nger

lberg
ork
ona
rest
Kong

Clara
Yore

Identification, Adaptation,
Learning

The Science of Learning Models from Data

Edited by

Sergio Bittanti

Politecnico di Milano
Piazza Leonardo da Vinci 32
1-20133 Milano, Italy

Giorgio Picci

Universita di Padova
Via Gradenigo 6/A
1-35131 Padova, Italy

Springer
Published in cooperation with NATO Scientific Affairs Division




Proceedings of the NATO Advanced Study Institute "From Identification
to Learning", held in Como, Italy, August 22 - September 2, 1994

Library of Congress Cataloging—in-Publication Data

Identification, adaptaticn, learning : the science of learning models
from data / edited by Sergio Bittanti, Glorgio Picci.
p. cm. —— (NATO ASI series. Series F, Computer and systems
sciences ; vol. 153.)

"Publishad in cooperation with NATO Scientific Affairs Division.

"Proceedings of the NATO Advanced Study Institute ‘From
Identification to Learning’', held in Como, Italy, August
22-September 2, 1994"--T.p. verso.

Includes bibliographical references.

ISBN 3-540-61080-4 (hardcover : alk. paper)

1. System identiffication--Congresses. 2. Linear models
(Statistics)--Congresses. 3. Learning models (Stochastic
processes)—-Congresses. I. Bittanti, Sergfo. II. Picci, Giorgia,
1942- . III. North Atlantic Treaty Organization. Scientific
Affairs Division. IV. NATO Advanced Study Institute 'From
Identification to Learning' (1994 : Como, Italy) V. Series: NATO
ASI series. Series F, Computer and systems sciences ; no. 153.
QA402.1327 1996
003 .74'0111~-dc20 96-14783

CIP

CR Subject Classification (1991): 1.5-6, G.1, G.3,1.2, J.2
ISBN 3-540-61080-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other way,and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German Copyright Law of September 9,1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under
the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1996
Printed in Germany

Typesetting: Camera-ready by authors
Printed on acid-free paper
SPIN: 10486185 45/3142 -543210

Dedicated to the men
E.J. Hannan (1921

Photograph by Pet
taken at the farewell to Geof V
Princeton Universit;
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Richardson, TX75083, USA
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1. Introduction

Canonical forms for linear systems are of importance since they provide a
unique state space represéntation of linear systems. They therefore play a
major role in system identification where a unique parametrization of the
systems in the model set is essential to avoid identifiability problems. Various
types of canonical forms for linear systems ‘have been introduced and studied
(see e.g. [31], (8], [13], [9]). Most of these canonical forms for multi-variable
systems are generalizations of the observer or controller canonical form for
single-input single-output systems. The purpose of this paper is to review
canonical forms that are based on balanced realizations.

The usefulness of a canonical form depends on its properties. One of the
standard canonical forms, the controller canonical form, is of particular sig-
nificance since the parameters of the canonical form have an immediate inter-
pretation as the coefficients of the transfer function. Moreover, this canonical
form permits a straightforward proof of the pole-shifting theorem. There are,
however, drawbacks of the controller canonical form especially concerning
the resulting parametrization of linear systems. The set of parameters in the
controller canonical form that lead to a minimal system is very complicated.
This makes it difficult to use this canonical form in cases where it is im-
portant to have a geometrically well-behaved parameter space, e.g. in some
optimization tasks. One of the main advantages of the balanced canonical
forms that are discussed here, is that the parameter space has some desirable
geometric properties. This is at the expense that even for single input single
output systems discrete structural parameters have to be introduced.

The results presented in this paper extend the previous results ([21), [28],
[26]) also to the case of systems with coefficients in the complex field C. In
the multivariable case we use a modification due to Hanzon ([10]) of the
previously published canonical forms for systems with identical singular val-
ues. The approach to the proofs of the canonical form for minimal systems,
bounded real systems and positive real systems is also new and based on the
bijections that were introduced in ([27)). The objective of this paper is to
present these results in a comprehensive form and to derive them in a unified

* Dedicated to the memory of Ted Hannan.
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way. Because of this tutorial nature of the presentation proofs are given of
all essential results even if the proofs have been published already elsewher0

For each of the classes of transfer functions which we consider we wil} no:;'
define a specific type of balanced realization. To simplify the presentation wi
introdl{ce the following notation. The set of all p-dimensional output and mre
dimensional input minimal continuous-time systems of McMillan degree n is
denoted by LL™. We call a continuous-time system (A4, B, C, D) stable if all
the eigenvalues of A are in the open left half plane. The subset of LP™ of all
stable systems is denoted by SE™. The subsets of S2'™ of inner syst?ems and
bounded real systems are denoted by I2™ and BE™. A system (4, B,C, D) i
Sh™ with transfer function G is called innerif (G(s))*G(s) = I f’or :all ,s € Cn
It is called bounded-real if I — (G(iw))* + G(iw) > 0 for all w € R U {:i:oo}'
If p = m, then P7* stands for the subset of ST»™ of positive real systems A
systgm (A, B,C, D) in S™™ with transfer function G is called positive-reél if
(G(iw))*+G(iw) > 0 for all w € RU{+o00}. In this paper we will study systems
with coefficients in the real field R and in the complex field C. If a statement
is valid for both situations we will use the symbol K to denote either R or C
One of our aims is to study canonical forms for these classes of systems 11;
terms of balanced realizations. Two systems (4;, B;,C;, D;) € LP™ i =12
are called equivalent if there exists a nonsingular matrix T" € KI"Q" ;uch t},la‘;
(Al, By, Cy, Dl) = (TAzT_I,TBg, C,T, Dz)

Definition 1.1. A canonical form for system equivalence on a subset A C
LP™ 45 o map -
I': A— A,

such that

1. I'(a) ~a for alla € A.
2. ifa,b€ A, and a ~ b then I'(a) = I'(b).

We also refer to I'(a) as the canonical form of a € A.

We now introduce the different types of balancing. The principle behind
the definition of the different types of balancing is that associated with each
class of systems there is a natural pair of Riccati or Lyapunov equations.
A system is then called balanced if specified solutions of each of the two
equations are identical and diagonal.

Definition 1.2. 1. (LQG-balancing) The system (A4, B,C, D) € LE™ is
called LQG-balanced if the stabilizing solutions Y and Z to the control
and filter algebraic Riccati equations,

0=A}Y+YAL -YBR'B*Y +C*S"!C,
0=ALZ + ZA% - ZC*S~'CZ + BR-'B*,
where A := A~ BR™'D*C, R=1+D*D, S = I+ DD*, are such that
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Y = Z = diag(01,02,...,0n) == XL,

with o1 > 09 > -+ > on > 0. The matriz X is called the LQG-
grammian of the system. The positive numbers 01,09, ...,0y, are called
the LQG-singular values of the system.

(Lyapunov-balancing) The system (A,B,C,D) € Sh™ is called
Lyapunov-balanced if the positive definite solutions Y and Z to the Lya-

punov equations,
0=AZ + ZA* + BB*,

0=A"Y +YA+C*C,

are such that
Y=2Z2= diag(al,ag, e ,O'n) = Zs,

with 01 > 09 > -+ > gn > 0. The matrizc X'g is called the Lyapunov-
grammian of the system. The positive numbers o1,03,...,0, are called
the Lyapunov-singular values of the system.

. (Bounded-real-balancing) The system (A, B,C,D) € BE'™ is called

bounded-real-balanced if the stabilizing solutions Y and Z to the control
and filter bounded-real Riccati equations,

0= ALY +YAp + YBR™1B'Y + C*S™1C,
0=ApZ+ ZAL +2ZC*S™'CZ + BR™'B*,
where Ag := A+ BR™'D*C, R=1-D*D, S =I- DD*, are such that
Y = Z = diag(01,02,...,0,) = Xp,

with o1 > 09 > --+ > 0 > 0. The matriz Zg is called the bounded-real-
grammian of the system. The positive numbers 01,03,...,0y, are called
the bounded-real-singular values of the system.

. (Positive-real-balancing) The system (A,B,C,D) € P;* is called

positive-real-balanced if the stabilizing solutions Y and Z to the control
and filter positive-real Riccati equations, :

0=A}Y +YAp +YBR™'B*Y + C*R™!C,

0=ApZ+ ZA%+ ZC*R™'CZ + BR™'B*,
where Ap := A — BR"‘C, R = D + D*, are such that
Y = Z = diag(01,02,...,0,) = Xp,

with oy > g9 > --- 2 0n > 0. The matriz Xp is called the positive-real-
grammian of the system. The positive numbers ¢1,02,...,0n are called
the positive-real-singular values of the system.
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The definition of LQG balancing is due to Jonckheere and Silverman ([14))
and Verriest ([33]). The notion of Lyapunov balancing has been introduced by
the author to distinguish this type of balancing from others that were defined
later. Balancing for stable systems has been considered by many authors for
different purposes. Roberts and Mullis ({20]) studied these types of realiza-
tions because of their good sensitivity properties for the implementation of
filters. The good behavior of Lyapunovbalanced realizations from the point
of view jof model reduction has apparently first been recognized by Moore
([19]). For the definition of positive-real balancing see the work by Desai and
Pal (e-g [2]). Bounded-real balancing has been considered by Opdenacker and
Jonckheere ([29]).

The existence of these various types of balanced realizations is established
in the following theorem.

Theorem 1.1. Let G be a proper rational (stable, antistable, bounded-real,
positive-real) function. Then G has o LQG- (Lyapunov-, bounded-real-,
positive-real-) balanced realization.

If (A,B,C, D) is a LQG- (Lyapunov-, bounded-real-, positive-real-) bal-
anced realization of G with grammian T = diag(o1In,,021n,,...,0kly,),
01 > 02 > -+ > 0 > 0, then all other LQG- (Lyapunov-, bounded-real-,
positive-real-) balanced realizations over K are given by

(QAQ*,QB,CQ", D),

where Q is a constant unitary matriz over K with Q = diag(Q1,Q2, .. ., Qk),
with Q; € K"*™, § = 1,...,k. Moreover, all other LQG- (Lyapunov-,
bounded-real-, positive-real-) balanced realizations of G have the grammian

z.

Proof. Let (A, B,C, D) € L™ be a realization of the proper rational function
G.Let Y, Z be the stabilizing solutions to the control and filter algebraic Ric-
cati equations. Assume that T is a state space transformation of the system
(A,B,C, D). It is easily verified that the stabilizing solutions to the control
and filter algebraic Riccati equations of the system (TAT~!,TB,CT~!, D)
are given by TZT* and T~*YT . To show that there exists an invertible T
which simultaneously diagonalizes Z and Y, first note that since Z is positive
and hermitian there exists T} invertible, such that

ThZTT = 1.
Since Y is positive and hermitian there exists T, unitary such that
T Ty YT T = B2 =t diag(o2,02,. ..., 02),
for some 07 > g9 > --- > 0, > 0. Now with

T := 22,1,
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we have

TZT* = SV2TyT 2T T 52 = ST M2 = 52152 = 5
and

T-*yT-1 = E'I/ZT{*TI'*YTI—IT{lZ'I/z =yp-l2p2p-1/2 - 5

which shows the first statement.

Let (A;,By,C1,D) € LB™ be another LQG-balanced realization of G
with LQG-grammian X;. Then there exists a state space transformation T
such that

(A1, By,C1, D) = (TAT"',TB,CT™}, D)

and '
S5, =TET*=T*2T L.

Then £? = TX?T~!. Hence £? and X? are equivalent and since both are
diagonal with decreasing diagonal entries’ we have that X7 = X2. Since
5, = TXT* is diagonal we have that T is unitary. As 3T = TX? it is
easily verified that T has the required structure. If a state space transforma-
tion @ is given as in the statement of the Theorem it can be checked in a
straightforward way that the transformed system is again LQG-balanced.
The statements for the other types of balancing follow analogously. O

Since balanced realizations are not unique they do not define a canoni-
cal form. Much of this paper will be devoted to the introduction of further
constraints on balanced realizations to obtain canonical forms.

One of the interesting facts of the canonical forms that are presented here
is that they all have a very similar structure, called the balanced form. This
is irrespective of the class of systems for which they are derived. It will be
shown that balanced forms also provide parametrizations of the respective
classes of systems. For example, a canonical form will be derived for the
class of stable minimal systems S2"™ which is given in terms of the so-called
Lyapunov balanced form. Conversely, it will be shown that each system which
is in Lyapunov balanced form is necessarily minimal and stable. This provides
for a parametrization of the class S2™ using Lyapunov balanced realizations.
Analogous results will be derived for the classes L2™, BP™ and P;* using
the corresponding balanced systems.

In many areas of applications models of dynamic processes are given in
terms of high dimensional linear systems. Often however the dimension of the
model is too high for an efficient analysis of the system. If a high dimensional
model is obtained e.g. of an electrical circuit cost considerations may pro-
hibit the implementation. In these and similar situations the question arises
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whether the high dimensional system can be approximated well by a low di-
mensional system. The ‘goodness’ of an approximation will of course depend
on the application and a norm-based criterion will be discussed later.

A principal requirement of a model reduction scheme should be that im-
portant qualitative properties of the high order system be retained in the
approximant. If for example stability is an important feature of the system,
then the approximant should also be stable. Balanced realizations provide
model reduction schemes that have such properties. For example the balanced
model reduction scheme for positive real systems guarantees that the approx-
imating system is again positive real. The balanced model reduction scheme
is defined as follows. Let (A, B,C, D) be a LQG (Lyapunov, bounded-real,
positive-real) system over K that is partitioned as follows,

An A By
A= =
(Azx Azz)’ B (Bz>’
c=(C &),

with A;; € K™7, B; € K™™, C; € P*" and r < n. The r—dimensional
system (A1, B1,C1,D) is then called the r-dimensional LQG (Lyapunov,
bounded-real, positive-real) balanced approzimant of (A, B,C, D).

One of the reasons for the interest that balanced realizations received is
due their model reduction properties which will be discussed in later sections
and their connection to Hankel norm approximation (see e.g. 7], [5]).

Lyapunov balanced realizations play a particularly important role in our
development. Many properties of the other types of balanced realizations can
be deduced from properties of Lyapunov balanced realizations. The necessary
machinery for this process will be introduced in Sect. 3.. Model reduction
properties of Lyapunov balanced realizations will be investigated in Sect. 2..
The introduction of canonical forms for various classes of systems is the topic
of Sections 4. and 5..

Having analyzed a canonical form, parametrization and model reduction
for stable minimal systems in Sect. 3., a bijection between S2'™ and LE™ will
be introduced in Sect. 4.. This bijection will be used to carry the results for
SP™ over to LP™. In a similar way canonical forms, parametrizations and
model reduction results will be derived for bounded-real and positive real
systems in Sect. 5..

If the system (A, B,C, D) is a realization of the proper rational function
G,ie. G(s) = C(sI — A)"'B+ D, for s € C, then we write G = (4, B,C, D).
é, g ) to denote the system (4, B,C, D).
This work was supported by NSF Grant DMS-9304696.

Occasionally we will also write
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2. Lyapunov Balanced Realizations and Model
Reduction

In this section we are going to introduce basic facts concerning model re-
duction properties of Lyapunov balanced realizations. We are going to prove
a result by Pernebo and Silverman [30] that shows that if (4, B,C, D) is a
Lyapunov balanced system and (A1, B1,C1, D) is its r dimensional balanced
approximant then the approximant is stable, minimal and again Lyapunov
balanced. This is the case if a mild condition on the singular values is satis-
fied. In Theorem 3.3, it will be shown that this condition can be dropped if
the system is in Lyapunov balanced canonical form.

The following Lemma will be needed frequently.

Lemma 2.1. Let (4, B,C, D) be a continuous-time system and let P (Q) be
a positive definite solution to the Lyapunov equation,

AP + PA* = -BB* (A*Q+QA=-C*C),
Then the system is stable if and only if it is reachable (observable).

Proof. That reachability (observability) implies stability is a standard result.
Let now the system be stable and let z be an eigenvector of A* with eigenvalue
A, i.e. A*z = Az . Then

0> — < BB*z,z >=< (AP + PA*)1,z >=< Pz,A*z > + < PA’z,z >

=X < Pz,z> +X < Pr,z >=2Re()) < Pz, > .

Since P is positive definite < Pz, >> 0. The stability of the system implies
that
Re(M\) < 0.

Hence < B*z,B*z >> 0 which implies that B*z # 0. This implies the
reachability of the system. The corresponding implication on observability of
the system follows analogously. O

Theorem 2.1. (Pernebo-Silverman) Let (A,B,C,D) € SE™ be a n-
dimensional Lyapunov balanced system with Lyapunov grammian X =
diag(oy,00,...,00), 01 2 02 2 --- 2 0n 2 0. Let 7 < 1 be such that
Or41 # On. Then the r-dimensional balanced approzimant (A1, B1,C1, D) of
(A, B,C, D) is stable, minimal and Lyapunov balanced with Lyapunov gram-
mian Ty = diag(c1,02,...,0r). :
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Proof. Let Xy = diag(oy,...,0k). Then it is easily observed that X solves
the Lyapunov equations for the approximant (A1;, B1,C1, D), i.e.

AnZ) + 214}, = -B\Bj,
1{121 + 21An = —C;Cl.

We need to show that Aj; is stable. Let A be an eigenvalue of Aj; with
eigenvector z, i.e.
Ale = )\IL‘.

Then
0> — < Bjzr,Biz >= — < BiBjz,z >=< (Ann 2y + 1A}))z,z >
=A< iz, > +A < Dz, >
= 2Re()) < Dz, > .

Since < X1z, >> 0 this shows that Re()\) < 0. Assume now that A = iy,
y € R. Then the above calculation shows that

— < Biz,Bjz >=2Re()\) < D1z, >=0,

and therefore that Bjz = 0. Multiplying the Lyapunov equation on the right
by z we obtain,

0= —BlB;IE =An Tz + 21A'{1$ = A hz + Az

Hence,
Au)__:l.'li = —)\Z‘la:.

Using the equation
A;lz'l + 1A = —CICl,

we have,
- < Ci1 21z, Ci s >=~-< O{‘Cl)}‘lm, 2z >

=< (A} 214 Z1An) Z1z, D1z >=< B}z, A D1z > + < DiAn Lz, Diz >
=X < 225, Thz > —A < B2z, 51z >=0, |
since A + A = 0. Therefore C; 1z = 0. Multiplying the Lyapunov equation
A}, 21 + Z1A = —C1Cy on the right by X1z we have

0=-CiCiohz = (A4 51 + D141 D1z = A} Dz — A2z,

ie.

1523 = A2z,

This shows that the eigenspace of A}; with eigenvalue ) is invariant under

2 . - - - ~
21X B = diag(611n,,62@n,,- . -,011n,), where 6; > 69 > -+~ > 61 > 0,
then the invariant subspaces of £? are subspaces of
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E,; = dia'g(OIn1+—~~+n;_1,In.',OIn.-+1+-~~+m)}Cr; 1<i<l.

Hence z € E;, for some 1 < iy <[, i.e. £z = 02 . Now consider the (2,1)
blocks of the Lyapunov equations of the original system (A, B,C, D), i.e

Aoy 3 + ZQAIZ = _B2B;1
ATZZI + ZzAzl = —C;Cl.

Multiplying the first equation on the right by z, on the left by X, and the
second equation on the right by Xjz we obtain,

XoA D1z + X2Ax = —XoByBiz =0
;2231‘\-}- oA 21z = —05012112 =0.

Therefore, :
L2432 = ~ DA 17 = A} Sz = 0} A}z

Since by assumption the diagonal entries of X2 are distinct from o we have
that A},z = 0. Then with Z = (z*,0[,_,)* we have

= _ [ Al1 A3 ) . [z
Az—(MIAb 0)~%Wlo )

which is a contradiction to the stability of A* and hence of A.
Reachability and observability of the system now follow from Lemma 2.1.
a

The following result will give a quantitative bound on the size of the error
that is incurred by the approximation process. The error is in term of the
so-called H* norm of the error function. The H*-norm of a stable proper
rational transfer function F is given by

|Flloo = sup [|F(iw)]l-
wER

This norm is of particular relevance in robust control (see e.g. [4]). This result
was derived independently by Enns ([3]) and Glover ([7]).

Theorem 2.2. Let G be the transfer function of a continuous-time n-
dimensional Lyapunov balanced system with Lyapunov grammian XY =
diag(&lIn,,&zIn,, - .,(kank), with &y > G2 > --- > 0. Letr :=ny +ny +

-+n, 1 <1<k Let G, be the transfer function of the r-dimensional
balanced approximant. Then

"G - Gr"oo S 2(‘-7"l+1 +--- +6ﬂk)'
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3. A Lyapunov Balanced Canonical Form for Stable
Continuous-Time Systems

In this section we derive a canonical form for the set SE'™ of stable minimal
continuous-time systems of fixed McMillan degree. As in the previous sec-
tions we only consider continuous-time systems and refer to the Concluding
Remarks for a discussion of the discrete-time case. The canonical form of
a stable minimal system will be Lyapunov balanced. Before addressing the
derivation of a canonical form for the whole set of systems we will consider
the subset of systems with identical singular values. A canonical form for this
subset will serve as a building block for the canonical form for the full set
Sp.m

The following type of matrix will be used repeatedly. A matrix M e Knxi
with rank(M) = n < 1 is called positive upper triangular if it is of the form

Mo :=QOM=
0 ... 0 myu, * ... % * * * * * *
0 ... 0 0 0 ... 0 mg, * * % % *
0O ... 0 0 0 ...0 0 0 ... 0 mp;,, * ... x
with my;; € R,my;; > 0 for all j = 1,2,...,n. The indices iy,...,%, are

called the independence indices.

Note that positive upper triangular matrices are of full rank. Also, if
M; € K™*" and M, € K™*" are both positive upper triangular then M; M,
is positive upper triangular.

The following Lemma will be of importance.

Lemma 3.1. Let M € K™ with n = rank(M) < l. Then there exists a
unitary matriz Qo € K™ ™ such that My := QoM is positive upper triangular.
The matrices My and Qo are unique, i.e. if My = QoM is also positive upper
triangular and Qg unitary then My = My and Qg = Qo.

Proof. Write M = (my,my,...,my), m; € K", 1 < j <l. Let i; be such that
m;, # 0 and m; = 0 for all 1 < j < i;. Then there exists a unitary matrix
Q1 € K™ such that

myq,
0
lei1 = . ,
0
with my;, > 0. Hence
0 0 mii,
M; =M = . ) ,
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with My € Kr-Dx0=) and rank(M,) = n ~ 1. It follows in a straight-
forward way that all unitary @ such that QM; has the same structure as
M; are given by Q = diag(1,Q5), with Q, € KI("‘_”"("’}) unitary and oth-
erwise arbitrary. Find now in the same way as above (20 such that with

QZ = dzag(l, Q2,0)a

0 .-+ 0 mai,
0 -0 0 * *
My=QiM=@Mi=| . . o,
: . : Q,M
0 .- 0 0 2o
0 --.- 0 my;, ¥ - * * % e %
o .-- 0.0 0o --- 0 Mo, * -+ %

Proceeding inductively we can obtain the desired unique structure.
a

A m-input p-output system (A, B,C, D) of dimension n is said to be in
a-block form if there exist integers, the so-called step sizes of the system,
M=Tp 2T 2Ta > 2T >Owichi=1Ti=nand

1. D is an arbitrary matrix in Kpxm,

2. B= ( B ), where B is a 1, X 7o positive upper triangular matrix,

0
A+S -A; 0 0 0 - 0
A S -A; O 0 - 0
0 Ay Sz o :
A = 0 0 T . T . i . . . S ,
P A, 0
Lo : 0 A2 S-1 -4,
0 0 -0 0 Ay S
where
a) S; is a 7; X 7; skew-hermitian matrix, 1 =1,2,...,1,
b) \A; is a positive upper triangular Ti41 X 7; matrix, 1=1,...,1 - 1.

c) A € K™*™, is a function of ¢, B and D, with o > 0.
4. C = (C,0) where C € KP*™ js a function of B,D and the matrix
U € KP*™ jg such that U*U = I,.
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Depending on the class of systems that we consider and the type of balancing
that we study a different function will be chosen in 3.c.) and 4.). If the
system (A, B, C, D) is in o-block form with A = — L BB" and C = U(BB")3
then the system is said to be in Lyapunov o-block form. Clearly a system in
Lyapunov o-block form is uniquely specified by

1. the discrete parameters n,p,m,l,71,70,...,7].

2. the continuous parameters o, B,U,D, A,... s A1, S1,..., 8. As spec-
ified before the fine structure of the matrices Ay, ...,.4;—; is determined
by the independence indices.

The relevance of the above systems becomes clear in the following results.
The next proposition shows that a system in Lyapunov ¢-block form is nec-
essarily stable and minimal. A square transfer function G is called o- inner,
o > 0, if 1G is inner, i.e. G is o-inner if it is stable and G*G = ¢21. Similarly,
a minimal system is called o-inner if its transfer function is o-inner.

We will need the following characterization of inner functions (see e.g.

(6))-

Lemma 3.2. Let G be a not necessarily square proper rational function.
Then the following two statements are equivalent.

1. G is inner,
2. If G = (A, B,C, D) is a minimal state space realization, then there exists
Y =Y™* > 0 such that
a) A'Y +YA=-C*C,
b) C*D+YB=0,
¢) D*D=1.

Proof. Consider first the case of inner functions. Assume that 1.) is true. Let
G = (A,B,C,D) be a minimal realization of the inner function G. Then
G‘ = (-A*,—-C*,B*,D*) is also a minimal realization of G*. Since G is
inner

-A* -C*C|-C*D

I=G*G=Z| 0 A B

B* D*C | DD
This implies that D*D = I. Since (4, B,C, D) is stable there exists Y =
Y* > 0 such that

A'Y +YA=-C*C.

Performing a state space transformation of this realization of G*G with

I -Y .
0 I we obtain

~A* —-A'Y-YA-C*C|-C*D-YB
I=G*'G= 0 A B
B* BY+DC | I
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—A* 0 -C*D-YB
= 0 A B

B BY+DC| 1

_( -A*|-C*D-YB A | B

‘( B | 1 t\BFv+pCc|o )
Since the first system in this decomposition is antistable and the second
system is stable, the addition of these systems can only be I if the first
system is I and the second system is the O system. Since (A,B,C,D) is
minimal it follows that (4, B, B*Y + D*C,0) is reachable. Hence this system
is the 0 system only if B*Y + D*C = 0. But if B*Y + D*C =0 then also
(-A*,—C*D — Y B, B*,I) = I. This shows 2.).

That 2.) implies 1.) is easily verified. O

Proposition 3.1. Let (A, B,C, D) be a m-input, p-output coniinuous-time
system in Lyapunov o-block form, then (A4,B,C,D) € SE™, i.e. the sys-
tem is minimal and stable. Moreover, it is Lyapunov balanced with Lyapunov
grammian 'Zs = ol. If p > m and if D is such that D*D = %I and
C*D + YsB =0, then the system is o-inner.

Proof. Let (A, B,C, D) be a n-dimensional system in Lyapunov o-block form.
The specific structures of A and B imply that [ B AB --- A™"'B ]
is positive upper triangular and hence of rank n. Therefore the system is
reachable. It is also easily checked that the Lyapunov equation

AP + PA* = -BB*,

has the positive definite solution P = ¢I. Hence the reachability of the system
implies by Lemma 2.1 that the system is stable. As by construction BB* =
C*(C, the Lyapunov equation

A*Q+QA=-C*C

has the solution Q = oI. Applying Lemma 2.1 again we have that the stability
of the system implies that it is observable. Hence (4, B,C, D) € S;™. Since
P = Q = oI the system is Lyapunov balanced with Lyapunov grammian
Ys=ol.

If G is the transfer function of the system, then (A4, %B, C, %D) is a min-
imal realization of %G. It is checked easily that this system satisfies the
conditions of Lemma 3.2. Hence 1G is inner. 0

In the previous Proposition it was shown that a system in Lyapunov
o-block form is Lyapunov balanced and its grammian is a multiple of the
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identity matrix. We now need to show a converse result which states that if
a stable minimal system has a Lyapunov grammian that is a multiple of the
identity matrix then there exists an equivalent system which is in Lyapunov
o-block form. The following Lemma will be needed to show that the ‘step
sizes’ decrease.

Lemma 3.3. Let (4, B,C, D) be a n-dimensional system. Let
t; := rank([ B AB A™IB ), i = 2,3,...,n; t1 = rank(B). Let
=ti—tiy, t=1,...,n, withty =0. Then

n
2T 2---2Th 20 and ZT,-:n.

i=1
Proof. For some r such 1 < r < n, let ¢1,...,cx be the columns of A™™1B
that are linearly dependent on the columns of [ B AB ---A™?B ] Then
Acy, Acy, . . ., Ack are linearly dependent on the columns of

A[ B AB ---A™2B ] and therefore are linearly dependent on the
columns of [ B AB ---A™"!B ]. Hence

0<7 =rank[B AB ---A'B|-rank[B AB -..A™1B ]
<rank[ B AB ---A™'B]-rank[B AB ---A"?B ]

= Tr—1.

Moreover

n n
ZTi = Zti —t-i—l =tn -—to =n.
i=1 i=1

The(?rem 3.1. Let (A,B,C,D) € SB™ and let Y, Z be the positive definite
solutions to the Lyapunov equations

0=AZ+ZA*+BB*, 0=AY +YA+C*C.

Assume that ZY = 01, o > 0. Then there ezists a state space transformation
T such that

(Abs By, Gy, Db) = (TAT—lyTBy CT_l» D)

is .in Lyapunov o-block form. Therefore (A, By, Cy, Dy) is Lyapunov balanced
with Lyapunov grammian Xs = ol. Moreover, the map I's that assigns to

s such a system (A, B,C, D) the system (Ap, By, Cy, Dy) is a canonical form.
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Proof. Since ZY = ¢*I we can assume that (4, B,C, D) is Lyapunov bal-
anced with Lyapunov grammian Zg = ol. By Theorem 1.1 all other Lya-
punov balanced realizations are given by a state space transformation with
an orthogonal state space transformation Q. By the minimality of the sys-
tem the n x nm matrix R:= [ B AB A""!B ] has rank n. Let now
Qo be the unique unitary matrix such that QoR is positive upper triangular
(Lemma 3.1). Consider the Lyapunov balanced system

(Ap, By, Cb, D) := (QoAQ%, QoB,CQg, D).

Since the matrix

Ry := QR = [ By, ApBy Ag-le ]
is positive upper triangular we can write it as
Rll * * ek eee %k
0 _1222 * hee R ... %k
Ry = S ]
0 . 0 Ry * -+ «

where R;;isam; xm,1<s; <m,i=1,...,1l, positive upper triangular full
rank matrix. The indices 73, i = 1,...,1, are all strictly larger than 0 because
of the special structure of the matrix Ry. That 7341 < 73,4 =1,..., I—1, and

S 7 = n, follows from Lemma 3.3.
Set B := Ry;. Then it can be seen that

n-(1)-(%)

which has the required structure. The second block column of Ry, is given by

=A,,B,,=A,,<§).

This implies that Ay is of the form

*

Ry,
0

A11 *
Ap=1| Ay |* |,
0 | =*

where Ay; € K™*™, Ay € K™1*™. As Ryp = A1 B; we have that necessarily
Ay, is positive upper triangular, since both Rap and B, are positive upper
triangular. Considering stepwise all other block columns of R, shows that A

has the structure,
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-All * * ce X  vee %
A # * *
0 v 0 Al,l—l %X e %
where Aiy1,; € K™+1X™ and positive upper triangular, i =1,...,1 — 1.

Since the system (A, By, Cy, D) is Lyapunov balanced with Lyapunov
grammian Xg = oI we have that

TS S R,
Ay + A} = — BB} = —diag(BB",0,....,0).

Tllrxis implies i{nmediately the required structure for A;. Also, A, + A} =
F BBy = FCyG. Hence ByBj = C{C; and therefore C, = (C,0), for
some C € KP*™. Thus BB = C C. Writing U = C(BB")~ %, we have

U*U = (BB")"¥C'C(BB")"t = BB") BB (BE') "t = I,.

Therefore C = U (ﬁ*)’i‘ has the required structure.

It remains to show that the map I' is a canonical form. By construction,
Definition 1.1, part 1 is satisfied. It remains to show Definition 1.1, part 2.
This is the case if we can show that two equivalent systems (A;, B;, C;, D),
i = 1,2, in Lyapunov o-block are identical. Both systems (A4;, B;, Ci, D;),
i = 1,2, are Lyapunov balanced and since both systems are equivalent they
* have the same Lyapunov grammian Zs = o and there exists an orthogonal
Q such that (A;,B;,C1, D)) = (QA2Q*, QB,, C2Q*, D;). Hence for R; =
[ Bi AB; A?7'B; ], i = 1,2, we have R, = QR,. Note that by
construction both R;, i = 1,2, are positive upper triangular. The uniqueness
statement of Lemma 3.1, therefore implies that Ry = R; and Q = I, and
hence both systems are identical. ad

In ([21]) a similar result was given for systems with real coefficients. The
- work by Hanzon ([11]) contains this result in its version for systems with real
coefficients. As a Corollary to Proposition 3.1 and to Theorem 3.1 we obtain
the following state space characterization of square o-inner systems.

To prove the Corollary we need the following Lemma.

Lemma 3.4. Let (A,B,C,D) be a minimal realization of the square inner
rational function G. Let Y, Z be such that

A'Y +YA=-C*C, AZ + ZA* = -BB*.
ThenYZ = 1.
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Proof. Since G is inner, by Lemma 3.2, C*D+Y B = 0. Since DD* = D*D =
I,CY!= —DB* As A*Y + YA = —C*C we have

AY- 14 Y 1A* =Y~ CcY = —(CY"))*(CY ™)
= -BD*DB* = —-BB".

By the uniqueness of the solution to this Lyapunov equation it follows that
Y~1 = Z, which implies the claim. O

Corollary 3.1. Let (Ay,Bs,Cs,D,) be a m-input, m-output continuous-
time system of dimensionn. The following statements are equivalent.

1. (As,Bs,Cs,Dy) is a minimal o-inner system.

2. (Ag,B,,Cy,Dy)= (TAT~',TB,CT"}, D) for some invertible matriz T,
where (A, B,C, D) is in the following Lyapunov o-block form: there erist
indicesm=14 2T > - 27 >0, with ZL] 7 =mn, o0 >0, such that

a) B = ( g ), where B is'a Ty X T positive upper triangular matriz,

b)
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»

Moreover, the system (A, B,C,D) as defined in 2.) is Lyapunov balanced
with Lyapunov grammian Xs = oI. The map I that assigns to each o-inner
system (Ay, Bs,Cq,D;) in 1.) the realization in 2.) is a canonical form.

Proof. Let (Ag, By, Cs, D) is a minimal square o-inner system. Let Y, Z be
the solutions to the Lyapunov equations

ALY +YA, = —C:C,, A,Z + ZA% = —B,B".

Lemma 3.4 implies that YZ = 0%I. Hence by the Theorem there exists
a unique equivalent system (A, B,C, D) that is in Lyapunov o-block form.
This implies that A and B have the stated structure. Since the system is
square and og-inner, it follows by Lemma 3.2 that D*D = DD* = ¢2] and
CX + DB* = 0, where »' = ol is the Lyapunov grammian of the system.
Hence C = —L1 DB* and therefore 2.)

Let now (A,B,C,D) be as in 2.). It is necessary to show that the
system is in Lyapunov o-block form. Since C = —;}DB*, it follows that
C = (C,0), where C € KP*™ is such that C = —§D§*= U(BB")?, with
U :=—1DB*(BB")~% such that U*U = I,,. Hence (A, B,C, D) is in Lya-
punov o-block form and by Proposition 3.1 the system is minimal and o-inner.
This implies 1.) The remaining statements follow from the Theorem. 0

In the single-input single-output case this representation simplifies sub-
stantially.

(_?orollary 3.2. Let(Ag,by,Cq,ds) be a single-input single-output continuous-
time system of dimension n. The following statements are equivalent:

1. (As,b,,¢,,d,) is a minimal o-inner system.
2. (Ao, bo, by, do)= (TAT™1,Tb,cT-1,d) for some invertible matriz T,
where (A, b, c,d) is in the following o-inner form:

A+S A1 0 0 0O 0
A; S -A5 O 0 0
0 Ay 83
A= 0 o .. .- : .
: ~Ar, O
: 0 A2 Si-1 —-AL,
0 0 . 0 A Si
where
S;, is a 73 X T; skew-hermitian matriz,i =1,2,...,1,
Aiisa positive upper triangular Ti41 X 7; matrig, i =1,...,1 - 1;
p 1 *
A= —%BB ,
¢)
D s a m x m-matriz such that D*D = o2I
d)

C=--DB"
o

a1 +if -1 O 0
o il —-az O
A= 0 Q9 'LﬂS ,
’ —Qp-2 0
E 0 s PO} iﬂn-—l —Qn-1
0 T 0 Qn—1 iBn
by
0
b=1 .1, c=(5b1,0,---,0), d=-s0,
0
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withe >0,b, >0,8 € K1l =1, 06 >0, 4= 1,...,n—1, and
2
a1 1= 3. For K=R, i =0,i=1,2,...,n, and sy = 1.

Moreover, the system (A,b,c,d) as defined in 2.) is Lyapunov balanced
with Lyapunov grammian Xs = ol. The map that assigns to each o-inner
system (Ag, by, Coydg) in 1.) the realization in 2.) is a canonical form.

Having analyzed in some depth the canonical form for systems with iden- -
tical Lyapunov singular values we can now proceed to develop a canonical
form for the class SP™ of stable minimal systems. The approach will be to
reduce the canonical form problem for general systems to the canonical form
problem for subsystems with identical singular values. To this end we need
to introduce the following definitions.

An m-input p-output system (4, B,C, D) of dimension n is said to be in
balanced form if there exist so-called block indices ni,n2, ..., Nk, Zf___l n,=n
such that if (4, B,C, D) is partitioned as

ALY - AQ, ) - A(LK) B(1)
a=1 4G - AG3) aik |, B=| BG |
A(l:c, 1) A(I;, 7) AR, R) B(k)
c=(ca) - CG) - CHk)),

where A(3, j) € KX, B(j) € K™ and C(i) e KP*™, 1< 1,5 <k, we
have that
1. the block diagonal systems (A(3,i), B(i),C(i), D) are in oi-block form
withal>--->a¢>--->ak>O,andstepsizesm='rg >H 212
2 >0, Di =0, 1S5Sk

H

2. the block entries A(i, ), 1 < 1,5 <k, i # j, are given by

A(i,j)=(“%" g)

where A;; € Kmixm is a function of oy, 0, U(3), U(4), B(i), B(j) and

D,1<4,j <k, i#7

The specific function that is chosen in 2.) will depend on the type of
balancing that we study. If a system (4, B, C, D) is in balanced form such
that the block diagonal systems (A(3,1), B(i), C(4), D) are in Lyapunov oi-
block form and

- 1 ——a ——— ] — =
A,;j = -5 ) (a'jB,'Bj - Ui(BiBi)§ U:Uj(Bij)

i J

(X o

)
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for 1 <1,7 <k, i # j, then the system is said to be i
4,7 Sk, L e in Lyapunov
form with Lyapunov singular values o4, ..., 0. v balameed
. The following proposition states an interesting augmentation property of
¥1n‘ear systgms whose corresponding Lyapunov equations have positive def-
inite solutlfms. If the §ystem is partitioned into two sets of states and the
cor;espondxlrgg block diagonal subsystems are stable and minimal, then the
system itself is stable and minimal provided a weak i nditi
J b i

systen | ‘ echnical condition is

I;I;)te th"dt if the system (A, B,C, D) is in Lyapunov balanced form then
the block diagonal sub'syste_ms (A(4,1), B(3),C(1), D) are stable, minimal and
Lyapur.xov balanced with Lyapunov grammian 0;1,,,, i = 1,... k. As will be
§howril n: ht;he I;,m(;f of Theorem 3.2, the definition of Lyapunov balanced form
is suc at the Proposition can be immediately applied t i
in Lyapunov balanced form. Y eppied fo 8 system being

Proposition 3.2. (Kabamba [15]) Let

A A B |
(A,B,C,D=(( 11 A2 1
) A21 A22 ’ B2 1( Cl C2 )1D )
be a n-dz'mensiongl linear system that is conformally partitioned, i.e.
(A11,B1,C1,D) is a k-dimensional continuous-time system, 0 < k < n.

Assume that there erist positive definite n x n matrices P = diag(Py, P3)

Q = diag(Q1,Q2), where Py, Q; are k x k, such ;
»&2), , ) that the sets of e [
of P\Q1 and of PaQ2 have zero intersection. If further f eigenvalies

AP+ PA* = -BB*, A*Q+QA=-C*C,

and (A;;, B;, C; = i ;
minifn Jl_ ©»D), i = 1,2, are minimal then (A, B,C, D) is stable and

Proof. Note that for i = 1,2,

AP + PiA:i = ~BiB;,

i ~.and therefore by Lemma 2.1 the reachabili
end ¢ . ity of (A, B;, C; L=
i implies the stability of the systems. ( S

As -
sume now that A is not stable. Therefore there exists £ € K®, z # 0,

z\ € C, with Re()\) > 0 such that

A'z = )z.

Now consider

0> —-<BB'z,z >=~ < B*z,B*z >
=< (AP + PA")z,xz >=< PA*z,z > 4+ < 1, PA*z >
=2Re(\) < z,Pz >.
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Since P > 0 this inequality can only hold if Re(A) = 0 and B*z = 0. Hence
)\ = iw for some w € K. Multiplying the Lyapunov equation on the right by

x we obtain
0= BB*z = APz + PA*x = APz + Xr.

Hence
APz = -\Pz,

i.e. Pz is an eigenvector of A with eigenvalue —A. Using the second Liyapunov

equation the above reasoning applied to (A, C) shows that C*Pz = 0 and
A*QPz = —QAPz = MQPr,

i.e. QPz is also an eigenvector of A* with the same eigenvalue A. Hence the
eigenspace of A* corresponding to the eigenvalue A is invariant under the
transformation QP = diag(Q1P1,Q2FP).

Let K™ = X; @& X, be the orthogonal decomposition of the state-space
that gives rise to the block partitioning of the state-space matrices and the
matrices P and Q. Due to the block structure of QP and the fact that the
eigenvalues of Q1 Py and of Q2 P; are different, we have that if E is an invariant
subspace of QP, then either E C Xjor E C X,. Therefore also the eigenspace
I
0

xlaéO,or:r:(fz ),forsome:z:geXg,xgaéO.Ifm=(%1)then

A%z = AL AR Ty ) - Al 1T — ATy
12 Al 0 Al 0

and hence A},z1 = Az, which is a contradiction to the stability of Aj;.

of A* with eigenvalue A has this form. Hence z = , for some z; € X;,

Similarly if z = a(:) we obtain a a contradiction to the stability of Ags.
2

Hence we have the stability of A. Since the Lyapunov equations correspond-
ing to the system have the positive definite solutions P and @ we therefore
also have by Lemma 2.1 the reachability and the observability of the system
(A, B,C, D). O

We can now give a canonical form and a parametrization result for mini-
mal and stable systems of dimension n, i.e. for systems in the class SE'™. This
canonical form is called Lyapunov balanced canonical form. The other impli-
cation of the Theorem shows the parametrization result that each system
in Lyapunov balanced form is automatically stable, minimal and Lyapunov
balanced.

Theorem 3.2. Let (A, Bs,Cs, Ds) be a m-input p-output continuous-time
system of dimension n. Then the following are equivalent:
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1. (As, Bs,Cs, D) is a stable and minimal system, i.e. is in SP™,

2. (As,Bs,Cs,Ds) = (TATY,TB,CT~}, D) for some z'nvertiZle T, where
(A, B,C, D) is in Lyapunov balanced form, i.e. there exist block ,indices
Niyeney Ny Z;?:lnj = n, paramelers oy > o2 > - > 0 > 0 and k

families of step sizes m = Tg S>> o> L
: 2T 2T 2217 >0, 0 .7 =q;
1 <j <k, such that . L i1 Njs
o _ sl =T —T T — . .
a)},B = (Bl ,0, BZ ,O,. .. ,Bk,O) s where _B‘7 € K:T;XT('; is pOSiti’Ue upper
X ni n2 ng
triangular, 1 < j < k.
= =k 1
b) C = (Ui(B1B,)?,0,

~

2(B2B5)%,0,..., Ux(BrB;)?,0), where U; €

; m na ni
]CPXn,U;Uj =1, 1<j<k.
c)
A1) | --- | AL |- | A(LK)
A=| AGL) | ---| AG9) |- T AGk) |,
AT | AED [ AR
where for 1 <i<k
A +8f (-4} 0
Aiy=| A S
' o (CAL)?
0 l-1 St
for1<i,j<k,i#j
A; 0 .- 0
L 0 0 --- 0
A(’:J) = . ,
0 0 0
and o
i. 8] is a7} x7] skew-hermitian matriz, i =1,2,...,5;, 1 <j < k.
ii. Al is a positive upper triangular T";_l xrij matriz, i = 1,2,...,1;—
L,1<j<k.

iti. Ay € K17 is given by

1 — Tk — ek j—
Ay; = ———(0;B:B; - 0:(B;B; ) U; U;(B;B))}),

— g2
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for1<4,j <k, i#j, and
fiii = —LB-,-E: fOT 1 S i _<_ k.
20’,‘

Moreover, the system (A, B,C, D) as defined in (2) is Lyapunov balanced with
Lyapunov grammian Lg = diag(o1ln,,. .- ,0kIn,), where ny,...,ng are the
block indices and o1 > --- > ok > 0 are the Lyapunov singular values of the
system in (2). The map I's that assigns to each system in SP'™ the realization’
in (2) is a canonical form.

Proof. Assume that (As, Bs, Cs, D,) is a stable and minimal system. We can
assume without loss of generality that the system is Lyapunov balanced with

Lyapunov grammian

v

Y= diag(alIn,,agIm,,~..,akInk), g1 >09 >+ >0k > 0.

By Theorem 1.1 all other Lyapunov balanced realizations can be obtained
by a state space transformation of the form Q = diag(Q1,Q2,-.-,Q%k), Q; €
Krixni 4 =1,2,...,k.

Let (As, Bs, Cs, D) be partitioned according to the block indices
n3,n2, . .%, Nk, such that

As = (As(i,j))ISi,jSk, As(iaj) € ’Cn‘xnj: 1<4,j< k,

Bs = (BS(I)T’BS(2)T7 T ’Bs(k)T)T! BS(j) € ’Cn,»xm, 1<35< k,
Cs = (Cs(1),Cs(2),- - -, Cs(K))s Cs(i) € KP*™, 1<i<k.
By Theorem 2.1 the block diagonal subsystems (As(j,5), Bs(3), Cs(35), Ds)
are stable, minimal and Lyapunov balanced with Lyapunov grammian o;ly,;,

1 < j < k. By Theorem 3.1 there exists a unique unitary Qj € K"iX™, such
that

(A(J')])3 B(])a C(.?)a D) = (QJAS(LJ)Q;: Q]Bs(])r Cs(J)Q;-: Ds)

is in Lyapunov o;-block form, 1 < j < k. Then

(A) Ba C7 D) = (QASQ*a QBsa CSQ*1 Ds) where Q = dia'g(Qla Q21 RN )Qk)
is uniquely determined, and the block diagonal subsystems have the desired
structure. The system is Lyapunov balanced with Lyapunov grammian Y=
5. To conclude this part of the proof it remains to be shown that the off-
diagonal block matrices of A have the stated representation. Let (4,B,C,D)
be partitioned according to the block indices ny,nz, ..., nk, ie.

A= (A(i’j))ISi,jSka A('L,]) (S ’Cn.-xn,-, 1< 'I:,j < k,
B =(BOW)T,BQ@)T, -, B(R)T, B(j) e K™*™, 1<j<k,
C = (CQ),C(2), -, Ck)), Cl) e kP, 1<i<k.

Let 1 <i,j < k,i # 4, and consider the (4,5) block entry of the Lyapunov
equations
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A* X+ TA= -C*C, AY + YA* = —-BB*,
ie.
A(4,9) 05 + 0iA(i, j) = —C()*C(j),  A(i,5)o; + 0:A(4,)* = ~B(i)B(j)*,
or

[ i 0; ] [ AG) | _[ carel)
oj oi || A(,5)* B(i)B(j)* |
Since by assumption o; # o0, this equation can be solved to give

. 1
A(, ) =
(,7) g

[0; B(i)B(j)* — 0:C(i)*C(3)).

The structure of B(3), B(j),C(z) and C(j) shows that

.. A O
A = *
(4,9) [ P ] ,
where ) _
Aij = e 310;BiB; —0,C;Cj) € grix,
it 0'.7

Hence 2.)
Now. assume 2.). By construction of (4, B, C, D),
Xg = diag(o1ln,,02In,, - ,0k1,,) solves the Lyapunov equations

A*' X+ YA =-C*C, AX + ZA* = -BB*.

I.:et (A, B,C, D) be partitioned according to the block indices. By construc-

: tion the block diagonal subsystems are in Lyapunov ¢;-block form, 1 < i < k.
Hence Proposition 3.1 implies that they are stable and minimal.’ He_nce—the

- System (4, B,C, D) is stable and minimal by Proposition 3.2. Since X solves

tZl‘le two Lyapunov equations the system is balanced with Lyapunov grammian
S .

0

Specialization of the theorem to the single i i i
o e input singl
‘the following Corollary. ¢ THpuL sinelo output cose grves

‘g:zrollary 3.3. 'Let (43, bs, Cs, ds) be a single-input single-output continuous-
“me system of dimension n. Then the following statements are equivalent:

- (As,bs,¢5,ds) is a stable minimal system.

. (z"l:,bs,cs,ds) = .(fl.’AT“l,Tb, cI'-1,d) for some invertible matriz T,
o ere (A,b,¢,d) is in the following Lyapunov balanced form with block
indices ny,ny, ..., ng, Z:;l n; = n.
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Proof. The proof follows by specializing _the previous theorem to the case
m = p =1 and renaming the parameters B; by b;, 1 <i < k; S by V=18,
i=1,...,lj,1Sjsk,andUibyS,-,z'=1,...,k. (0]

a) b= (b1,0,...,0,b2,0,...,0,...,5,0,...,0)T, where b; > 0,1 <i <
- o "

k. K
b) c = (Slbl,o,---,0a52b2,0,'"B""’fkbk’oi'"’9)! where s; € K,

2 ™ We can now reconsider the model- reduction problem for Lyapunov bal-

anced ;systems. In Theorem 2.1 we showed that a k-dimensional balanced
approximant of a Lyapunov balanced system with Lyapunov grammian

ni
Is'lzl,IS'I.Sk
C

A(1,1) | A(L,2) | --- | A(L,k) X =diag(01,...,0r,0r41,...,0,) is stable minimal and Lyapunov balanced
A(2,1) [ A(2,2) | --- [ A(2,k) if or > or41. If the system is in Lyapunov balanced canonical form the same
= . . : ’ result holds without the condition on the point of truncation.
\ A(k,1) | A(k,2) | --- | Ak, k) Theorem 3.3. Let (4,B,C,D) € S2™ be in Lyapunov balanced canonical
<j<k form with Lyapunov grammian X. Let 1 < r < n. Then the r-dimensional
where for 1< j < . ' balanced approzimant (A1, By, C, D) is in SP™ and is in Lyapunov balanced
aj; +if —of 0 canonical form with Lyapunov grammian ) where X = diag(Z1, X,), X, €
o KT,
. « if .
AQGd) = ol . ’ Proof. Let (A,B,C,D) be the r-dimensional balanced approximant of
. e (A,B,C, D). Let X be the r x r principal submatrix of X. It is easily checked
0 o1 i, that

for 1<4,j <k, i#3j, "}EfEflA:—I?BA’

ay 0 0 AV + YA =-C*C.
.. 0 0 - 0 Letz=diag(allm,(lenz:---,UkInk),Ul >02>"’>0'k.1f7'=n1+“'+n1
A(i, ) = < . forsomel <l <k, then the result follows by Theorem 2.1 or the immediately
6 0 . 0 verified fact that (A, B, C, D) admits a Lyapunov balanced parametrization.

fny+---4my <r<mni+---+mnq, forsome 1 <1< k-1, we will also

and show that (A, I?, :, ?) ‘admits a Lyapunov balanced parametrization.
aj~ >0for1<j<n;—1, 1<i<k, Partition (A, B, C, D) such that
05— 8i8i%%y b for1<i,j<k, i#j A Ay A - B 5
aij=—“§"‘_—2"“1_1f0r R BSE ’ A=< 11 112 B= -1 A A A
a; O'j . A21 A22 ’ B2 ) ¢ ( C'1 02 ):
= ——0Db2 for1 <i<k. . PN
aii 20ib, for1<ig 2 = diag($y, £),
01>02> >0 >0 such that (Au,ﬁl,é'l,f)l) is a ny + - 4 ny-dimensional system and £ =
IfK =R, then 4414r— (ny 4+ 4ny). Then

8; =1, fori=1,2,...,k,
B;=0, for1<j<n;, 1<i<k,
—b;b;

PYRS A P
8i8j0; + 0;

~

. \fngr i=1,2, and (4;;, 1:3‘1,0’1“, D) admits a Lyapunov balanced parametriza-
t19n-ﬁ IfﬁweA show that (Asz, B;,Cy, D) is in Lyapunov ¢y;-block form, then
4,B,C, D) is in Lyapunov balanced form since 5 solves the observability

ai; = , for1<14,j < k.

Moreover, the system (A, b,c,d) as defined in (2) is Lyapunov balanced with
Lyapunov grammian s = d’iag(alIm,agInz,...,ak‘Ink). The ‘map Is that
assigns to each system in SL! the realization in (2) is a canonical form.



146 Raimund J. Ober

and reachability Lyapunov equation for (A,B,C‘, f)). Then the result will
follow from Theorem 3.2.

It follows by inspection that B, has the structure of a B-matrix of a
system in Lyapunov oi4;-block form. Also by inspection and since

/izzZA'z + 22A;2 = —3235

it follows that Ao has the structure of a A-matrix of a system in Lyapunov -
o141-block form. Hence (A2, B2, Co, D) is stable and reachable, by Proposi-

tion 3.1. Since . o .

A;222 + 22.422 = —C9Co
it follows by Corollary 2.1 that (fizz,Bz,éz,b) is also observable. Hence
(Ags, B,, Gy, D) is stable, minimal and in Lyapunov balanced with Lyapunov
grammian 375. Moreover, because of the structure of Ao and Bj, the system
is in Lyapunov o743-block form.

O

4. L-Characteristic, LQG-Balanced Canonical Form and
Model Reduction for Minimal Systems

In this section a canonical form will be given for the class Le™ of min-
imal systems of fixed McMillian degree. The canonical form is defined in
terms of LQG-balanced realizations. This canonical form is derived from
the Lyapunov-balanced canonical form for stable systems using the L-
characteristic, a bijection between the class LP™ of minimal systems of
McMillian degree n and the class S5™ of stable minimal systems of McMillian
degree n. A substantial part of the section will be devoted to the introduction
and analysis of this bijection. This bijection is here introduced using a state
space formulation. The analysis of the L-characteristic will be followed by the
derivation of the LQG-balanced canonical form, a parametrization result for
LP™ and an investigation of the model reduction properties of LQG balanced
systems. .

In the following definition the L-characteristic is introduced for a system
in L&™. For a system in SE™ the inverse L-characteristic will be defined.
Part of this section is devoted to show that the L-characteristic defines a
bijection from LE™ to Sh™ whose inverse is the inverse L-characteristic.

Throughout this section we will use the following abbreviations. Let
(4,B,C,D) be a system, then set Ry := I+ D*D, Sy, := I + DD* and
Ap:=A-BR;'D*C.
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Deﬁrlxi.ti'on 4.1. ' 1. Let (A, B,C, D) be a minimal system. LetY be the sta-
bzlzz?@g'solutzon. of the control algebraic Riccati equation and let Z be the
stabilizing solution of the filter algebraic Riccati equation, i.e.

0=A}Y +YAL -YBR['B*Y +C*S$;'C
| 0=ALZ + ZA} - ZC*S;*CZ + BR;'B*
with AL, — BR['B*Y and Ay — ZC*S;C stable. Then the system
(A,B,C,D) := x1((4, B,C, D))
.= (A, — BR{'B*Y,BR;} s7¥c(1 + zv), D)

= ((I +2Y) YA, - ZC*S;'C)(I + 2Y), BR;?, s; Y c(I + zv), D)
is called the L-characteristic of the system.

2. Let (A,B,C,D) be a stable minimal s
: 5,0, ystem and let P and Q b -
tions to the Lyapunov equations @ be the solu

AP+ PA* = -BB*, A*Q+ QA= —-C*C.
Then the system

(4,B,C,D) :=Ix.((A,B,C,D))

= (A+ B(B*Q + D*C)(I + PQ)~%, BRE, S}c(I + PQ)~!, D)
= ((I + PQ)(A + (I + PQ)~\(PC* + BD*)C)(I + PQ)~!,
BRI, Skl + PQ)™,D)

is called the inverse L-characteristic of the syste
m -A: B s>y .
Rp:=1+4+D*D and S := 1+ DD*. ! ( €.p). Here

Note that both expressions for the L-characteristic are identical because

_of the Bucy relations given in the following Lemma.

emma 4.1. Let (A, B,C, D) be a minimal system. Then

(I+ZY)(AL - BR™'B*Y) = (AL - ZC*S™'C)(I + ZY),

- ;U?/zlgrg Y is the st‘a.bi'lizing solution to the control algebraic Riccati equation
: is the stabilizing solution to the filter algebraic Riccati equation.
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Proof. Consider the two Riccati equation,
0=ALY +YA, -YBR'B'Y + C*S7'C,
0=ApZ +ZA% — ZC*R™'CZ + BS™'B*.

Multiplying the first equation on the left by Z and the second equation on the
right by Y, equating both equations and adding A to both sides we obtain

AL+ ZALY + ZY AL - ZYBR™'B*Y + zc*s™ic
= Ap +ALZY + ZALY — ZC*S™'CZY + BR™'BY.
Canceling the term ZA}Y from either side and collecting terms, we obtain
(I+2Y)(AL~BR'B*Y) = (AL — ZC*S™'O)(I + ZY).
O

That the two expressions for the inverse L-characteristic are identical
follows from the following Lemma.

Lemma 4.2. Let (A,B,C,D) € S&™ and let P and Q be such that
AP+ PA* = —BB*, A'Q+QA=-C*C.

Then /
[A+B(B*Q+D*C)I + PQ)™ |l + PQ] =

[I + PQJIA+ (I + PQ)~Y(PC* + BD*)C]
and
[A+BB*QU + PQ)~!|[I + PQ) = [I + PQ[A + (I + PQ)™'PC*C]

Proof. We have
A+ B(B*Q+D*C)(I + PQY YI + PQ] = A(I + PQ) + B(B*Q + D*C)
= A+ APQ + BB*Q + BD*C = A+ (AP + BB*)Q + BD*C
= A+ (=PA*)Q+BD*C = A— P(-QA~C*C) + BD*C
= A+ PQA+(PC* +BD*)C
= [T+ PQ)[A+ (I + PQ)~'(PC* + BD*)C].

which shows the first identity. Subtracting BD*C from either side implies the
second identity. [

The following Lemma shows that both the L-characteristic and inverse
L-characteristic preserve the minimality and equivalence of systems.
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Lemma 4.3. 1. The L-characteristic of a minimal system s stable and
minimal. The L-characteristics of two equivalent systems are equival nt

2. The inverse L-characteristic of a stable minimal system is minimal ;rllz'
inverse L-characteristics of two equivalent systems are equivalent. e

Proof.. 1.) Since Y is the stabilizing solution of the control algebraic Riccati
equation the matrix Ay, — BR}:IB*Y"is stable by definition. It is easily seen
that the characteristic system is reachable. The observability of the syste
follows by the second representation of the characteristic. yoem

Lgt (A,B,C,D) € Ly™. If Z is the stabilizing solution to the Riccat
equation,

ALZ +ZA} - ZC*S;'CZ + BR;'B* =,

then (gig* 1is the stabillizing solution to this Riccati equation for the Sys-
tem ~4TB,CT~1, D), where T is non-singular. Simil i i
stabilizing solution to ; milerls 1Y is the

ALY +YAL - YBR;'B*Y + C*5;1C =0,

then T7*YT-! is the stabilizing solution to this Riccati equation for the
system (TAT~!,TB,CT~!, D). Using this fact it is easily seen that the L-
characteristics of two equivalent systems are equivalent.

2.) The proof is similar to the proof of 1.). O

The‘ L_charactfaristic and the inverse L-characteristic have interesting
properties concerning the way solutions of Riccati equations respectively Lya-
punov equations are mapped. under the characteristic maps.

Proposﬂ:iop 4.1. 1. Let (A,B,C,D) be a minimal system and let Y be
the stabilizing solution to the control algebraic Riccati equation and let
Z be the stabilizing solution to the filter algebraic Riccati equation. Let
(A,B,C,D) be the L-characteristic of (A,B,C, D). Then the Lyapunov
equations

AP+ PA* = —-BB*, A*Q+ QA= —C*C.

have solutions
P:i=(I4+2Y)'Z2=2(I+Y2)™!, Q:=Y+YZY.

. Let (.A’ B,C,P) be a stable minimal system. Let P, Q be the positive
definite solutions to the Lyapunov equations

AP+ PA" = -BB*, A*Q+ QA= —C*C.
Let (A, B,C, D) be the inverse L-characteristic of (A,B,C,D). Then
Y:=QU+PQ)™' =(I+QP)"Q
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is the stabilizing solution to the control algebraic Riccati equation and

Z: =P+ PQP
is the stabilizing solution to the filter algebraic Riccati equation of the
system (A, B,C, D).

Proof. 1.) We want to show that with P = (I + ZY)™'Z = Z(I+Y2)™!

have,
AP + PA* = —-BB*.

To do this consider
(I+ZY)[AP + PA\(I+Y2Z)
= (I + 2Y)[(AL — BR{'B*Y)P + P(AL - BR;'B*Y |1 + Y 2)
= (I +2ZY)(AL - BR;'B'Y)Z + Z(AL - BR;'B*Y)*(I + Y Z)
=ALZ+ZA+Z(YAL+ ALY)Z
-2ZYBR;'B*YZ - BR;'B*YZ - ZY BR['B".
Using the two Riccati equations this gives,
(I+ ZY)AP + PA*)(I+Y2Z)
‘= 2C*S;*CZ - BR;'B* + Z[YBR['B"Y - C*S['C)}|Z
—2ZYBR['B*YZ - BR;'B*YZ - ZYBR;'B"
=—(I+ZY)BR;'B*(I+Y2)
=—(I+2ZY)BB*(I+Y2Z),
which implies the claim. Now with Q =Y + Y ZY, we have
AQ+QA=AY(I+ZY)+(I+Y2)YA
= (ALY —YBR;'B*Y)(I + 2Y) + (I +YZ)(YAL - YBR;'B*Y).
Using the Riccati equation, we have
A Q+QA=(-YAL-C"S;10)I + 2Y) + (I +YZ)(—ALY — C*S{'C)
=-C*'S;'CI+2Y)-(I+YZ)C*S['C- ALY ~YAL-Y(ALZ+ZAL)Y
=-C*S;'\Cc(I + 2Y) - (I +YZ)C*'S;'C "
_YBR;'B'Y + C*S;'C - Y(2C*S;'CZ)Y + YBR;'B'Y
=-(I+Y2)C*"S;'C(I + ZY)
= -C*C.

2.) First note that
AL =A-BR;'D*C
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= A+ B(B*Q + D*C)(I + PQ)~ - BR}/*R;'D*SY2¢(I + PQ)~!
= A+ BB*Q(I + PQ)~!

where we have used that Ri/ ’D* = D‘S}l/ 2, Since,

I

(I+QP)[ALY +YAL - YBR;'B*Y + C*S;C|(I + PQ)
(I+QP)[(A+BB'Q(I +PQ)™")"QU + PQ)™!
+(I+QP)T'Q(A+BB*QUI + PQ)™Y)
—(I+QP)'QBRY*R;'RY*B*Q(I + PQ)~!

+(I + PQ)™*C*Sy/*s7183%c(I + PQ)~Y(I + PQ)

(I+QP)A*Q +QBB*Q + QA(I + PQ) + QBB*Q — QBB*Q + C*C
A'Q + QA+ C*C + Q(PA" + AP + BB*)Q

0,

we have verified the first identity. Now with Z := P(I + QP) we have

I

]

i

= (I +PQ)[A+ (I+PQ)'PC*c|(I + PQ)™?

ALZ + ZA} - ZC*S;'CZ + BR;'B*

(A+BB"Q(I + PQ)™")(I + PQ)P + P(I + QP)(A + BB*Q(I + PQ)~1)*
—P(I+QP)(I + PQ)™"c*S}/*S; S)/C(I + PQ)~M(I + PQ)P
+BR},/2RZIR11;/2B*

AP + APQP + BB*QP + PA* + PQPA* + PQBB* — PC*CP + BB*
A"P + PA* + BB* + (AP + BB*)QP — PC*CP + PQ(PA* + BB")
0— PA*QP — PC*CP + PQ(PA* + BB*)

—P(A*Q +C*C)P + PQ(PA* + BB")

P(QA)P + PQ(PA* + BB*)

PQ(AP + PA* + BB*)

0,

which shows the second identity. Since

AL - BR;'B*Y
= A+ BB*Q(I + PQ)~' - BRY/*R;'RY?B*Q(I + PQ)!
=A,
which is stable and
AL - ZC*Sptic

A+BB"Q(I+PQ)™" — P(I+QP)(I+ PQ)~*C*S}/25;15Y%¢(I + PQ)~!

= A+BB*Q(I + PQ)™! — PC*C(I + PQ)~!
—PC*Cc(I+ PQ)~1
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= (I +PQ)A(I + PQ)™!,

is stable, where we have used Lemma 4.2, we have shown that Z, Y are the
stabilizing solutions to the Riccati equations. O

That the L-characteristic indeed induces a bijection between L2™ and
SE™ is established in the following theorem.

Theorem 4.1. The map
xL : L™ — Sp™
is a bijection that preserves system equivalence, with inverse Ixy,.

Proof. It is first shown that xp, is injective with left inverse I'yr, i.e. that
Ixr - xr is the identity map on LE™.

Let (A, B,C, D) € L?™ and let (A, B,C, D) € S2'™ be its L-characteristic,
i.e.

(A4,B,C,D) = (A, -BR;*B*Y, BR;/?, 5. *C(1 + ZV), D),

where Y and Z are the stabilizing solutions to the respective Riccati equa-
tions. We know by Proposition 4.1 that the solutions to the Lyapunov equa-
tions

AP + PA* = -BB*, A*Q+QA=-C*C

are given by P = (I+2Y)"'Z = Z(I+YZ)™!,Q =Y +YZY . Hence we can
see that PQ = ZY. Now apply I'xr to (A4, B,C, D) and set (A;, B1,C1,D;) :=
Ixt((A, B,C, D)), then D; = D and

B, = BRY? = BR;"*R}/? = B,

C =8%c(I + PQ)~' = SY2s;V2c(I + zY)(I + 2Y)~' = C,
A=A+ BB*QU + PQ)™! + BD*C(I + PQ)™*
= A—-BR{Y(D*C + B*Y) + BR;'B*Y(I + 2Y)(I + ZY)!
+BR;'D*C(I + ZY)(I + ZY)™}
=A,

ie. Ixy - x1((4,B,C,D)) = (A,B,C, D) for (A, B,C, D) € LE™.

It is now shown that x; is surjective with right inverse Iyy, i.e. that
XL - Ixr is the identity map on SB™.

Let (A, B,C,D) € S5™ and let (4, B,C,D) = (A + B(B*Q + D*C)(I +
PQ)~1,BRI?, 511,/ 2C(I+PQ)~1,D) be its inverse L-characteristic. Now con-

sider
(Al)BhCl’D) = XL IXL((Av B)C’ D))
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= x.((4, B,C, D)) = (AL - BR;'B*Y, BR; /%, s;/*C(I + ZY), D),

where Y, Z are the stabilizing solutions to the control respectively filter
algebraic Riccati equations of the system (4, B, C, D). By Proposition 4.1

Y=QU+PQ) '=(I+QP)'Q, Z=P+ PQP.
where Q, P are the positive definite solutions to the Lyapunov equations
AP + PA* = -BB*, A*Q + QA =C*C.
Now, using that Ay = A+ BB*Q(I + PQ)~, we have D, = D, and
Ay = AL - BR;'B*Y
= A+BB*Q(I + QP)™' - BRY*R;*RY*BQ(I + QP)~!
= A,
B, = BR;"/* = BRY*R;Y/? = B,
¢ =S+ 2Y) = SV2SMc(I + PQ) (I + PQ) =,

which shows the claim that x - Iy is the identity map. Therefore x, is a

bijection with inverse x;l = Ixy. That x preserves system equivalence was
shown in Lemma 4.3. 0

This theorem was first shown in ([27]) where it was used to show that the
manifolds L™/ ~ and S2™/ ~ are diffeomorphic.

In the following corollary it is shown that the L-characteristic maps LQG
balanced systems to stable minimal systems whose reachability and observ-
ability grammians are diagonal.

Corollary 4.1. Let (4,B,C,D) € LE™ and let (A,B,C,D) be its L-
characteristic. Let Y (Z) be the stabilizing solution to the control (filter) alge-
braic Riccati equation and let P, Q be the solutions to the Lyapunov equations

AP + PA* = —BB*, A*Q + QA = —C*C.
Then
1. if (A, B,C, D) is LQG balanced with LQG grammian Xy, then
P=ZL(I+5})7", Q=21+ 52).
2. if (A,B,C, D) is Lyapunov balanced with Lyapunov grammian g, then
Y=Zs(I+53)7, Z=25s(I + z%).
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Proof. The statements follow immediately from Proposition 4.1. 0

If I's: SP™ — SP™ is a canonical form, then a canonical form can be
defined on LE'™ using the bijection x by setting

I'=x;'oIsoxyt.

If I's is the Lyapunov balanced canonical form, it follows from Corollary 4.1
that a system in the I' canonical form is close to being LQG-balanced. In fact
a simple diagonal state space transformation will LQG-balance the system.

Lemma 4.4. 1. If(A,B,C,D) € SP™ is such that the Lyapunov equations
AP+ PA* = -BB*, A'Q+ QA= -C*C.
have solutions
P=X(I+2%"Y Q=2(I+1%%
for some positive diagonal matriz 2, then
As((A,B,C, D)) := (TAT"}, TB,CT"!, D)

with T = (I + 22)’} is Lyapunov balanced with Lyapunov grammian X.
2. If (A,B,C,D) € LP™ is such that the control (filter) algebraic Riccati
equation has the stabilizing solution Y (Z) with

Y=Z(I+Z%) Y, Z2=2(+ %%
for some positive diagonal matriz X, then
AL((A,B,C, D)) := (TAT™',TB,CT™ !, D)
with T = (I + £?)% is LQG balanced with LQG grammian X.

Proof. 1.) If the system (A, B, C, D) has reachability grammian P and observ-
ability grammian Q then the system (T AT, TB,CT "1, D) has reachability
grammian T PT* and observability grammian T—*QT~'. With P, Q and T
as in the statement of the Lemma we therefore have

TPT* =(I+ 2z + 55 W1+ 5t =3%

T*QT ' =(I+ )35+ Z%)(I + £%)"1 =

which implies 1.).
2.) This is shown analogously to 1.). a

With the diagonal scaling map Ay, as defined in the previous Lemma set
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I'y:=Apox;'oIsoxy.

The diagonal scaling now assures that I';, is a canonical form for LP™ in terms
of LQG balanced systems. This fact will be used in the following Theorem to
derive a canonical form and parametrization for LE™_ This canonical form is
called the LQG balanced canonical form.

Theorem 4.2. Let (A;, By, Ci, D) be a m-input p-output continuous-time
system of dimension n. Then the following are equivalent:

1. (Ay, B;,C1, Dy) is a minimal system, i.e in em, \

2. (A, By, Cy, Dy) = (TAT™Y,TB,CT"1,D) for some invertible T, where
(A,B,C,D) zi in LQG balanced form, i.e. there exist block indices
Nyy..., Nk, EJ=1 nj = n, pammete'rs o1 > 09 > -0 > 0 > 0 and k
families of step sizesm =1 > 1] > > > r’ >0, Zz_ 7' = n;,
1< 7 <k, such that

=T =T =T = J g
a) B = (B,,0,B,,0, .,Bk,O)TRI%, where B; € K™ *™ is positive
v S—— \,_1
na

upper tnangular 1<75< k

b) C = SL(Ul(BlB 11,0, Ux(B,By)1, Uk(BkBk)z 0), where U; €

. 'nl 7; nk
IC"X"f,UJ-'Uj = IT,-, 1<j<k.
c) '
AL 1) | --- A1) .- A1, k)
A= | AGD [ [AGY | [4AGH |,
A(k,1) | --- Alk, ) | --- A(k, k)
where for 1 <i <k :
A+t (A} 0
A(i,i) — -Azl 85' . ’
(—‘Ai‘-,—l)*
0 Ly S
for 1<i,7<k,i#j
A 0 . 0
0 0 --- 0
agi=| . .,
0 O 0

and
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i. S is at!x7! skew-hermitian matriz, i = L,2,...,l;,1<j<k

. A{ is a positive upper triangular 7'f+1 ><'rij matriz, 1 =1,2,...,l;—
1,1<j<k
iii. Aij € KiX™ 45 given by
1

i J

Aij = 0_2 0‘2 (0'3(1+U?)§,§;—0‘;(1+0’?)(?§,§:)%U:UJ(FJ_B-;)%)

+B:D*U;(B;B;)t,
for 1<4,j<k, i#j, and

- —_— =k

Aii = ——2—2—(1 i O'?)B,',Bi +§1D*U.(§,§:)% fOT‘ 1 S ) g k.
i

Moreover, the system (A,B,C,D) as defined in (2) is LQG balanced with

LQG grammian X = diag(o11,,,...,0kln, ), where ny,...,ng are the block

indices and gy > --- > 0 > 0 are the LQG singular values of the system in

(2). The map I'r that assigns to each system in LE™ the realization in (2) is
a canonical form.

Proof. Let (Ay, By, Cy, D1} € LE™. Then x1((As, By, Ci, Dp)) is in SB™. Let
(A,B,C,D) := I's(xt((Ai, Bi, Ci, D;))) be the Lyapunov balanced canonical
form of xr((Ai, Bi, Ci, Dt)). Since x, and le respects system equivalence
the system

(A,B,C, D) = AL(xg " (I's(xL((A1, Bi,C1, Di)))))

is equivalent to (4, By, Ci, D;). Moreover the system is LQG balanced. It is
straightforward to check that I'y := Ay o le o I'; o x;, defines a canonical
form for LE™.

It is necessary to show that (A, B,C, D) admits the stated parametriza-
tion. Consider now the Lyapunov balanced parametrization of (A, B,C, D),
ie. let ny,...,ng, Zk n; = n be the block sizes, let o) > g2 > .- >0, >0

j=1 .
> >0,
7

the Lyapunov singular values, let m = 7§ > ‘rf > Té >
Ei’:x 3 =n;,1 < j < k the families of step sizes such that

L. B= (_B_"fvoy_gg’:o) s yEZ> O)T)
e~ N~ N
ny nz. X gk
where Ej € K™ %7 is positive upper triangular, 1 < i<k
2. C = (Uy(B1B})%,0,Us(BoB3)%,0, ..., U (Bx By )Y, 0),
m n2 n

where U; € KPXT Uy = 15,1 < j <k.
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3.
AL | --- | AL, ] - A1, k)
A= | A@G,1) |- AG,7) Al k) 1,
Ak, 1) | --- | Ak,2) | --- | Ak, k)
where for 1 <i <k .
./‘{1;,’ + S{ (—A’i)* 0
.. (_A‘lii.—l)*
0 ;i—l SZ"

for1<i,j<k,i#j

Aj 0 .- 0
o 0 --- 0
A(”i]) = : )
¢ o 0
and _ )
a) ] isa 7] x 7] skew-hermitian matrix, i = 1,2,...,1;, 1 <j < k.
b) A] is a positive upper triangular 77, | x 77 matrix, i =1,2,...,4;—1,
1<j<k.

c) A € KTt xr{ is given by

1 —_ — — — " — =k
Ay = =7 (g,.B,-B,. - 0:(BB)) Y, uj(Bij)%) ,

.. . . 7 -1\—-*
for1<i,j<k, i#7j, andAu=-—§B,-B,- for 1 <i<k.
T

The system (A, B,C, D) is Lyapunov balanced with Lyapunov grammian X =
diag(o11,,,...,011,,). Then by Corollary 4.1 and Lemma 4.4

(4,B,C,D) = ((I+Z*) ¥A+B(B*Z+DC)I+ %)Y+ 523,

(I+Z%)~4BR} sicu + 224 D).

~ Setting

J— 1 —
Bj = ——=B8,, 1<i<k,

V1+0?
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it follows that B = (I + 22)"58122 has the required structure. Since with
UJ = UJ .
S3u;(B;B;)?

for 1 <t < k, it follows that C = S[%C(I + 22)‘§ also has the required
structure. Note that

A=+ 5% HA+BBE +DC)(I + )Y + 5?)}
= (I + 2%~ 1Al + 2% + BR;'B*S + BR;'D*BS;'C.

If (A, B,C, D) is partitioned according to the block indices ny,...,nk, then
for 1 <1,j <k, 47,

V 1+ UJ? 1 -1p*g-1
Aij = —I\/—E_Aij +BiR[—, B;O'j +BjRL D SL Cj.
g;
This shows that all entries of A;; are zero with the exception of the princip
7} x 7i-subblock A;; which is given by

1402

3y -~ —

Y4 +§,~B;~aj +B:D*U;(B; B;)
Vi+a?

[~ 1

— e

= ; (Uz — o2 (UJ‘EB; —0i(B:iB; )%ui*uj (BJE;)%))

a ——k JE—
o (ajB,-Bj - 0i(B:B;

=+
.00

+§i§;0’j + FiD*Uj (FJFJ)%

——— (031 + oHB.F; - 0:(1+ o})(BB)) U U;(B,B; )?)
i Y .
+B;D*U;(B,B;)*
for1<i,j<k,i#j. Forl<i<k,wehave
Ay = Aii + BiR{Y(B}oi + D*S;*Cy).

The principal 7§ x 7 submatrix of A;;, 1 < < k, is given by

~ : _ 1 —k 1 P —
Ay + 8+ BiRIR;Y(REBlos + D*SIULB.BHY)
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1 P — —
= “2—0_:Bi3i +Si +BiBi0'i +BiD*U,;(BiBi)%

N

1 BE . i B LT = 5
= —5—-(1+0!)B.B; + 5 + B.B,0: + B:D'U;(BB;)
1
1 — o 4 — :
=—5—(1- 0?)B;B; + B;D*U,(B;B;)% + S,
2

where we set Sf = Sf fori =1,2,...,l;, 1 < j < k. This shows that 4
has the stated form. Therefore (4, B, C, D) is in the stated canonical form.
Hence I'; has the claimed properties.

To complete the proof it remains to be shown that if a system (4,B,C,D)
has the parametrization stated in 2.) then the system is minimal and LQG
balanced with LQG grammian £y = diag(o1ln,,...,0xl,,). Let

(A4,B,C,D) = ((I+2%)}(AL-BR;'B*E)(I + %)%,
(I+zZ%3¥BR;E, s7 0 + 224, D).

Straightforward algebraic manipulations, similar to those in the first part of
the proof, show that (A, B,C, D) admits the parametrization for Lyapunov
balanced systems as given in Theorem 3.2. Hence (4,B,C,D) € S2™ is
Lyapunov balanced with Lyapunov grammian 2. Then it follows from the
construction of (A, B,C,D) as the ‘formal’ pre-image of (A, B, C, D) under
Ap oxg', that (4,B,C, D) = x1(A;Y((4, B,C, D))). Hence (A,B,C,D) is
minimal and LQG balanced with LQG grammian 5. a

It is worth commenting that as was established in the proof of the theorem,
if (A,B,C,D) is a Lyapunov balanced canonical form and (4, B, C, D) =
AL(xZI((.A, B,C,D))) then up to some scaling of the B; parameters, the
parameters of (4, B,C, D) are the same as those for (A,B,C, D). The only
essential difference between the parametrization of SP™ given in Theorem 3.2
and the parametrization of LE™ given in the previous Theorem is the way
in which the system parameters go into the entries /i,-j, 1<4,5<k.

Specialization of the theorem to the single input single output case gives
the following corollary.

Corollary 4.2. Let (A1, by, ¢p,dy) be a single-input single-output continuous-
time system of dimension n. Then the following statements are equivalent:

1. (A, b, ¢, dy) is a minimal system.

2. (A, b, e, d) = (TAT-, T, cT~1,d) for some invertible matriz T, where
(A4,b,¢,d) is in the following LQG balanced form with block indices
N1, Mg, ..., Nk, Zf=1 n; =n:

a) b= (bl,O,...,0,b2,0,...,0,...,bk,0,...,O)T,
e et N e N ——

Nk

ni n2
where b; >0, 1 <i< k.
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b) c=(flbl,o,...,q,sibz,o,...,q,...,fkbk,o,...,9),

7;,1 n2 77;
where s; €K, |si] =1,1<i<k.
c)
AL, 1) | A(L,2) | --- | A(L,k)
A2, 1) | A(2,2) | --- | A(2,k)
A(k,1) | A(K,2) | --- | A(k, k)
where for 1 < j <k
ajj +i,3'ii —a{ 0
. of  if]
A(J)]) = ! . 2 . . )
‘O‘fx_,-—l
0 0!31,'-'1 7’5{11
for1<i4,j<k,i#3,
(7 0 0
o 0 0 --- 0
Aw) =1 . . K
0 0 0
and )
a;>0for1<j<n;—1, 1<i<k,
iby [3i3i0:(1403)~0;(1+o? «
ai; = 1—_':‘;1 [s s;o (1-:?—)0?0,(1+u ) _ de ]
for1 <4, <k, i#j,
Qi = — b7 -—1—(1—02)—s-d* for1<i<k
u—.1+ld|2 20i i I3 y —_ = Ty
gL >09> - >0 >0.
If K =R, then
' si==%1, 1<i<k,
ﬂ;:O, for1<j<mn;, 1<i<k,
—-b,'bj 1- SiSj(;'iO'j ..
i = —s;d|, <%4,7<k.
ij 1+d2[3i8j0'i+0'j s, for 151,
Moreover, the system (A,b,c,d) as defined in (2) is LQG balanced with LQG
grammian X1, = diag(o1l,,,021,,,... y0kln, ). The map I'y that assigns to

each system in L)' the realization in (2) s a canonical form.
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Proof. The result follows immediately from the previous theorem by absorb-
1 1 — — 1

ing R} = S} into B; parameters and setting b; := Bi;R}, 1 < i<k The

remaining parameter replacements are as in the proof of Corollary 3.3. 0O

Having established a parametrization of L2™ in terms of LQG balanced
realizations, LQG balanced model reduction can now be analyzed.

Theorem 4.3. Let (4, B,C,D) € LA™ be in LQG balanced canonical form
with LQG grammian L. Let 1 < r < n. Then the r-dimensional balanced
approzimant (A11,B1,C1, D) is in L2™ and is in LQG balanced canonical
form with LQG grammian Xy, where £ = diag(Z,, X3), £ € K™%,

Proof. Let (A,B,C,D) = Ar(x1((4, B,C,D))). It follows by Corollary 4.1
and Lemma 4.4 that if (4, B, C, D) € L2™ is in LQG balanced canonical form
with LQG grammian X, then (A, B,C, D) is in Lyapunov balanced canonical
form with Lyapunov grammian X.
Let P, € K™*™ be the projection matrix given by
P = (6i5)1<icr1<5<ns

then
(An, B1,C,, D) = (P, AP, P.B, CP:, D).

If (A11,B1,Cy, D) is the r-dimensional balanced approximant of (A, B,C, D)
then

By =P.B=P.(I+ 5% 4BR} = (I+ 5)"4P,BR} = (1 + £%)~4B,R},
Ci=CP; = Sfc(I + 22 4P = shepr (1 + £3) = sheyr + 52),
An =P AP! = P(I + 2% }(A+ B(B* 2 + D*C)(I + %)~ 1)(I + £2)} p*
= (I +Z}) ¥ (P. AP} + P.B(B*P; £, + D*CP,)(I + £3)~1)(I + 52)}
= (I + 2373 (An + Bu(B} 51 + D*Cy)(I + Z2)~1)(I + Z)%.

Since Xy is the Lyapunov grammian of the system (A;,, B1,C1, D) which is
in Lyapunov balanced canonical form, this shows that

(A11, B1,C1, D) = AL(xg ' ((Au1, B1,Cy1, D))

and hence by the properties of Ay o le, the system (A;,, B1, Cy, D) is min-
imal and in LQG balanced canonical form with LQG grammian X;. a

As a corollary we also obtain a model reduction result for general LQG
balanced systems ([14]). Analogously to Theorem 2.1 a condition has to be
placed on the point at which truncation occurs.
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Corollary 4.3. Let (A, B,C, D) be a n-dimensional LQG balanced system
in LE™ with LQG grammian £ = diag(o1ln,,021n,,...,0kls,), 01

gg > =+ > o > 0. Let r = ng +no 4+ --- +n for some 1

I < k. Then the r-dimensional balanced approzimant (A;;,B1,Cy, D)
(A, B,C,D) is minimal and LQG balanced with LQG grammian X

diag(o1In,,020n,,. .., 01lp,).

Proof. Let (A, B,C, D) be as in the statement. By Theorem 1.1 all equiv-
alent LQG balanced systems are given by (QAQ*,QB,CQ*, D) with @ =
diag(Ql) Q?) ceey Qk)l Qi € KCrixm unitMY‘ Let QO = dzag(Q?) ng RS Qg)a
Q? € K™*™ unitary, be such that (QoAQg, QoB,CQ%, D) is in LQG bal-
anced canonical form. By Theorem 4.3 the r-dimensional balanced approx-
imant of this system is in L2™ and LQG balanced with LQG grammian
2y = diag(o11n,,0214,,...,011,,). Because of the block diagonal struc-
ture of Qp and the assumption on r, thehapphroximaz}t can be written as
(QoA11Q8,QoB1,C1Q¢, D) where Qo = (Q9,Q3,...,QY). Since Qo is uni-
tary this shows that (A1, B, C1, D) has the claimed properties. (W]

I S IAV

5. Characteristics, Canonical Forms and Model
Reduction for Bounded-Real and Positive-Real Systems

The purpose of this section is to derive canonical forms for bounded-real
and positive-real systems in terms of bounded-real respectively positive-real
balanced systems. The approach that is taken is analogous to the one used in
the previous section to derive the LQG balanced canonical form for minimal
systems in LB™.

Analogously to the discussion in the previous section we will introduce
characteristic maps xp and xp for bounded-real and positive-real systems.
These characteristic maps are used to carry the Lyapunov balanced canon-
ical form for systems in S&'™ over to BE™ respectively P™ to introduce a
canonical form for bounded real and positive real systems. In contrast to the
characteristic map xr, the range space of xp and yp will no longer be the
set SB'™ of stable minimal systems of given McMillan degree, but rather the
subsets USP'2 and US]'5". A system (A, B,C, D) € S2™(S™™) is in U Sh's
Usmry it
L) Amaz(PQ) < 1, where P, Q are the solutions to the Lyapunov equation

AP+ PA* = -BB*, A*Q+ QA= —-C*C.

2)I-D*D>0 (D+D*>0).

The results on the parameterization of bounded-real/positive-real systems
will be used to analyze the balanced model reduction method for bounded-
real and positive-real systems.
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Throughout this section we will use the following abbreviations. Let
(A,B,C,D) beasystem. If I -D*D > 0 set Rp := I1-D*D,Sg:=I-DD*
and Ap := A+ BRZ'D*C. If the system has equal input and output dimen-
sions and D+ D* > 0set Rp:= D+ D* and Ap := A — BR;!C.

The characteristic map and inverse characteristic map for bounded-real
systems is defined as follows.

Definition 5.1. 1.) Let (A, B, C, D) be a bounded-real system. Let Y be the
stabilizing solution of the control bounded-real Riccati equation and let Z be
the stabilizing solution of the filter bounded real Riccats equation, i.e.

0=ARY +YAp + YBR5'B*Y + C*S3lC
0=ApZ + ZA} + ZC*S3'CZ + BR;' B*
with Ap + BR5'B*Y and Ap + ZC*S3'C stable. Then the system
- x5((4,B,C, D)) := (45 + BR3'B"Y, BR;} s;tc(1 - zv), D)

= ((I-2Y)™!(4p + 2C*S5'C)I - 2Y),BR;} 55 C(l - ZV), D)
is called the B-characteristic of the system (A, B,C, D).

2.) Let (A,B,C, D) be a stable minimal system in U St's and let P and
Q be the solutions of the Lyapunov equations '

AP+ PA* = -BB*, A*Q+ QA= -C*C.
Then the system

Ix5((A,8,C, D)) := (A-B(B'Q+D"C)(I-PQ)~!, BRY, Skc(1-PQ)~1, D)

= ((I=PQ)(A-(I-PQ)~ (PC*+BD*)C)(I-PQ)~, BRY, skc(1-Po)—t, D)

is called the inverse B-characteristic of the system (A, B,C,D). Here Rg :=
I -D*D and Sp := I — DD*. E ‘

.Since the analysis of the characteristic map for \bounded-real systems is
; qmte. similar to that of the characteristic map for positive-real systems, the
definition of the positive real characteristic will be given now.

5: Deﬁlr}it-:ion 5.2. 1.) Let (A, B,C, D) be a positive-real system. Let Y be the
. Stabilizing solution of the control positive real Riccati equation and let Z be
’ the stabilizing solution of the filter positive real Riccati equation, i.e.

0=ApY +YAp +YBR;'B*Y + C*RpC
0=ApZ + ZA} + ZC*R3'CZ + BR;'B*
With Ap + BRE'B*Y and Ap + ZC*R3'C stable. Then the system

xp((4,B,C,D)) == (Ap + BR;'B*Y, BR;}, RoiC(I - 2v), D)
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= (I - ZY)~Y(Ap + ZC*RF'C)(I - 2Y), BR3Y, RS (I - zY), D)

is called the P-characteristic of the system (A, B,C, D). _
2.) Let (A, B,C, D) be a stable minimal system in U .S':f;;" and let P and
Q be the solutions of the Lyapunov equations

AP+ PA* = -BB*, A*Q+QA= —-C*C.
Then the system
1 1
Ixp((A,B,C, D)) = (A-B(B*Q -C)(I - PQ)™,BR%,R3C(I - PQ)"!,D)

= (I~ PQ)(A~(I-PQ)~(PC*+B)C)(I-PQ)~, BR}, RiC(I- PQ)~!, D)

is called the inverse P-characteristic of the system (A,B,C,D). Here Rp =
D+ D~

Note that both expressions for the B-characteristic and P-characteristic
are identical because of the following Lemma.

Lemma 5.1. 1. With the assumptions as in the Definition 5.1,
(I - ZY)(Ap + BR3'B*Y) = (Ag + ZC*S5'C)(I - 2Y),

where Y is the stabilizing solution to the control bounded-real Riccati
equation and Z is the stabilizing solution to the filter bounded-real Riccati

equation.
2. With the assumptions as in the Definition 5.2,

(I - ZY)(Ap + BRp'B*Y) = (Ap + ZC*Sp'C)(I - ZY),

where Y is the stabilizing solution to the control positive-real Riccati equa-
tion and Z is the stabilizing solution to the filter positive-real Riccati
equation.

Proof. 1.) Consider the two Riccati equations,
0= ARY +YAp - YBR3'B*Y + C*S5'C,
0=ApZ + ZAy - ZC*R3'CZ + BS3'B*.

Multiplying the first equation on the left by —Z and the second equation on
the right by —Y, equating both equations and adding Ap to both sides we
obtain ‘

Ap— ZARY — ZY Ag — ZYBRG'B'Y — zc Szl

= Ap ~ ApZY — ZARY - ZC*S5'CZY — BR3'B*Y.
Canceling the term ZA%RY from either side and collecting terms, we obtain

I—-ZY)(Ap + BR3'B*Y) = (Ap + ZC*S5'C)(I - ZY).
B B
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2.) The statement follows analogously to 1.).
O

That I — ZY is invertible follows by general results on the gap between
the maximal and minimal solution to the bounded-real Riccati equation (see
e.g. (34]). The analogous argument shows that the two expressions for the
positive real characteristic are identical and well-definéd.

It is now necessary to analyze the bounded-real and positive-real charac-
teristic. The main result is Theorem 5.1 in which it will be shown that these
two characteristic maps are bijections whose inverses are the corresponding
inverse characteristic maps. To this end the following Lemmas and Proposi-
tion need to be established.

That the two expressions for the inverse B-characteristic and the inverse
P-characteristic are identical follows from the following Lemma.

Lemma 5.2. Let (A,B,C,D) be a stable minimal system and let P and Q
be such that

AP+ PA* = -BB*, A*Q+ QA= -C*C.
1. If (A,B,C,D) € USE'} then
[ - B(B'Q +D*)(I - PQ)™|iI - PQ)
=T - PQIIA~ (I - PQ)™\(PC" + BD")c),
and
14~ BB*Q(I - PQ)™|II - PQ] = (I - PQJlA~ (I - PQ)~ PC*C],

2. If (A,B,C,D) € UST" then |

[A-B(B*Q+C)(I-PQ)™|I-PQ) = [I-PQ)lA~(I-PQ)~}(PC*+B)C]

and

)

(A~ BB"Q(I - PQ)™II - PQ] = I - PQJlA - (I - PQ)~'Pc e,

- Proof. 1.) We have

[A - B(B*Q +D*C)(I - PQ)~Y|(I — PQ]
= A(I - PQ) - B(B*Q + D*C) = A— APQ - BB*Q — BD*C
= A~ [AP + BB*|Q — BD*C
=A - [-PA%)Q - BD*'C = A~ PQA — PC*C — BD*C
= [ - PQI[A— (I - PQ)~Y(PC* + BD*)).

| Adding BD*C to both sides gives the second identity.
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2.) The proof is analogous to the proof of 1.). a

In the following lemma it is shown that the characteristic and inverse
characteristic maps preserve minimality and respect system equivalence.

Lemma 5.3. 1. The B-characteristic (P-characteristic) of a bounded real
(positive real) system is stable and minimal. The B-characteristics (P-
characteristics) of two equivalent systems are equivalent.

2. The inverse B-characteristic (inverse P-characteristic) of a system in
USH's (UST'E") is minimal. The inverse B-characteristics (inverse P-
charbcteristics) of two equivalent systems are equivalent.

Proof. The proof is analogous to the proof of Lemma 4.3. (]

The following Proposition shows important connections between the so-
lutions of Riccati equations corresponding to a bounded-real (positive-real)
system and the solutions to the Lyapunov equations of its bounded-real
(positive-real) characteristic.

Proposition 5.1. 1. Let (A, B,C, D) be a bounded-real (positive-real) sys-
tem and let Y be the stabilizing solution to the control bounded-real
(positive-real) Riccati equation and let Z be the stabilizing solution to
the filter bounded-real (positive-real) Riccati equation. Let (A, B,C, D) be
its B-characteristic (P-characteristic). Then the Lyapunov equations

AP + PA* = —-BB*, A*Q+ QA= —C*C.
have solutions ‘
P=(I-2Y)'Z=2(I-Y2)"!, Q=Y -YZY.

2. Let (A,B,C,D) be a stable minimal system in USys (USy5"). Let P,
Q be the solutions to the Lyapunov equations

AP + PA* = -BB*, A*Q+ QA= -C*C.
Let (A, B, C, D) be its inverse B-characteristic (P-chamctem’stic)',. Then
Y=QU-PQ)'=(I-QP)'Q

is the stabilizing solution to the control bounded-real (positive-real) Ric-
cati equation and Z = P — PQP is the stabilizing solution to the filter
bounded-real (positive-real) Riccati equation.
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Proof. We only consider the case for bounded-real systems. The proof of the
results for positive-real systems is analogous.
1.) We first show that AP + PA* = —BB* with P = (I - ZY)~1Z =
Z(I-YZ)™' Since I — ZY is invertible this follows from,
(I-2ZY)AP+PAYI-YZ)=(I1-ZY)AZ + ZA*(I - YZ)
=(I - ZY)[As + BR3'B*Y|Z + Z|Ap + BR5'B*Y]*(I - Y 2)
=ApZ+ZAp - Z(YAp + ARY)Z
+(I - ZY)BR3'B*YZ + ZY BR5'B*(I - YZ)
= —ZC*S3'CZ - BR3'B* - Z[-YBR'B*Y - C*S;!C|Z
+(I - ZY)BRG'B*'YZ + ZYBR;'B*(I - Y Z)
=-BR3'B* + ZYBR3'B*Y Z
+(I - ZY)BRE'B*YZ + ZYBR3'B*(I - Y 2)
= —(I - ZY)BR3'B*(I - Y 2)
=—(I-2Y)BB*(I-YZ).

- Let now Q =Y - Y ZY. We are going to show that A*Q + QA= —-C*C. We
" consider '

A*Q+QA
=[Ap + BRG'B*Y]'Y(I - ZY) + (I - YZ)Y|Ap + BR3'B*Y]
=[ARY +YBRy'B'Y|(I - 2Y) + (I - YZ)[Y Ag + YBR;'B*Y)].
Using the bounded-real Riccati equation this gives, ‘
A'Q+QA=[-YAp - C*S5'CI(I - ZY) + (I -~ YZ)[- ALY — C*Sz'C]
=-C"Sp'C(I-2Y)~(I-YZ)C*S5'C~Y Ap~ A3Y +Y(ApZ + ZA%)Y
=-C*Sp'(I-2Y) - (I -YZ)C*S3'C + YBR;'B*Y + c*Szlc
+Y[-ZC*S3'CZ - BR;'BYy
=-(I-YZ)C*Sz'C(I - zY)
= -C*C.
2.) First note that
Ap = A+ BRg'D*C
= A= B(B'Q+D*C)(I - PQ)~! + BRY*R5'D*sY (I - PQ)~!
=A-BB*Q(I - PQ)~L.

Since I — QP is invertible, we have for ¥ = QU -PQ)"'=(I-QP)"1Q,
(I - QP)[ApY +Y Ap + YBR3'B'Y + C*S5'C|(I - PQ)

= (I - QP)[(A-BB*Q(I - PQ)~")*Q(I — PQ)!



168 Raimund J. Ober

+(I-QP)™'Q(A-BB*Q(I - PQ)™)
+(I - QP)"'QBRY’R5'RY*B*Q(I - PQ)™"
+(I - PQ)~*c*SY*sz1s4%¢(I - PQ)~|(I - PQ)
=(I - QP)A*Q - QBB*Q + QA(I - PQ) — QBB*Q + QBB*Q +C*C
= A*Q+QA+C*C— Q(PA* + AP + BB*)Q
=0,
we have verified the first identity. Now with Z = P(I — QP) we have
ApZ + ZAg + 2C*S5'CZ + BR;'B*
= (A-BB*Q(I - PQ)"")(I-PQ)P+P(I-QP)(A-BB*Q(I - PQ)™)*
+P(I — QP)(I - PQ)~*C*SY*S5'8Y?¢(I - PQ)~(I - PQ)P
+BRY*R5'R}*B*
= AP — APQP — BB*QP + PA* — PQPA* — PQBB* + PC*CP + BB*
= A*P+ PA" + BB* — (AP + BB*)QP + PC'CP — PQ(PA* + BB")
=0+ PA*QP + PC*CP — PQ(PA* + BB*)
= P(A*Q +C*C)P — PQ(PA* + BB*)
= —P(QA)P — PQ(PA* + BB*)
= —PQ(AP + PA* + BB*)
=0,
which shows the second identity. Since
Ap+ BR3'B'Y = A-BB*Q(I - PQ)~! + BRY*R5'RY*B"Q(I - PQ)™"
= A,

is stable and
Ag +2C*Sz'C

= A-BB*Q(I - PQ)~'+ P(I-QP)(I - PQ)~*C*SY*s51s¥*c(I- PQ)™"
=A-BB*Q(I - PQ)™' + PC*c(I - PQ)™!
=(I - PQ)A~ (I - PQ)™*Pc*C|(I - PQ)~' + PC*C(I - PQ)™!
= (I - PQ)A(I - PQ)™",

is stable, where we have used Lemma 5.2, we have shown that Z, Y are the

stabilizing solutions to the bounded-real Riccati equations.
O

We are now in a position to show that the B-characteristic and P-
characteristic are bijections.
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Theorem 5.1. The maps
xXp: BX" U Sf’:z'g
xp: P?-U S::,‘}_T

are bijections that preserve system equivalence with inverses xgl =Ixp and

o x;l =IXP.

Proof. We are only going to consider the B-characteristic. The proof for the

- P-characteristic is analogous. We first show that xp(BP™) C USP "5~ Let

n

(A,B,C,D) € BE™. It follows that Amaz(ZY) < 1, where Z, Y are the
stabilizing solutions to the bounded-real Riccati equations (see e.g. [34]). If
(A B,C,D) = xB((A, B,C, D)) and P, Q are the positive definite solutions
to the Lyapunov equations

AP+ PA* = -BB*, A*Q+ QA= -C*C,

then as a consequence of Proposition 5.1 we have PQ = ZY and therefore
that Apmayz(PQ) < 1. Clearly, I-D*D = I-D*D > 0 and hence (A4,B,C,D) €
Uskg.

We show next that Ixp(USE'E) C BE™. Let (A,B,C,D) € USH's and

let (4, B,C, D) = Ixp((4,B,C,D)). By Lemma 5.3 the system (A, B, C, D)

is minimal. In Proposition 5.1 it was shown that the two bounded real Ric-
cati equations for the system (4, B, C, D) have positive definite stabilizing
solutions Y, Z. This together with the fact that Amaz(ZY) = Amez(PQ) < 1
implies (see e.g. [34]) that (4, B, C, D) is bounded-real. ;

That xp preserves system equivalence was established in Lemma 5.3.
We are next going to show that xB is injective, or more precisely that
Ixp - xB is the identity map. Let (A,B,C,D) € Be™, let (A, B,C,D) =
xs((4, B,C, D)) and set (4;,B,,Cy,D;) := Ixg((A,B,C,D)). We have

Di=D, -
By = BRY? = BR;'?RY? = B,
Cy = Sy%c(I - PQ)™" = S512sY%C(1 - ZzY)(I - 2Y)~' = C
Ar = A-B(B*Q+D*C)(I - PQ)~!
= Ap + BR;'B*Y — BR;'*R;'*B*Y
~BRG?D*s5'*C(I - ZY)(I - ZY)?
= A+ BRg'D*C - BRz'D*C
= A,

¥

Wwhich shows that Ix5-xs((A, B, C, D)) = (A, B, C, D) and hence that 3 is

injective. We now show that x g is surjective by showing that x5 - I'xp is the
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* identity map. Let (A, B,C,D) € US}'g, let (4, B,C, D) := Ixp((4, B,C, D))
and set (A1, B1,C1,D1) := xB((4, B,C, D)). Then

Dy =D,
¢, = Rp'*C(I - 2Y) = S5'/%s¥?c(1 - PQ)~1(I - PQ) =C,
B, = BR;"* = BRY*R;'* = B,

A; = Ap + BR5'B'Y
= A-BB*Q(I - PQ)~' + BRY*R5'RY*B*Q(I — PQ)~!
= A

This shows that xp is surjective. Hence we have that y g is bijective with
inverse x5' = Ixp. O

Analogous to the situation for the L-characteristic we can also show that
the B-characteristic (P-characteristic) maps bounded-real balanced (positive-
real balanced) systems to stable minimal systems whose reachability and
observability grammians are diagonal.

Corollary 5.1. Let (A,B,C,D) € B2™ (P*) and let (A,B,C,D) be its
B-characteristic (P-characteristic). Let Y be the stabilizing solution to the
control bounded-real (positive-real) Riccati equation and let Z be the stabiliz-
ing solutions to the filter bounded-real (positive-real) Riccati equation. If P,
Q are the solutions to the Lyapunov equations

AP + PA* = -BB*, A*Q+ QA= -C*C,
and

1. if (A,B,C, D) is bounded-real (positive-real) balanced with bounded-real
(positive-real) grammian X, then

P=x(I-5%H"1, Q=2x(-2x?.
2. if (A, B,C, D) is Lyapunov balanced with Lyapunov grammian X, then
Y:z(.r—z:?)-l, Z=5(I-25%.
IfI's: SP™ — SP™ js the Lyapunoy balanced canonical form, then:
I'p:=xp'olsoxs, Ip:=xp'olsoxp

define canonical forms for B2™ and P7*. But the canonical forms are not
in terms of the respective balanced realizations as is clear from the previous
corollary. Analogously to the construction of the LQG-balanced canonical
form diagonal scaling will produce the desired result.
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Lemma 5.4. 1. If(A,B,C,D) € SB™ is such that the Lyapunov equations
AP+ PA* = -BB*, A*Q+QA=-C*C
have solutions

P=X(I-52%"' Q=2(I-5%

for some positive diagonal matriz ¥ < 1, then |
As((4,B,C,D)) := (TAT,TB,CT~", D)

withT = (I - 22)% is Lyapunov balanced with Lyapunov grammian 5.
2. If (A, B,C, D) € BE™ is such that the control (filter) bounded-real Riccati
equation has the stabilizing solution Y (Z) with

Y=X(I-2%"1 Z=3(I-x?
for some positive diagonal matriz T < 1, then
Ap((A,B,C, D)) := (TAT™,TB,CT", D)

with T = (I — £2)} is bounded-real balanced with bounded-real grammian

8 If(A,B,C,D) € P™ is such that the control (filter) positive-real Riccati
equation has the stabilizing solution Y (Z) with

Y=2(I-2%1 Z=2(I- %
for some positive diagonal matriz £ < 1, then
Ap((4,B,C, D)) := (TAT, TB,CT™ 1, D)
;z’th T = (I - £%)% is positive-real balanced with positive-real grammian

\

Proof. The proof is analogous to the proof of Lemma 4.4. 0

With the diagonal scaling maps Ag, Ap set
I'g:=Agoxg'olsoxs,
Fp = Apox;l OFsC)Xp.

Then I' (I'p) defines a canonical form for bounded-real (positive-real) sys-
tems in terms of bounded-real (positive-real) realizations.
The bounded-real balanced canomnical form and bounded-real balanced
. Parametrization result is given in the following Theorem.
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Theorem 5.2. Let (A, By, Cp, Dy) be a m-input p-output continuous-time
system of dimension n. Then the following are equivalent:

1. (Ap, Bp, Cb, D) is a bounded-real system, i.e in BE™.

2. (Ab,Bb,Cb,Db) (TAT-Y,TB,CT™}, D) for some invertible T, where
(A, B,C, D) is in bounded-real balanced form, i.e. there exist block indices
N, ..., Nk, Zk_l nj =n, parameters 1 > 01 > 09 > --- >0 >0 and k
famzlzes of step sizesm =15 > 7] > > 1-[” >0, Zi’___l ! = n,,

1< j <k, such that o

a) B = (Ff,o,"éf,o Bk, )TR , where B; € K1 %™ is positive
—— —— \,—/

nt ne
upper tmangular, 1<5< k

b) C= SB(Ul(BlB i, OUZ(BzB;)% 0,. Uk(BkBk) ,0), where U; €

. n1 'nz TLA_
KX UpU; =15, 1§ <k
c)
A(1,1) - VALY |- | AQLLK)
Ak, 1) | -+ | Alk,?) | --- | A(k,k)
where for 1 <i<k
A+ 87 (—AD)” 0
i i
AGi=| A 83 | ,
. ('—'A;‘-'—l)*
0 Al S,
for1<4,j <k, i#]
A © 0
N 0 0 --- 0
AGg) =] . . N
0 © 0
and
i. 8! isatixt] skew-hermitian matriz, i = 1,2,...,l;, 1 <j < k.
13 .A] is a positive upper triangular v} _Hx-r ma.tma: i= 1 2,...,4-
,1<j5<k
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/i e kmixmi s given by

- 1
Aij = 0? —
1

52 (0i(1=01)BiB; ~0:(1~03)(B:B;) U U; (B, B)) )
J

- B;D*U; (FJ-P';)%,
for1<4,7<k, i#7 and

Ay = —%(1 + a?)—giﬁz —EiD*Ui(E,-E:)%,' forl1<i<k.
i

Moreover, the system (A, B,C, D) as defined in (2) is bounded-real balanced
with bounded-real grammian g = diag(o1ln,,...,0kls, ), where ny,...,ng
are the block indices and 1 > gy > --- > o, > 0 are the bounded-real singular
values of the system in (2). The map I'p that assigns to each system in BR™
the realization in (2) is a canonical form.

Proof. Let (A, By, Cy, Dy) € BE™. Then xg((As, Bs, Cy, Dp)) is in USP™.
Let (A,B,C,D) := Is(xs{((As, By,Cs, Ds))) be the Lyapunov balanced
canonical form of xg((As, Bs, Cp, Dp)). Since I's := x;;l o I's o xp defines
a canonical form for B2™, it follows that

(A, B,C, D) = AB(XEI(('A’ B,C, D)))

is a bounded-real balanced system which is equivalent to (As, By, Cb, Dp).
To check that (A, B,C, D) is in the stated form, consider the Lyapunov bal-
anced parametrization of (A, B,C, D). Assume that the parametrization of
(A, B,C, D) is given using the notation that was introduced in the proof of
Theorem 4.2. The system (A, B,C, D) is Lyapunov balanced with Lyapunov
grammian X = diag(c11n,,02In,,...s0kln, ) With 1 > 07, > 09> - > 0 >
0. By Corollary 5.1 and Lemma. 5.3

(A,B,C,D) = ((I-Z%3A-BBE-C)I-I?))I-5%}
(I — 22)~#BRY, sic( - £%)-1, D))

Setting B, := =B;, 1< j <k, it follows that B = (I — ):‘2)‘53122 has

Jime?

the required structure. Since with Uj :==U;,

for 1 < j <k, it follows that C = S C(I— £?)~% has the required structure.
Note that

=(I-Z%)"1(A-B(B*E + D*C)(I - £2)~1)(I — £)%
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= (I- %) 3 A - 22} — (I - %) 4B(B* T + D*C)(I - Z2)~Y)(I - T%)}
1 -1 1
=(I-Z?) YA - %} - BR;*R;*B* s — BR;ID*s;c
=(I- 2?4 A(I - 2%} - BR;'B*> - BR;}D*S;%C.

If (A,B,C, D) is partitioned according to the block indices N1y N2, -0 Mk,
then for 1 <14,5 <k, 1 # 7,

1-o0? N
Aij = _;JAij - BiRBIB;O'j - B,R;%D*SB%CJ

This show that all entries A;; are zero with the exception of the principal
7} x 7J-subblock A;; which is given by

1-02 _ . _ .
Aij = ——-\/m;Aij - BiBjo; — B;D*U;(B;B;)?
=7 iB:B; — 0:(B:B;)2UU;(B,B;
RV ‘7:‘2‘0?(0] 3T 3\B5B;
~BiB;o; - B:D"U;(B,B;)}
! _U? B * *NLrra B B L
T o o2 (ajB’BJ' —0i(B:B;)*U; Uj(BJBj)z)
T 3
~B:Bjo; = B.D*U;(B,B;)*
1 o ek ViV N 7 (BB 1
= o2 = ‘712' (O'j(l - U;'Z)BiBJ- -oi(1 - oj)(B,-Bi)%Ui U4 JBJ-)Q)

~B:D*U;(B;B;)}
for 1 <4,j<k,i#j Forl<i<k, wehave
Ai = A — BiR5'Boy - BiR5 D33 ¢
The principal 7§ x 7} submatrix, 1 < i < k, is given by

Aii + 8} - B;B,o; - B,D*Uy(B,B; )}

20‘,’
1—02— —« i [— B = =k, 1
= ~~——1B,B; + 5} - B;B,0; — B:D*U,(B;B; )}
20’,’
2 —_— %
- L f‘*’ B;B; - B;D*U;(B;B;)? + &,
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where we set Sf =8/, fori= L,2,...,l;,1 < j < k. This show that A has
the stated form. Hence (4, B, C, D) admits the stated canonical form. The
parameterization part of the theorem is shown similar to the analogous part
of the proof of Theorem 4.2. |

Specializing the previous result to the single-input single-output case re-
sults in the following corollary.

Corollary 5.2. Let (A, by, ¢b, dp) be a single-input single-output continuous-
time system of dimension n. Then the following statements are equivalent:

1. (Ab,bs,cp,dp) is a stable minimal system.

2. (Ap,bo,cp,dp) = (TAT-!, T, cI'~1,d) for some invertible matriz T,
where (A,b,c,d) is in the following bounded-real balanced Sform with block
indices ny,ng, ..., ng, }:f=1 n; =n, |d <1:

a) b= (bl,O,...,0,b2,0,...,O,...,bk,o,...,O)T, where b; >0, 1 <3 <
N et N e e —

n n2 N
k.
b} ¢ = (slbl,o,...,0,32()2,0,...,9,...,&bk£;...,0), where 3; € K,
1 n2 g
|3:|=1:132Sk
¢
A(L1) | A(L,2) | --- A(l,k)
A(2,1) | A(2,2) | --- A(2,k)
A= - - ,
A(k,1) | A(k,2) | --- Ak, k)
where for 1 < j <k,
Qjj +iﬁ{ —O!{ S 0
. ol i
AG.5) = < o,
. ..' —a%]__l
0 oh,_, B,
for1<i,j<k i#j,
Qij 0 0
o 0 0 --. 0
ac=| . . |,
0 o 0

and
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ot >0for1<j<n—1, 1<i<k,

o =biby 51‘,31‘0'.',(1—0'?)"0_1'(1“0'?) "
a,] - "'"_111_ dl [ 0?_0? + S]d

for1<4i,j<k, i#],

b [ 2
= ——t— | —(1 + 02) + ;d" <i<k,
ai; 1—ld|2[20i( +a,)+3d]for1_z_kv
1>01>09>-->0,>0.
IfK =R, then
s;=+1, for1<i<k,
B;=0, for1<j<m, 1<i<k,
—bibj 1+ 5;8;0i04 L
i = :d < <k.
HETT g [s,-sjai-i-aj +syd|, forlsi,g<
Moreover, the system (A, b,c,d) as defined in (2) is bounded-real balanced
with bounded-real grammian Xg = diag(c1ln,,02@n,,...,0cln,). The map

I'g that assigns to each system in BL1 the realization in (2) is a canonical
form.

The positive-real balanced canonical form and positive-real balanced ~
parametrization result is given in the following Theorem.

Theorem 5.3. Let (Ap, Bp, Cp, Dp) be a m-input m-output continuous-time
system of dimension n. Then the following are equivalent:
1. (Ap, By, Cp, Dy) is a positive-real system, i.e in P
2. (Ap, Bp,Cp, Dp) = (TAT~},TB,CT"!, D) for some invertible T', where
(A, B,C, D) is in positive-real balanced form, i.e. there exist block indices
1y .e ., Nk, 2§=1nj =n, parameters L > 01 > 02 > - >0 >0 and k
families of step sizes m = Tg > 'r{ > 73’ > 2> th, >0, Ei;lrf =n;,
1 < j <k, such that
a) B = (FT,O,F?,O,...,EZ,O)TR%,, where B; € K™% is positive
e~ N~ N’
T ne nk
upper triangular, 1 < j <k.
1 —_— e — — —_—
b) C = RL(UL(B1B1)},0U,(B,B;)1,0,. .., Uk(BxBy)t,0), where U; €
Cm na n

KPxT  UrU; = Lj,1<j<k

¢)

A(L,1) AL | -~ | AQL,K)

A=|AED T 469 AR |,

A T T AGD | TAKR
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where for1 <1<k

A+ S8 (—Aby 0
AGi=| A s
: Co (AL
0 Li-1 S,

Jor1 <i,j<k,i#j

Aij 0 . 0
o 0 --- 0
AGg)=| . . .
0 0 0
and . '

i. Si]. is a1} x 1] skew-hermitian matriz, i = L,2,...,l,1<j<k.
#. Al is a positive upper triangular 77 _Hx'rij matriz, i = 1,2,...,1;—
L,1<j<k. !

ii. Ayj € KM% is given by
B 1 —
=t (0:(1-eB.B" BB UrU.(B.B)
Aij = a,-z _GJg (oj(1-0; )BiBj"o'i(l— ?)(BiB:)fUi Uj(Bij);)

+B.U;(B,B))7,
for1<4,j <k, i#j and

A~--—_-_1_..1 VAo 3= M 7] = ek 1 .
i = 20_{( +0; )BzB,_ +BiUi(BiBi)2, fOT 1<i<k.

Moreover, the system (A, B,C, D) as defined in (2) is positive-real balanced
with positive-real grammian Ep = diag(aiIn,,...,akInk), where hl cee T
are the block indices and 1 > oy > --- > 0% > 0 are the positive-real .;ingz’tlar
values of the system in (2). The map I'p that assigns to each system in PP
the realization in (2) is a canonical form. "

Proof. The proof is analogous to the proof of Theorem 5.2. a

Sgeciali'zing the previous result to the single-input single-output case re-
sults in the following corollary.

?Orollary 5.3. .Let (4,,, bp, cp, dp) be a single-input single-output continuous-
‘me system of dimension n. Then the following statements are equivalent:

1. (A,,,bp,cp, dy) is a stable minimal system.
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2. (Ap,bp,cp,dp) = (TAT1,Tb,cT-1,d) for some invertible matriz T,
where (A, b, c,d) is in the following positive-real balanced form with block
indices ny,ng, ..., Nk, Zf___l ni =n, Re(d) > 0:

@) b= (61,0,...,0,b2,0,...,0,...,bg,0,...,0)T, where b; >0, 1 <i <
S N S

m n2 Mg
k. v
b) c = (slbl,O,...,q,Sng, ,...,Q,...,gkbk,o,...,q), where s; € K,
n1 n2 nw
ls:] =1,1<i<k.
¢
A1) | AL,2) | --- | A(LK)
A(2,1) | A(2,2) | --- | A(2,k)
Ak, 1) | Ak,2) | --- | Ak, k)
where for1 < j<j
aj; +if - 0
. o if]
A(4,5) = ! 2 . ,
." _azl__,'—l
0 azlj—l 1'ﬁ1?1.,
for1<i4,5 <k, i#j,
a;; 0 0
o 0 0 --- 0
A(”’)]) = : : : )
0 0 0
and _
a;>0for1<j<n; -1, 1<i<k,
—bib; ".'s~o'.'(1—a?)—-a'~(l—a?
aij = 2Re(¢;) [8 : at-o? : - sj]
for1<i,j <k, i#j,
0= b ——1—(1+a2)—s- for1<i<k
%= T3Re(d) | 203 A =t=5
1>01>02> - >0, >0.
If K =R, then
s;==1, for1<i<k,
B; =0, for1<j<n;, 1<i<k,
aij ~b;b; )(1 - 8i03)(1 — sj05), for1<1i,j <k.

= 2d($i8j0'i + gy

- with bounded-real (positive-real) grammian 5y, where 5 = diag(Xy, Xs)
‘ 21 I ,Cr)('r'.
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Moreover, the system (A, b, c,d) as defined in (2) is positive-real balanced with
positive-real grammian Zp = diag(o11,,,021,,, ... ,Okln, ). The map I'p that
assigns to each system in P} the realization in (2) is a canonical form.

We can now use the previous parametrization results to prove a model
reduction result for bounded-real (positive-real) balanced systems.

Theorem 5.4. Let (4, B,C,D) € B2™ (Pr) be in bounded-real (positive-
real) balanced canonical form with bounded-real (positive-real) grammian X.
Let 1 <r <n. Then r-dimensional balanced approzimant (A11,B:1,C1, D) is
in BP™ (P™) and is in bounded-real (positive-real) balanced canonical form

3

Proof. The proof of this theorem is analogous to the proof of Theorem 4.3.
O

In the following Corollary a model reduction result is obtained for

.bounded-real (positive-real) balanced systems which are not necessarily in
- the respective canonical form.

Corollary 5.4. Let (A,B,C, D) be a n-dimensional bounded-real (vositive-
_real) balanced system in BE™ (P™) with bounded-real (positive-real) gram-
“mian X = diag(alIm,agL,,,...,akIn,,), oL > 09 > ---
r=mn+ny+---+n for somel < | < k. Then the r-dimensional bal-
~anced approzimant (Ayy, By, Cy, D) of (A,B,C, D) is in BP™ (P™) and is

> o > 0. Let

bounded-real (positive-real) with bounded-real (positive-real) grammian Xy =

diag(o,In,,021,,,..., oily,).

Proof. The proof is analogous to the proof of Corollary 4.3. 0

\

i 6. Concluding Remarks

In this paper we discussed canonical forms and parametrization results for

~minimal, stable, bounded-real and positive-real continuous-time systems. In

many applications, such as system identification, it is however desirable to
have the analogous results for discrete-time systems. Balanced realizations for
Corresponding classes of discrete-time systems can be defined in a completely
analogous way to the continuous-time setting, by balancing solutions to the
fespective discrete-time Riccati equations (see e.g. [19}, [2]). If DSP™ is the

et of discrete-time stable minimal n-dimensional systems with p-dimensional

Output space and m-dimensional input space, the bilinear transform
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M: SE™ — DSE™
(Am BC) CC, DC) s (Ad1 Bd') Cda Dd)

where
Ag=T-A)" (I + AL)

By=V2(I - A.)"'B.
Ca= \/Ecc(I - Ao:)—1
Dy =C,I-A)"'B.+ D,

is a bijection which preserves system equivalence. It also maps bijec-
tively continuous-time bounded-real (positive-real) systems to discrete-time
bounded-real (positive-real) systems. Since the bilinear transform also pre-
serves the various notations of balancing, it can be used to carry the
continuous-time results over to the discrete-time case to define balanced
canonical forms for discrete-time systems (see [21], [26]). In particular

DIls:=MolsoM™!

defines a balanced canonical form for the class of stable discrete-time systems
DS?2™ and
DIg:=MolgoM™!

DIp:=MoIlpoM™!

define canonical forms for the class DBE™ respectively DPT* of discrete-
time bounded-real systems in DS%™ and for the class DPJ* of discrete-time
positive-real systems in DSH™.

In this paper only we did not present any results on canonical forms for
minimum phase systems. Such results are, however, easily derived from those
for positive-real systems using the state space formulae that relate a positive
real system to the associated spectral factor ({26]). Such a parametrization for
minimum phase systems is of importance in time series analysis, where based
on an observed time series an innovative model is to be identified (see e.g. [1],
[9], [18], [17]). That balanced realizations may provide a good canonical forms
for system identification has for the first time been suggested by Maciejowski
((16}).

The parametrization results for S™, L&™ BE™ and P™ allow an anal-
ysis of the number of connected components of the associated manifolds of
linear systems ([24], [25]). A disadvantage of the balanced parametrization
is, however, that it does not inducé an atlas for the manifold of systems.
This property of the canonical form is not ideal for the implementation in
system identification algorithms where overlapping charts are of importance
({10]). That the canonical forms can be changed to lead to an overlapping
parametrization was shown in ([12]).

The importance of Lyapunov balanced realizations in the theory of Han-
kel operators and H*® control is due to the interpretation of the Lyapunov

.
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singular values as the singular values of the Hankel operator whose kernel is
given by the impulse response of the system. Let (A,B,C,D) € S2™ and set
H(t) := Ce'"B, t > 0. Then the Hankel operator with kernel H is defined by

H: L?([0,00]) — L%([0, 00])

e (Hw)() = /0 " HE + u(t)dt

This operator has rank n and we have that the singular values of H are given
by

0((7‘('7’()%) ={01,09,...,00},

where 01,03,...,0, are the Lyapunov singular values of (4, B,C, D). Us-
ing Theorem 3.2 it is therefore quite straightforward to construct finite rank
Hankel operators with prescribed singular values. This system theoretic ap-

proach was used in ([22], [23], [32]) to solve the inverse spectral problem for
Hankel operators.
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