad.i> Bais
Ca.i, Dy;), and (Agp, Byp, Ca b, Dyp) are spectrally minimal, i.e.,

0(As0) =0(Ag;) = 0(Aap) = 0:(Gy).

Inthis case Ay ,, Ag i, and Ay p are all Cy operators and have the same minimal function—say,
m. Moreover, if G.(¢'*) = Ql(e“)(e” Fy(€'))* is the Douglas-Shapiro-Shields factorization
of G4 (see Theorem 4.8) and G4(¢'') = Qa(e'") (e Fa(e'))* is the factorization of G4, then
the following equalities hold:

o(m) = 0,(Ga) = (0(Q1))* =0(Q2),
0p(Ad.0) = ( € D| KerQ1(A)* # {0}},
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and
0,(Aq;) = (A € D| KerQ2(2) # {0}},
where (6 (Q1))* = (Al A € 0(Q1)} and

0(Q) = €D| liminf inf 1Q:E)YI =0} ¢ =1.2).

beD  yer
2. If G} is noncyclic but not strictly noncyclic, then
(A, =0 (A) =D.
3. If G4 is cyclic, then
0,(A) =D, 0,(A) =0, 0(A)=0(A) =D. O

Corresponding to this theorem we have the following continuous-time analogue. For a
strictly noncyclic continuous-time transfer function G, we define o,(G,) similarly as in the
discrete-time situation. Specifically, G has a pseudomorphic continuation of bounded type
to L H P (see Theorem 4.8), which is taken to be the definition of G, on L H P. We consider
the analytic continuation of the redefined G, and denote by o,(G.) the set of points in the
complex plane at which G has no analytic continuation.

We note that results in part 1 of the following theorem can be found in the thesis by
Gearheart [12] and a paper by Moeller [19].

THEOREM 7.6. Let G, € TLCUY and let (Ac.o, Be.o» Ce0r Deo) € Cy'" be an output-
normal realization with U and Y finite dimensional. Then

1. if G isin Hiyy, yy(RH P) and is strictly noncyclic with factorization G. = O\ F},
where Q) € Hi"(’y)(RH P) is inner and Q) and F\ € H,f‘(’y_u)(RH P) are weakly coprime,
then A ¢ o (e<), |A| < 1, ifand only if for

w, = —log A + 27ni, neZ,
Q1(w,) is invertible for alln € Z and

-1
sup || @1(wa)" |l < 00.
—00<n <00

For|A| = 1, A ¢ o(e*) ifand only ifthere existsa$ > Oand M > Osuchthat Q1(w,)™"
exists for alln € Z and Q (s)~! is bounded by M in the neighborhood of each point w,.
For the point spectrum, we have

op(e)\ {0} = {¢~ : s € RHP and KerQ:(s)" # {0}}.
2. under the same assumptions on G as in 1., we have

o(Aco)=1{—-5:5€ o (01} =0:(Go)
Up(Ac.o) ={-§: s€ RHP and KerQi(s)* # {0}}.

3. if G, is noncyclic but not strictly noncyclic, then

0 (Ac,o) = the closed left half plane.
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4. if G, is cyclic, then

o,(eAc,o) - D’ Gp(eAc.o) \ {0} = D \ {0},
0 (Ac,o) = the closed left half plane, o0,(A.,) = LHP.

Proof. Without loss of generality we may assume that (A.,, B.o,Cc0, D, ) is the
restricted shift realization. We write (A,, B., C., D.)for(Aco, Bc oy Ce o, De ). Let G4(z) =

G(:3) for z € D, and let

G @) =27 [Ga(z™") — Gy(00)] = 2! [Gc (1 —Z

1_'_Z)—Gc(l)jl, zeD.

Suppose (A4, By, C4, Dy) is the restricted shift realization of the discrete-time transfer func-
tion G,. We use the mapping T defined in Theorem 3.1.

1. The formula for o (e“<) can be found in {19} in the case 0 < M<lL KAl =1or
A =0, see [12].

For the formula of o, (%) see the proof of 2. below.

2. Note that by Proposition 4.7 G is also strictly noncyclic and has a factorization
Ga = Qa1 Fj,, where 04.1(z) = Q1(13%) and Fy,1(2) = Fi(J32). The spectra of Q1 and
Q) are related as

1
1

a(Qd.1)={ _:;Is ea(Ql)],

and the sets 0,(G4) and o,(G,) are related as

+5

-—3S

1
05(Ge) = {s P 1 € Us(Gd)} .
Then the equalities about o (A.) and o,(G.) follow from Proposition 7.2 and Theorem 7.5.
Similarly the expression for o, (A.) also follows from Proposition 7.2 and Theorem 7.5.
The point spectrum o, (e<) can be obtained by the general formula (see [26, Thm. 2.4,
p- 46))

Tp(e ) \ {0} = 7“0,

3. This also follows from Proposition 7.2 and Theorem 7.5.

4. We offer a direct proof here, although the result again follows from Proposition 7.2
and Theorem 7.5.

If G. is cyclic, then the state space is X, = HZ(RHP). 1t is easy to see that for any
#€LHP,t>0,andy €Y wehave ;1 € X, = H3(RHP) and

e's — gt

y € HX(LHP) = (HX(RHP))*,

S—u

where the orthogonal complement is taken in Lf, (iR). Therefore,

1 oS e e — ottt et
et y=P, y=P+[ y+ y]= y.
s—u S— i s— i s—u

Hence ' € o,,(¢'4). This shows that g,(e"4) \ {0} = D \ {0} and hence o (¢'Ac) = D.
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Alsoforany u € LHPandy € Y wehave h = ;—:“fy € HX(RHP) and
y _ k) -hkD)

s—u 1-5
Hence ;{7 € D(A.). Using the definition of A, we have
P N - S

C .
S§—f S—pu Rr—pup s— i

r—o0

Therefore u € 0,(Ac). This shows that o), (A;) = LHP and hence o (A;) = LHP. il

For input-normal realizations we have results analogous to the results above. The proof
is similar to the proof of the previous results.

THEOREM 7.7. Let G, € TLCYY andlet (Aci, B, Cei» Dc.i) € Cy'" bean observable
input-normal realization with U and Y finite dimensional. Then

1. if G, is in HS, y,(RH P) and is strictly noncyclic with G. = Q»F;}, where Q; €
Hpy(RHP)is innerand Q; and F; € H{{y y,(RH P)are weakly coprime, then A ¢ o (e?),
IA| < 1, ifand only if for

w, = —logA + 2mni, nez,

Qs (w,) is invertible for alln € Z and

sup || Q2(wn)" Ml < 00

—00<N <0

For |A| = 1, A ¢ o(eA) if and only if there exists a § > 0 and M > O such that 02 (w,)™!
exists for alln € Z and Q> (s)~! is bounded by M in a § neighborhood of each point wp. As
to the point spectrum, we have

op(er)\ {0} = {e™ : s € RHP, KerQs(s) # {0}}.
2. Under the same assumption as in 1., for the generator A.; we have
0(Ac) ={=*: »€0(Q2)} =0:(Go),
0p(Aci) ={—s: s € RHP, KerQs(s) # {0}}.

3. If G, is noncyclic and range(Hg ) = (Q2H,2, (RH P))*, where Q, is a non-inner rigid
function, then

o(A.;) = the closed left half plane.
4. If G, is cyclic, then
o(e) =D, op(eh) \ {0} =,
0(A.;) = the closed left half plane. 0
The following proposition gives the spectral properties of parbalanced realizations in the
case of strictly noncyclic transfer functions.

PROPOSITION 7.8. If G € Hi(y y,(RH P) is strictly noncyclic with finite dimensional U
andY, then

U(Ac,o) = U(Ac,i) = G(Ac.b) = 05 (Gc)y

where (Acp, Bep, Ce.b» Dep) is a parbalanced realization of G..

Proof. The analogous results in the discrete-time case are proven in [24, Cor. 4.3]. Since
05(G.) = {531 2 € 0,(Ga), 7 # —1}, where Gy(2) = Ge(ED), (z € D), the statement
follows from Propositions 4.7 and 7.2 and Theorem 7.5. 0
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7.3. Exponential stability. Before we can give a criterion for the exponential stability of
input- and output-normal realizations, we need some results concerning the relation between
the spectrum of a semigroup and the spectrum of its generator. The following lemma can be
deduced from [9, p. 622] (see also [21, p. 84]).

LEMMA 7.9. Let e'4 be a strongly continuous semigroup of operators on a Hilbert space
X with infinitesimal generator A. Ifo(e’4) C {L : |A| < e*} (t > 0), theno(A) C {s :
Re(s) < «}. 0

Note that in particular if [|e'4|| < Me** for some M > 0, then r(e’4) < e*' and hence
o(A) C {s: Re(s) < «}, where r(e4) is the spectral radius.

It is well known that in general the converse of the lemma is not true (see [21, Chap.
A-IIT]). However, the converse can be proven in some particular cases.

PROPOSITION 7.10. Let e'* be a strongly continuous semigroup of contractions on a
Hilbert space X with infinitesimal generator A. Let A, be its co-generator; that is, A; is a
contraction with —1 ¢ o(Ay) and

Ax = (Ag— DI + Ag)"'x (x € D(A) = range(] + Ay)).

Assume that A, is a Co operator with minimal function m. Then o(e'4) C {1 : |A] < e}
(t > 0), ifand only if 6 (A) C {s : Re(s) < a). Here « is a real number.

Proof. The necessity part follows from Lemma 7.9.

Now assume o (A) C {s : Re(s) < a}. Since o (e'4) C {1 : |A| < 1}, we may assume
a <.

By Lemma 7.3, we have 0 (A4) = ¢ (/m). On the other hand Proposition 7.2 shows that

o(Ag)\ {1} = : sea(A)}.
Since o'(A) < {s : Re(s) < ), we have
oA\ (-1} € i:’ Re(s)Soz}.
Thus
o(m)\ {~ 1}_{“_”: Re(s)Sa}.
Let £ = 5. Then Re(s) < « if and only if |§ — 3%-| < 1+ 5%. This shows that
a(m)g{s: £ <1 +ﬁ]

Therefore if £ € D and J¢ — 52=| > 1+ 3%, then & ¢ o (m). Hence there exist §; > 0 and
82 > 0 such that

Im(z)| = 8; forany z € D satisfying |z — &| < &,.
Now foreachz > 0, let u(z) = ¢ 1 Thenu € H>®(D) and &4 = u(A,). Using the spectral

mapping theorem (Theorem 7.4) we have (note again that if £ = 1‘” ,then Re(s) < a if and
only1f|$——|<l+ 7==)
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o) = o (u(A2)

c {A ¢ inf{lu(g) — Al + Im@®)1} = 0}
£eD

= {;\ ;o inf (@ - M+ Im@)) = 0]
§—3%1<1+55

2-a

2-a 2-a

c [A o inf {w@ —Al} = O}
-2 <1+

[A . inf {€E A= 0}
[§—57%51=1+5%

= closure | &' 71 : |E——-a—-|51+ a
2—« 2—-«

= closure{e*’ : Re(s) < a}
={h: A <€), (> 0).

This completes the proof. 0

We are ready to show when an input- or output-normal realization is exponentially stable.
For exponentially stable realizations we also characterize the growth bound in terms of the
analyticity of the transfer function. The results remarkably resembie the related results for
finite dimensional systems.

THEOREM 7.11. Let G, be in H(; y,(RHP) with finite dimensional U and Y. Then an
input-normal or output-normal realization of G is exponentially stable if and only if G. is
strictly noncyclic and there is « < 0 such that G has analytic continuation on Re(s) > a.

In this case the growth bound is given by

o = inf{a : G, has analytic continuation on Re(s) > a}.

Proof. We prove the theorem for output-normal realizations. The proof in the input-
normal case is exactly the same. For output-normal realizations, it suffices to prove the result
for the restricted shift realization.

Thus we assume that the restricted shift realization (A, B, C, D) of G, is exponentially
stable. Hence there are @ < 0 and M > 0 such that

€4 < Me** for t > 0.

Then by the remark after Lemma 7.9 6 (4) € {s| Re(s) < a}. Asa < 0, from Theorem 7.6
it follows that G, has to be strictly noncyclic since otherwise o(A) = LH P. Now applying
Proposition 7.8 we have

05(Gc) =0 (A) S {s : Re(s) <a}.
Hence G, has analytic continuation on Re(s) > «. This also shows that
inf{o’ : G. has analytic continuation on Re(s) > o'}

is not greater than the growth bound of (A, B, C, D).
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Conversely, assume that G. is strictly noncyclic and there is ¢ < 0 such that G, has an
analytic continuation on Re(s) > a. Let (A, B, C, D) be the restricted shift realization of
G.and (A4, Ba, C4, D) be the discrete-time restricted shift realization of G4(z) = G.(57).
Note that (A, B, C, D) = T((A4, Ba, Cy4, Dy)).

Again by Proposition 7.8 we have

a(A) = o5(Gc).

Therefore 6 (A) C {s : Re(s) < a}. Note that G, is also strictly noncyclic. It follows from
Theorem 7.5 that A, is a Cg operator. Now we can apply Proposition 7.10 to get

o(e?) S {r: M <e¥).

This shows that r(¢’4) < e*'. Thus by Proposition 7.1, (A, B, C, D) is exponentially stable.
This also implies that the growth bound of (A, B, C, D) is not greater than

inf{a’ : G. has analytic continuation on Re(s) > o'}.

The proof is now complete. O

The following proposition shows that for strictly noncyclic transfer functions parbalanced
realizations have the same exponential stability properties as input- and output-normal real-
izations.

PROPOSITION 7.12. Let G, € Hfyy, y,(RH P) be strictly noncyclic with U and Y finite
dimensional and let (Ac,0, Bc.o» Ce.00 Dc.o)s (Acis Beis Ce,is De.i), and (Acp, Beps Ceps De,p)
be, respectively, an output-normal, an input-normal, and a parbalanced realization of G..
Then the following are equivalent:

1. (Acos Beo» Ce 0 Do) is exponentially stable with growth bound «;

2. (A.;, Bi, C.i, D, ;) is exponentially stable with growth bound o

3. (Acs, Bey, Cep, D, p) is exponentially stable with growth bound c.

Proof. By Theorem 7.11, 1. and 2. are equivalent. Hence we need only to prove the
equivalence of 1. and 3. Assume that 1. is true. Then there exist M > 0 and ¢ < 0 such that

lle4ee || < Me™ (¢ > 0).

From the remark after Lemma 7.9 it follows that o (A.,) € {s| Re(s) < «}. Since now by
Proposition 7.8 0 (A, ) = 0 (A.,,) wWe have

0(Acp) S {s| Re(s) <}l

Let Agp = (I + Acp)(I — Acp)~! be the propagation operator of the corresponding
discrete-time parbalanced realization of G4(z) = Gc(;—}) (z € D,). Thatis, Ay is the
co-generator of the semigroup e'4<*. Note that G is strictly noncyclic. By Theorem 7.5 A4,
is a Cy operator. Therefore it follows from Proposition 7.10 that

o) S {h: A <ev).

This, by Proposition 7.1, shows that (A, 5, Bc.s, Cc.b, Dc ) is exponentially stable with growth
bound no greater than o and hence no greater than the growth bound of (A¢ 5, Bc.0, Ce.0, Dc.0)-
If we assume 3., a similar argument will lead to 1. 0
If the Hankel operator Hg, has closed range, then by Proposition 6.2 all reachable, ob-
servable, and admissible realizations of G. are equivalent. Hence we have the following
corollary.
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COROLLARY 7.13. Assume that the spaces U and Y are finite dimensional and the Hankel
operator Hg,_ has closed range. Then a reachable, observable, and admissible realization
of G. is exponentially stable if and only if there is a number a < 0 such that G, is strictly
noncyclic and can be analytically continued to the half plane {s| Re(s) > a}. The growth
bound of these systems is inf «. 0

8. Boundedness of the system operators. We have seen that for an admissible
continuous-time transfer function G.(s) there are always output-normal, input-normal, and
parbalanced realizations with well-defined bounded observability and reachability opera-
tors. In this sense those realization are well posed. As expected for all infinite-dimensional
continuous-time realizations, the propagation, input, and output operators of those realizations
are in general unbounded. The input operators are defined in such a way that the range may
not be contained in the state space. In this section we are going to investigate when those
operators are bounded. We will use the specific form of the restricted and *-restricted shift
realizations obtained in §5.

8.1. Boundedness of A,. First we have the following lemma which shows that the input
and output operators are bounded when the propagation operators are.

LEMMA 8.1. Let (A, B., C., D.) be an admissible system in Cf(”. FA.: X > Xis
bounded, then C. € L(X, Y) and B, can be considered as an operator in L(U, X).

Proof. By definition C.|p, : (D(Ac). |- llla,) = Y is bounded. Now that A, is
bounded, D(A.) = X. Hence forany x € X = D(A.),

HCexll < ICclpanll Ulxl® + I Acx DY

< ICclpeanh (lxl? + HAN? Ixi®)Y2

= [ICelpan i1 + IAID 2 11x].
SoC.e L(X,Y).

For B we know that B.u € D(AX)" and by definition || B.u||® < b|luj foranyu € U and
some fixed number b > 0. By the Riesz representation theorem, there exists x, € DAY =X
such that

1Bl = flxullaz
and for x € D(A}) = X,
(Bett)(x) = (Xu» X) a2 = (Xu, x) + (ARxy, Azx) = (1 + AcADxy, X).
Therefore B.u = (1 + AcA¥)x, € X and
IBeull = (1 + AcADxl
< I+ AAX Ixall < 11+ AAZN Ixulla
=11+ AANN 1Bl @ < 11+ AAZN D lull.

Hence B, € L(U, X). ]

Now we give a necessary and sufficient condition for the propagation operators in the
input-normal and output-normal realizations to be bounded.

THEOREM 8.2. Let G, be in H[Y, y,(RHP) with U and Y finite dimensional and let
(A, B, C., D.) be an input-normal (or output-normal) realization of G.. Then A, is bounded
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if and only if G(s) is strictly noncyclic and analytic at infinity. Here analyticity at infinity
means that Gc( ) is analytic at the origin.

Proof. Smce all output-normal (input-normal) realizations are unitarily equivalent to the
restricted (*-restricted) shift realizations, we prove the theorem for the restricted shift realiza-
tion and *-restricted shift realization. Let G4(z) = G.(51) (z € D.) and (A4, By, Ca, Da) be
the restricted realization of G, on X; = fange(He.). Then A, = V(Aq — )(Aa+ 1)~ ty-1
where V is the unitary operator defined in Proposmon 3.3.

If G.(s) is strictly noncyclic and analytic at infinity, then G ,(z) is strictly noncyclic and
analytic at —1. Hence by the spectral minimality of the discrete-time restricted shift realization
(see [11]) —1 ¢ o (Ay); i.e., (Ag+ I)~!isbounded and so A, = V(4; — I)(Ag + D~'V-1
is bounded.

Conversely, if A. is bounded, then (A4+1)~! = (I —= V~1A.V) isalso bounded and thus
~1 ¢ 0(Ag). By Theorem 7.5 G, has to be strictly noncyclic since otherwise o (A4) = D
Also G4(z) = Ca(zI — Ay)~) By + D, is analytic at —1. Therefore G, (s) is strictly noncyclic
and analytic at infinity.

Exactly the same argument can also be applied to the *-restricted case. g

Regarding the boundedness of a parbalanced realization, we have the following.

COROLLARY 8.3. Let G, € H Lw.yy(RH P) be strictly noncyclic with finite dimensional
U andY and let (Ac.ov Bc,o, Cc,o, Dc,o)r (Ac,i: Bc.ir Cc,ir Dc.i)’ and (Ac,b: Bc,b: Cc,b: Dc.b) be,
respectively, an output-normal, an input-normal, and a parbalanced realization of G.. Then
the boundedness of one of A, ,, Ac.;, and A, implies the boundedness of the other two.

Proof. By Theorem 8.2, it suffices to prove that the boundedness of A., implies and
is implied by that of A.,. We do this by connecting the continuous-time and discrete-time
systems as in Theorem 3.1.

Assume that A, , is bounded. Then, as in the proof of Theorem 8.2, —1 ¢ 6 (Ay,,). Since
G and hence G;,L are strictly noncyclic, 0 (A4,,) = 6 (Agp). Thus —1 ¢ o (Ay ) and hence
Acp = (Agp—ID(Agp+1)7! is bounded. The same argument can also go the other direction,
and the result is proven. g

8.2. Boundedness of B, in output-normal realizations. We now consider the bound-
edness of the input and output operators. First we recall that for the input operator B, of the
restricted shift realization with state space X, we have that B.u € X (u € U) if and only if

[Ge(s) = Ge(+o)Ju € X (u € U),

and in this case

1
(B:u)(s) = —[G.(s) — G (+00)Ju
)(s) «/2_71[ e ¢(400)]
(see Theorem 5.7 and Corollary 5.8).
PROPOSITION 8.4. Let G, € TLCY'Y.
1. The input operator of an output-normal realization of G, is bounded if and only if
there is M > O such that

+0co
sup / IGc(x +iy) = Ge(+00)luldy < (M|ul))? forany u € U,
x> -0
where M > 0 is a constant.

2. The output operator of an input-normal realization of G, is bounded if and only if
there is M > 0 such that

+o00
sup / NGox +iy) = Ge(+00)liPdy < (Mv])? forany v € Y.

x>0 J—00
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3. If

+00
sup f G (x + iy) = Ge(+00)]l*dy < o0,
x>0 J—c0

then the input operator of any output-normal realization and the output operator of any input-
normal realization are bounded. Ifin addition the Hankel operator Hg, has closed range, then
both the input and the output operators of any output-normal, input-normal, and parbalanced
realizations are bounded.

Proof. 1. It suffices to prove the result for the restricted shift realization of G. Let B. be
the input operator of the restricted shift realization (see Theorem 5.7).

Assume

+00
sup [ MG (s + i) = Getrooul’dy < (MIulD? forany <.

This condition implies that [G, — G (+00)]u € X forany u € U because as in the proof of
Corollary 5.8 we have in L2({R) norm

Gc(s) — Gc(n) . n
————"u = lim H, .
1—s/n “E s G‘n+su

[G: — Gc(+00)ju = lim
n—=>o0

Hence (B.u)(s) = J—;—;[GC(S) — G (+00)ju (u € U)and ||Beu|l < J—é—;Mllull-
Conversely, if B, is bounded, then there is M > 0 such that [|B.u| < Mlujl. Also
B.u € X forany u € U. By Corollary 5.8

1
J2n

(Bcu)(s) = [Gc(s) — Ge(+00)]u (u € U).

Thus we have
oo . 2 1 2 1o a2
sup MGe(x + iy) — G(+00)]ul|"dy = -Z-—IIBcuII < —M|ufl”.
x>0 J—00 4 2

2. Similarly we only need to prove the result for the *_restricted shift realization. Since
the *-restricted shift realization of G. is the dual of the restricted shift realization of G, the
result follows from 1.

3. First note that

+00
sup f NG(x +iy) — Ge(+oo)]IPdy < 00

x>0 J—~00
if and only if
<400 . .
sup / 1G(x +iy) — Ge(+o0)|2dy < .
x>0 J =00
Clearly these conditions imply
+00
sup f I[G(x +iy) — Gu(Foo)lulPdy < (Mlul)? forany u € U
x> -0
and

+o00
sup / 1Ge(x + iy) — Ge(+00)lul*dy < (M||u]))* forany u € U

x>0 J—00
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for some constants M < coand M < co. Hence by 1. and 2. the input operator of any output-
normal realization and the output operator of any input-normal realization are bounded. If in
addition Hg, has closed range, then by Proposition 6.2 all reachable and observable admissible
realizations of G, are equivalent. Thus all have bounded input and output operators. 1]

The following corollary gives a simple condition for the input operator of an output-normal
realization and the output operator of an input-normal realization to be bounded.

COROLLARY 8.5. Let G, € Hpy, y)(RH P) be analytic at co. Then the input operator of
the output-normal realizations and the output operator of the input-normal realizations are
bounded.

Proof. Let F;(2) = Gc(i%i) — G.(c0). The analyticity of G at oc means that F,; and
£42 are both analytic at —1. Hence £2 € H?, , (D) and forany u € U,

1+z 14z
Fy(z)
) < Miudy,
< lnm
where M = sup, |l %zzl llLw.y)- Applying the unitary transformation V in Proposition 3.3,
we have .
F4(2)
I(Ge = Ge(ooNull y2rupy = 2V/7 IV T+2 ull o) < 2v/TMlully (u € V).

Since the analyticity of G. at oo implies the analyticity of G. at 0o, we have similarly

1(Ge = Ge(0NYnzrupy < 2V/TMIylly (v €Y).

By Proposition 8.4 it follows that the input operator of the restricted shift realization and
the output operator of the *-restricted shift realization are bounded. This proves the corol-
lary. 0

8.3. Boundedness of C, in output-normal realization. Now we consider the bounded-
ness of the input operator of the *-restricted shift realization and the output operator of the
restricted shift realization. We present here results for noncyclic scalar transfer functions.

It is well known that a scalar inner function g; € H* (D) admits a factorization of the
form g4(z) = AB;(2)S4(z), where A is a complex number, |A| = 1;

By(z) = 1°—°I &, Qp—2

Il 1-a,z
is a Blaschke product, and
2n if
e’ +z
S4(z) = exp [—f 7 d#d(@]
o €"—2

is a singular inner function with 14 a finite singular positive measure on the unit circle 3D (see
[17]). Here we take I%"T to be 1 when o, = 0. Ahern and Clark [1] have proved the following
theorem.

THEOREM 8.6. Set X = H*(D) © q, H?(D) and denote the compressed shift operator on
X by S(q4) := Px,z|x,. Then the following statements are equivalent.

1. For every x € X the nontangential limit of x(z) exists at —1.

2. Px1 € range(I + S(gq4)).

3. For the function g4

O ] - |ay? /‘2” dug(8)
Z——-<OO and —_— < OO
11+ o2 o I11+¢€¥|

n=1
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Furthermore, if one of these conditions hold, then there exists a functionk € X such that the
nontangential limit of any x € X at -1 is

x(—1 = hlm 5 x(2) = (x, k). 1]

z=>-1, 2€

nontangential

This theorem can be cast into left invariant spaces on the right half plane. Let g be an
inner function in H®(RH P). Then g, has the form g.(s) = ABc(s)S(s), where B, is a
Blaschke product on the right half plane,

11— B2l s — B

Bc = =,
©=117"p 775,

and

. .
S.(s) = e * exp [— f 2 +.l duc(y)]
—0 Yy t+is

is a singular inner function with 1. a finite singular positive measure on iR and a > 0 (see
[17]). Here 'i%fé'- istakentobe 1if 8, = 1. Let V be the transformation defined in Proposition
3.3. Applying VioX 4 in Theorem 8.6, we obtain the following theorem.
THEOREM 8.7. Set X = H*(RHP) © g.H*(RHP) and D = {Px{~ : h € X}. Then
the following statements are equivalent.
1. For every f € X, the limit
lim sf(s)

s=00, Re(s)>0
Re(s)>els|

exists for any € > 0.
2. Pxp; € D.
3. For the inner function q.,

) )
a=20, ZReﬂ,, <00, and f Vvi+ yzdﬂc(}’) < Q.
n=1 e

Moreover, if one of the statements holds, then there exists k € X such that

S*m»o Sf(S) = (f’ k) (f (S X)
Re(s)>¢ls|

Proof. Let g4(2) = qc(-ll'Ti) (z € D). Then g, admits factorization as in Theorem 8.6:

ga(z) = AB4(2)S4(z)- It can be easily seen that the Blaschke products B,(z) and B.(z) can
be related by B8, = 1-ay. ¢hat the functions S.(s) and S;(z) are related by

14a,°

1—s
¢ = HP),
S:(s) Sd(l+s) (s € RHP)
with @ = pg({—1}); and that the measure . is the measure (4 transformed by the bilinear
transformation
1-z
s = — : ID\{-1} = iR.
1+2 \{-1}

i —ja? o
Hence the condition 3o, 1225 < 0o is equivalent to
n

(e
Z Ref, < 00,
n=1
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and the condition (" 224G < 00 is equivalent to

o0
a=0, / V1+y2du(y) < oc.
-0

This shows that condition 3 of Theorem 8.6 and condition 3 of Theorem 8.7 are equivalent.
Let V be the unitary transformation defined in Proposition 3.3. Then V(H?2(D)

©9.H*(D))=H*(RHP) S q.H*(RHP), V (range(I + S(g4))) = {Px T~ :h € H(RHP)

©q.H*(RHP)} = D, and

1

1+s

Therefore condition 2 of Theorem 8.6 and condition 2 of Theorem 8.7 are equivalent.
Finally, for x € H?(D) © g, H*(D), wehave f := Vx € HY(RHP)&q.H*(RH P) and

lim  x(z):= lm x@=+m lim sf(s)

2€D,z -1 500, Re(s)>0

nontangential (=tzl)>elz+1] Re(s)>els!

Py2(RH PYog. HX(RH P) = V7V Prmyeq a1

for any € > 0. This completes the proof. 0

If in the theorem we replace g. by G.(s) = ¢.(5) and H3(RHP) © q.H*(RHP) by
H*(RHP) © §_H*(RH P), then we have the results to be true for the space H2(RH P) ©
§.H*(RH P) while condition 3 of Theorem 8.7 remains unchanged in terms of a, 8,’s and
the singular measure p..

These results can be immediately used to show the boundedness of the output operators
of output-normal realizations and the input operators of input-normal realizations.

COROLLARY 8.8. Let G, € H™(RH P) be a scalar noncyclic transfer function admitting
the factorization G, = q. f*, where q. € H®(RH P) isinnerandq. and f € H®(RH P) are
weakly coprime. Assume q. has decomposition as in Theorem 8.7, andset X = H*(RHP) ©
gcH?(RH P). Then the following statements are equivalent:

1. The output operator C, of the restricted shift realization of G, is bounded.

2. The input operator B, . of the *-restricted shift realization of G. is bounded.

3. One of the statements in Theorem 8.7 is true.

Hence the output operator of every output-normal realization and the input operator of
every input-normal realization are bounded if and only if one of the statements in Theorem
8.7 is true.

If in addition the Hankel operator Hg, has closed range, then both the input operator
and the output operator of every reachable and observable admissible realization of G, are
bounded.

Proof. First assume one and hence all of the statements in Theorem 8.7 to be true. We
prove 1. and 2.

By Theorem 5.7, the output operator of the shift realization of G, is given by

C.:DIC)=DAN+UT-A'BUCX, — VY,
X \/Z_nlim rer rx(r),

r—oo

where X, = H*(RH P) © q.H*(RH P). Now by Theorem 8.7 there exists k € X, such that
ligal rx(r) ={x,k) (xe€X.).

=00

Hence

Cx = x/fr-l’lgl rx(r) = v/2m (x, k)

=00

for any x € D(C,), and it follows that C, is bounded: ||C.| < V27 ||k||.
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To show the boundedness of the input operator B, , of the *-restricted shift realization we
use the expression of B, , as given in Theorem 5.9: The state space is X, = H 2(RHP)©
g.H*(RHP) and

B..: u - D(A:,*)(I)’
u = B.(u),
1 1 N "
[Bea(W](x) = E (-].-I-_Su’ a- Ac,*)x> , X € D(Ac.*),

where the operator A, , has domain D(A. ) = {ch‘_ﬁ; : heX.,}. Here U = C. Since
by Theorem 8.7 we have Py , T—i-_s € D(A.,.), it follows that

1 1
[Bex()](x) = J—(1+ u, (1- Z,*)X>

1 1
= — Py ——u, (1-A*
m( Xea 1 +Su ( c‘*)x>

1 1
= —((1—-Ac)Px,,—u, x).
,\/2—][ (( C,*) X,,. 1 +Su 'x>

This shows that B, ,(u) € X, and B, ,(u) = ‘/;27(1 —Ac)Px,, '1'-1:?" foru € C. Hence B, is
bounded: ||B.|| < le——;ll(f - Ac,*)Px,,.ﬁ"Hz(RHP)-

Now we assume 2. and prove that this implies 3. As in the above, X, , = H*(RHP)®S
G.H*(RHP) and

1 1
[Be+))(x) = T <ch. T3 1- AZ_*)x> (x € D(AZ D)

where D(Ac.) = {Px,, 1% : h € Xc.). As B, is assumed to be bounded, for any u € C
there exists k(u) € X, , such that

[Bex(@)1(x) = (k(u), x) (x € D(AZ ).

Hence (k(u), x) = (PX“ 1+s”’ (1— A7 ,)x) forany x € D(AZ ). This shows that

h
PX“T— eD((1-A;))=D(1-Ac) =D(Acy) = {Px"‘ﬁ-—s the Xc,*} .
Thus statement 2 in Theorem 8.7 is true if the space X isreplaced by X . and the inner function
g is replaced by .. By the remark following Theorem 8.7, we know that the statements in
Theorem 8.7 are true for X and q..

Finally, we show that 1. implies 3. Let (A., Bc, C., D.) be the restricted shift realization
of G. = q.f* and assume that C, is bounded. Denote by (A, B, C., D) the dual system
of (A;, B., C., D). Then (A, B, C., D.) is the *-restricted shift realization of G.=§. f
with state space X = H*(RHP) © q.H*(RH P), and

EC=C:.

Hence B, is bounded. By the preceding proof, statement 2 in Theorem 8.7 is true for the space
X and the inner function g.. This completes the proof. O
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8.4. Boundedness of B., C. for parbalanced realizations. To conclude this section
we show some results on the boundedness of the input and output operators of parbalanced
realizations.

PROPOSITION 8.9. Ifthe output operator of an output-normal realization of Gc € TLC vy
is bounded, then the output operator of a parbalanced realization of G is bounded.

Proof. Consider the discrete-time transfer function G4(z) = Gc(il—}). Let
(Ados Bdo, Cao» Dao) be the discrete-time restricted shift realization of G4 with state space X
and (Ao, Beor Ceor Deo) = T ((Ado, Bdos Caos Ddo)) be the continuous-time restricted shift
realization of G, with the same state space X. Denote their observability operators by Qa0
and O,,, respectively. By Theorem 3.4 we have

VOuox = LOHx, x € X,

where V : HZ(D) — HZ(RH P) is the unitary transformation as defined in Proposition 3.3,
and £ is the Laplace transform.

In [30] (see also [24]) it has been shown that there is a parbalanced realization
(Aap, Bap, Cap, Dap) of G4 with state space X that satisfies the following:

WA, = AWV
and
Ou = WY,

where W = Hgu Héx |x, and Oy, is the observability operator of (Ags, Bap, Cab» Dav)-

Let (Acp, Bep, Ceby Do) = T ((Agp, Bap, Cap» D)), where T is the transformation de-
fined in Theorem 3.1. Since D(A.,) = range(Agp + I) and D(A.,) = range(Aq, + I), we
have, by the equality W'/4A4, = AzoW'*, that W/4D(As) & D(Aco). By Theorem 34,
(Acs, Bep, Con, Dep) is a parbalanced realization of G, and for the observability operator O
of (Acb, By, Cess ch) we have

LO4x = VOpx = VWY4, x e X.
Notice that in fact by Theorem 5.1 we have Oy = Ix. Thus
LOpx = VO WYAx = LOWY4x, x € X.

Since L is unitary, this shows that O,x = O, W"x for x € X. By the definition of O, and
O, we have

Copeb?x = CooetdW'x, x € D(Aw).

Note that C., is a bounded operator from (D(Ac), || - lla,) t0 Y (see Definition 2.1) and C,
has the analogous property. For x € D(A) the function !4+ x is continuous in ¢ in the graph
norm || - || 4, Similarly, since W'/4x € D(Ac,) for x € D(Acs), e' A W!/4x is continuous in
¢ in the graph norm || - || 4,,. Therefore both C.pe'4x and C e A=W/ 4x are continuous in ?
in the norm of Y. Taking r = 0, we have

Ceox = CcoW'*x, x € D(Aw)-
Since by assumption C,, and hence C.,W'/* are bounded, the operator
Cela, : D(Awp) > Y

is bounded, where D(A ) is equipped with the norm of X. As D(Ay) isdense in X, C,p can
be boundedly extended to X.
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To complete the proof we just note that the restricted shift realization is unitarily equiv-
alent to any output-normal realization of G, and that all parbalanced realizations of G are
equivalent. g

COROLLARY 8.10. If the input operator of an input-normal realization of G, € TLC vy
is bounded, then the input operator of a parbalanced realization of G is bounded.

Proof. Let (A, B.,C.. D,) be the *-restricted shift realization of G. and let
(Ao, Bo, Co, D,) be its dual realization. Then (A, Bo, C,, D,) is the restricted shift real-
ization of G.. By the assumption, the operator B, is bounded. Hence so is the operator C,.
By Proposition 8.9 the output operator of a parbalanced realization of G, is bounded. Consider
the dual system (A, B, C, D) of this parbalanced realization of G.. We have B to be bounded.
Notice that the dual system of a parbalanced realization of G, is a parbalanced realization of
G.. Therefore the input operator of any parbalanced realization of G, is bounded. o

COROLLARY 8.11. Let G, be in TLCU-Y. Assume that the Hankel operator Hg, has
closed range. Then the input (output) operator of a parbalanced realization of G is bounded
if and only if there is a constant M > 0 such that

+00
sup f I[G(x +iy) — Ge(+00)luli?dy < (MIul)? forany u € U,

x>0 J -0

+00
(sup f [Ge(x + iy) — Ge(+o0)lwlPdy < (M||v]l)* forany v & Y) -

x>0 J—00

Proof. Since the Hankel operator Hg, has closed range, by Proposition 6.2 all input-
normal, output-normal, and parbalanced realizations of G are equivalent. The corollary then
follows from Proposition 8.4. |

9. Examples.

Example 1: Rational transfer function. Let g(s) be a scalar-valued rational proper
transfer function in H®(RH P), i.e., g(s) has all its poles in the open left half plane.
Note that g(s) has, up to a unitary scalar, a unique factorization as

g(s) = q(s) f(—s),

where g(s) is an inner function, ie., a Blaschke product with poles in LHP, and f(s) is

a rational function in H*®(RH P), i.e., a proper rational function with polesin LHP. The

functions g(s) and f (s) are strongly coprime, which is for rational functions equivalent to both

functions not having common zeros in the extended RHP, ie., {s € C| Re(s) = 0} U {oc}.
The Blaschke product g is determined by the poles of g. For example if

BN Gt (e 22
8 = G+ NG +9)
then the Blaschke product is given by

) = G-DE-Hs -3
1) = TG+ +95)

and
(s+1D(s—2)

G+ +HE+5)
It follows from the results in §6 that the state space of the restricted and *_restricted shift
realization of the transfer function g is given by

X = (gH*(RHP))*.

f(s) =
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Note that by Kronecker’s theorem (see, e.g., [22]) X is a finite-dimensional space with di-
mension equal to the number of zeros or poles (counted with multiplicities) of the Blaschke
product. From the construction it is clear that the Blaschke product is completely determined
by the poles of the transfer function. Hence we have recovered the well-known result that
the dimension of a minimal state-space realization equals the number of poles of the transfer
function.

Example 2: Delay system with strictly proper rational part. In this example we
consider single-input single-output delay systems. We continue with the notation in the above
example and let the transfer function have the form gi(s) = e *°g(s) with « > 0. Let
p(s) = e~*q(s). Clearly p is in H®(RH P) and inner. Later we will show that in fact p
and f are weakly coprime. For now assume that this is true. Thus by Theorem 4.8 g, is
strictly noncyclic, and by Proposition 5.11 the state space X of the restricted shift realization
(A., B, C., D.) has the form

X = HX(RHP) © pH*(RHP).
The domain of A, is D(A;) = {¥J=20)| x € X}. Hence for h € D(A.) we will have
h(s) = ¥9=X1 for some x € X, lim,er r—»+00 PA(r) = x(1) and

(A.h)(s) = sh(s) — reeri'P->1+oo rh(r) = sh(s) — x(1).

Note that g satisfies the condition in Proposition 8.4. So the operator B, is defined as
1 1
(Bou)(s) = —=l[g1(s) — g1(4+0)Ju = —=g1(s)u, ueC,

and B, is bounded. Hence (I — A.)~!BC < D(A.) and
D(C.) = D(Ac))+ (I — A)"'BU = D(A.).
We have, forh € D(A,),
Cch=+2n _lim rh().

reR,r—+oo
Note that because o # 0, by Corollary 8.8 C, is unbounded.
The operator D, is D, = g1(+00) = 0.
We can directly verify that this is a realization of ;. Let £ € RH P. An easy calculation
will show that for h € D(A,)

h(s) — h(§)
E-s
(We remark here that this formula is true in general, not just for this particular example.) Then

1 gi(s) —g1(®)
J2r E-s

(E1 - A)T'R)(s) =

(&1 — A" Bau)(s) = 7%(51 —A) g =
Hence

Cetl - A Bau= _lim B8O _ g

reR, r—+oo & -
This realization is exponentially stable by Theorem 7.11 since g, is clearly analytic on
Re(s) > —=3. It also follows from Theorem 7.11 that the degree of stability is —3 = max{s :
s is a pole of g}. Consequently the parbalanced realization will also be exponentially stable
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with the same degree of stability. Notice that g; is continuous in the extended i/ R. Hence the
Hankel operator H,, is compact. Therefore by Theorem 6.1 there exists a balanced realization.

To show that p and f are weakly coprime, consider the closed linear span S :=
pH*(RHP) v fH*(RHP). We need to show that S = H?(RHP). The space S is ob-
viously a (right) invariant subspace of H>(R H P). Hence by Beurling’s theorem [22] there is
an inner function © € H*(RH P) such that

S=@H*RHP).

Hence pH*(RHP) C ©H*(RHP) and fHX(RHP) C OH*(RHP). Let qi(s) = 3
(which is the inner part of the inner-outer factorization of f; see [22, p. 11]). Then

qiH*(RHP) = fHX(RHP).

So by [22, Cor. 5, p. 13] we must have that p/© and g;/© are both inner functions. Note
that ©(2) # 0 since otherwise h(2) = O for any h € pH*(RHP) € ® H*(RH P), and this
is certainly not true. Thus the inner function g;(s)/ ©(s) has a zero at 2. Hence the function
246 will still be in H°(RHP). Thatis, 1/® € H®(RHP). Hence H*(RHP) =
©(1/®)H*(RHP) C ®©H*(RHP) = S.

Note that exactly the same argument in this example will apply for any transfer function
g1 = e~ * g(s), where g is a stable and strictly proper rational function and ¢ > 0. Also, ina
similar manner we can obtain the *-restricted shift realization which will have bounded output
operator and has the same stability properties as the restricted shift realization.

‘We suminarize these as follows.

PROPOSITION 9.1. If a scalar transfer function G has the form G(s) = ¢™*g(s), ¢ > 0,
where g is a stable and strictly proper rational function, then

1. G has a balanced realization;

2. all reachable output-normal realizations of G have bounded input operator and un-
bounded output operator, whereas all observable input-normal realizations have bounded
output operator and unbounded input operator;

3. all reachable and observable input- and output-normal realizations and all par-
balanced realizations are exponentially stable with growth bound equal to max{Re(s) : s
is a pole of G}. 0

Example 3: Delay system with not strictly proper rational part. When the rational
transfer function g in the previous example is not strictly proper, the resulting realizations will
be different: the input operator of the restricted shift realization is not necessarily bounded,
and it is not clear whether there is a balanced realization of g, because the Hankel operator H,
is not compact. A parbalanced realization, however, exists by Theorem 6.1. We first consider
the simplest case with g(s) = 1. This is a simple delay g;(s) = ¢~ (@ > 0). The state space
of the restricted shift realization is X = H? © ¢~ H?, which is the image of the Laplace
transform £ on L2([0, «]). Let (A, B., C., D.) be the restricted shift realization and let

(A4,B,C,D) = (L'A.L,L7'B., C.L, D).
We know that (see Theorem 5.7)
E€*x) = fE+Dlpa,  feL¥0,a)), x €[0,a],720,
where f(x 4+ )ljo,0) = f(t +x) ift + x € [0, o] and O otherwise. Thus
Af=f",  feD(@),
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with D(A) = {x € L%([0,a]) : x is absolutely continuous, x’ € L*([0, a]), x(a) = 0}. By
Theorem 5.7, for x € D(A})andu € C,

1 1
[B.())(x) = T (:[GC(S) = Gc(Dlu, (1- AZ)x>

= ;< ! s(e“" —e Mu, (1 - A:)x>

1 —as __ p,—«
= (c-‘el : u,ﬁ*‘(l—A;)[:c-lx>

= (" *ulo.a), L1 = ADLL X) 20,0

= (€' u, (1 — ANL'X) 2 (0.0

where &' ~ulig.q) = (J—;?C‘l%f:u) (¢) is ¢~%u for t € [0, ] and O otherwise. This

shows that for x € D(A*) S L%([0, a]),
[B@w))(x) = [£7'Beul(x) = [L*Bul(x) = [Bul(Lx) = (¢ ™*u, (1 — A")x)12(0.0)-
It can be shown that
D(A*) = {x € L*([0, «]) : x is absolutely continuous, x’ € L%([0, «]), x(0) = 0},
and A*x = —x’ forx € D(A*). Hence
[Ba)I(x) = (¢"%u, (1 = A*)x)2q0,ap = (€' U, X + X') 2(10,0)) = Ux(@).
Since for x € D(C,),
Cx = Vor l,ig rx(r),

r=>00

we have for x € D(C) < L2([0, a)),
Cx=C.Lx = Jz_nmg r(Lx)(r) = limx(A) = x(0).

r=>00 A>0
Finally, D, = g(+00) = 0.

This realization is, by Theorem 7.11, exponentially stable. In fact, the spectrum of ¢4 is
{0} (¢ > 0). The operators B and C are both unbounded.

Now consider the factorization e ™ = g f*, where g(s) = ¢™* and f(s) = 1. Clearly
this is a strongly coprime factorization. Therefore by Proposition 6.2 all reachable and ob-
servable realizations of ¢~*° are equivalent. This shows that all reachable and observable
realizations are exponentially stable and have unbounded input, output, and state propagation
operators.

As in the previous example, we can generalize this result.

PROPOSITION 9.2. If a scalar transfer function G has the form G(s) = e~ **g(s), where
g is a stable proper rational function and g(co) # 0, a > 0, then

1. all reachable and observable admissible realizations of G are equivalent;

2. if (A, B, C, D) is a reachable and observable admissible realization of G, then the
operators A, B, and C are all unbounded,

3. every reachable and observable admissible realization of G is exponentially stable
with growth bound equal to max{Re(s) : s is a pole of G}.



INFINITE-DIMENSIONAL SYSTEMS 809

Proof. Since g is a stable proper rational function, g has a factorization g = gf* such that
g and f are stable proper rational and strongly coprime (see Theorem 4.10 for the definition
of strong coprimeness). Hence

_inf_[lg@) + 1611 > 0.
Since g(o0) # 0, we must have that f(oo0) # 0. Therefore

_nf Tlg(s)e™| +1f ()] > 0.

This, by the Corona theorem (see [22, p. 66]), shows that ge~* and f are strongly coprime.
So by Theorem 4.10 the Hankel operator H has closed range and by Proposition 6.2 all
reachable and observable realizations of G are equivalent. Thus 1. is proven.

Since G is not analytic at infinity, by Theorem 8.2 the state propagation operator of
any reachable output-normal realization is unbounded. Note that in the factorization G =
(ge~*) f* the inner function does not satisfy condition 3 in Theorem 8.6 because now a # 0.
Therefore by Corollary 8.8 the output operator of the restricted shift realization and the input
operator of the *-restricted shift realization are unbounded. Thus 2. follows from 1.

Since G is strictly noncyclic and

inf{e : G(s) has analytic continuation on Re(s) > o}
= max{Re(s) : s is a pole of g}
<0,

by Theorem 7.11 all reachable output-normal realizations of G are exponentially stable with
growth bound max{Re(s) : s is a pole of g}. As equivalent systems have the same exponential
stability property and growth bound, 3. also follows from 1. 0

Example 4: Systems with infinite Blaschke product. In this example we consider
transfer functions of the form g(s) = R(s)B(s), where R(s) is a proper rational function in
H*®(RHP) and B(s) is an infinite Blaschke product also in H*°(RH P). We assume that
there is no pole-zero cancellation. That is, the zeros of R(s) (B(s)) do not coincide with any
of the poles of B(s) (respectively, R(s)). We point out that B has the form

=Bl s =B
so=11"=g 4

where ‘i%gé—l is assumed to be 1 if B, = 1. The zeros B,(n = 1,2,...) of B satisfy the
condition (see {17])
i Re(Bn) _ o
1+ 1Ba1?

n=1

Note that either infinity is an accumulation point of the zeros (and the poles) of B, or else,
the zeros (and the poles) of B are bounded and have accumulation points which are on the
imaginary line.
First we consider the case that R(s) is not strictly proper and the zeros of R(s) do not
coincide with any of the accumulation points of the poles of B(s).
Write R(s) = n(s)/d(s), where n(s) and d(s) are coprime polynomials. Then we have
a*(s) n(s)

2 23y

gls) =
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where d*(s) = d(—5). Setg(s) = %’)—)B(s) and f(s) = %‘-}. We have g = gf*. The inner
function g (s) is again a Blaschke productand f (s) isin H*° (R H P) and rational. Furthermore,
from the assumption on R(s) and B(s) it follows that the zeros of f(s) do not coincide with
any of the zeros or accumulation points of the zeros of g(s). Thus we must have

infeerrpl £ ()| + Ig ()| > 0.

This shows that g has a strongly coprime Douglas-Shapiro-Shields factorization. Hence the
Hankel operator H, has closed range. Thus by Proposition 6.2 all reachable and observable
admissible realizations of g are equivalent. Therefore all these realizations are asymptotically
stable. They are exponentially stable if and only if there exists @ > 0 such that g is analytic
on Re(s) > —ca. Since R(s) is rational and in H*(RH P), we know that g is analytic on
Re(s) > —a for some o > O if and only if there is A > O such that B(s) is analytic on
Re(s) > —\. Note that the last condition on B(s) is equivalent to that there is A > 0 such
that Re(B8,) > A,n=1,2,....

By Corollary 8.8 we know that the input and output operators of any reachable and
observable admissible realization of g are bounded if and only if 3 Re(8,) < oc.

The second case is that R(s) is strictly proper, no zero of R(s) coincides with any accu-
mulation point of the poles of B(s), and infinity is not an accumulation point of the poles of
B(s). In this case B is analytic at infinity and the poles of B have accumulation points on the
imaginary line. As in the first case, g has a strongly coprime factorization and hence H, has
closed range. Thus all reachable and observable admissible realizations of g are equivalent and
asymptotically stable. However, no reachable and observable realization of g is exponentially
stable, since the poles of B have accumulation points on the imaginary line and hence g is not
analytic on Re(s) > —« for any o > 0.

Since in this case we have g € H*(RH P) by Proposition 8.4, the input and output
operators of any reachable and observable realization of g are bounded.

The third case is that R(s) is strictly proper, no zero of R(s) coincides with any accumu-
lation point of the poles of B(s), and infinity is an accumulation point of the poles of B(s).
In this case we can show as was done in Example 2 that the factorization of g in the first
case is a weakly coprime factorization. Hence g is strictly noncyclic. Thus all input-normal,
output-normal, and parbalanced realizations of g are asymptotically stable. As in the first
case, an input-normal, an output-normal, or a parbalanced realization of g is exponentially
stable if and only if there exists A > 0 such that Re(8,) > A, (n =1,2,...).

From Corollary 8.8 it follows that the input operator of an input-normal realization or the
output operator of an output-normal realization is bounded if and only if 3 Re(B,) < oo.
Thus by Proposition 8.9 and Corollary 8.10 the input operator and output operator of any
parbalanced realization of g are bounded if Y~ Re(8,) < o0.

Since clearly g € H*(RH P), by Proposition 8.4 the input operator of an output-normal
realization and the output operator of an input-normal realization of g are bounded. If in addi-
tion no accumulation point of the poles of B(s) is on the imaginary line, then g is continuous
in the extended imaginary line and therefore g has a balanced realization.

We observe that in this case an output-normal realization cannot have a bounded out-
put operator and still be exponentially stable. An analogous fact holds for an input-normal
realization and its input operator.

The fourth and final case is that at least one of the zeros of R(s) coincides with an
accumulation point of the poles of B(s). Note that this accumulation point must be on the
imaginary line.

As in the previous case, the factorization of g in the first case is a weakly coprime factor-
ization. Hence g is strictly noncyclic. Thus all input-normal, output-normal, and parbalanced
realizations of g are asymptotically stable. They are not exponentially stable because g is not
analytic on Re(s) > —a forany « > 0.
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Again by Corollary 8.8 the input operator of an input-normal realization or the output
operator of an output-normal realization is bounded if and only if 3" Re(B,) < oo. Thus by
Proposition 8.9 and Corollary 8.10 the input operator and output operator of any parbalanced
realization of g are bounded if )  Re(B,) < 00.

If every accumulation point of the poles of B is a zero of R, then g is continuous on the
extended imaginary line. Hence g has a balanced realization.

We now summarize the results as follows.

PROPOSITION 9.3. Consider g(s) = R(s)B(s), where R(s) is a proper rational function
and B(s) is an infinite Blaschke product, both in H®(RH P), and B and R have no pole-zero
cancellation.

1. If R(s) is not strictly proper and no zero of R(s) coincides with any accumulation
point of the poles of B(s), then

(@) all reachable and observable admissible realizations of g are equivalent,

(b) all reachable and observable admissible realizations of g are asymptotically stable;

(¢) all reachable and observable admissible realizations of g are exponentially stable
if and only if there exists o > O such that Re(B,) > o, n = 1,2,..., where
B., n=1,2,..., are the zeros of B(s);

(d) all reachable and observable admissible realizations of g have bounded input and
output operators if and only if 3" Re(B,) < 0.

2. If R(s) is strictly proper, no zero of R(s) coincides with any accumulation point of the
poles of B(s), and infinity is not an accumulation point of the poles of B(s), then

(a) all reachable and observable admissible realizations of g are equivalent,

(b) all reachable and observable admissible realizations of g are asymptotically stable;

(c) no reachable and observable admissible realization of g is exponentially stable;

(d) all reachable and observable admissible realizations of g have bounded input and
output operators.

3. If R(s) is strictly proper, no zero of R(s) coincides with any accumulation point of the
poles of B(s), and infinity is an accumulation point of the poles of B(s), then

(@) all input-normal, output-normal, and parbalanced realizations of g are asymptoti-
cally stable;

(®) allinput-normal, output-normal, and parbalanced realizations of g are exponentially
stable if and only if there exists o > O such that Re(B,) > (n=1,2,...);

(c) the input operator of an input-normal realization or the output operator of an output-
normal realization of g is bounded if and only if S Re(B,) < oo. The input
operator and output operator of any parbalanced realization of g are bounded if
Z Re(f,) <00;

(d) the input operator of an output-normal realization and the output operator an input-
normal realization of g are bounded.

If, in addition, no accumulation point of the poles of B is on the imaginary line, then g
has a balanced realization.

4. If at least one of the zeros of R coincides with an accumulation point of the poles of
B, then

(a) all input-normal, output-normal, and parbalanced realizations of g are asymptoti-
cally stable;

(b) no input-normal, output-normal, or parbalanced realization of g is exponentially
stable;

(c) the input operator of an input-normal realization or the output operator of an output-
normal realization of g is bounded if and only if 3" Re(Bn) < oo. The input
operator and output operator of any parbalanced realization of g are bounded if

3" Re(By) < 0.
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If every accumulation point of the poles of B is a zero of R, then g has a balanced

realization.
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