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On Stieltjes functions and Hankel operators!
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Abstract

Let G be a Stieltjes function which is analytic in the open right half plane. It is shown that G is in H*°(RHP) if and only
if the Hankel operator Hg on H*(RHP) with symbol G is nuclear. If G is in H°°(RHP) it is shown that the non-tangential

limit of G at s = 0 equals twice the nuclear norm of Hg.

1. Introduction

We will study Stieltjes functions which are analytic
in the open right half plane. More precisely, let u be a
positive regular Borel measure on ]—oc, 0] such that
u({0}) =0 and f]_oc.()](l/(l —r))du(r) < oo, and
set

1
G(s) = / — du(r)
]—00,0] S—7r

for s €% \supp(u). This function is analytic on
%\ supp(yt) and in particular is analytic in the open
right half plane. Such functions appear in many areas
of applications and have also been studied extensively
from a theoretical point of view. In the rational case,
the application of such functions in the area of circuit
theory and systems theory has been studied in great
detail by Willems [12]. System theoretic aspects and
realization theory of these functions have been con-
sidered by Fuhrmann in [3] and more recently in [8].
In the Russian literature such functions have been
investigated in their connection to operator nodes and
operator extension problems [2, 10, 1] and [5] for their
role in the theory of differential equations.
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Given such a Stieltjes function G we would like
to analyze the Hankel operator Hg on H>(RHP) with
symbol G.

Definition 1.1. If G is an analytic function on RHP,
then the operator

H¢ : D(H;) — H*(RHP); f — P.MGRf
where
Rf(s)= f(—s),

Mg multiplication operator by G,
P projection on H*(RHP)

with D(Hg) = {f € H*(RHP) : f rational, GR/ has
non-tangential limit a.e. on iR that is in L*(iR)} is
called the Hankel operator Hg with symbol G. If Hg
extends to a bounded operator on H*(RHP), this ex-
tension is also called the Hankel operator Hy.

It follows by a theorem by Widom [11] concerning
positive definite Hankel matrices acting on /? that Hg
is a bounded operator if and only if

u([r,0]) = O(r)

asr» — 09, 8].
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Here we are interested in the question when G is in
H(RHP). It follows by Nehari’s theorem, that if G
is in H*°(RHP) then Hg is bounded, but the converse
is of course not true in general. Actually we will show
that G € H°°(RHP) if and only if H; is nuclear, i.e. if
and only if Hg is compact and Y.~ | 6; < oc, where
o; is the ith singular value of Hg.

If G is in H>®(RHP), we will also show that the
non-tangential limit G(0) of G at 0 exists and that we
have the explicit formula

o

G0)=23% 0.
i=1

1.1. Notation

The set of all real numbers is denoted by # and
the set of all complex numbers is denoted by . All
Banach spaces considered in this paper are spaces
over the complex field ¥. We denote by RHP the
open right half plane, i.e. RHP = {s € € | Re(s) > 0}.
The Hardy space H°°(RHP) is the Banach space of
functions analytic in RHP and uniformly bounded
in RHP with norm || f|lsc := Sup,¢agp |f(s)|, for
f € H(RHP). The Hardy space H*(RHP) is the
Hilbert space of analytic functions in RHP, such that
sup.ex [, f(x + 1)’ dy < oo, with norm || /]2 =

12
(sup o [ylf P y) , for f € HX(RHP).

2. Main result

We can now proceed to the proof of the main re-
sult. We will use Howland’s approach [4, 9] to the
characterization of nuclear positive Hankel matrices.

Theorem 2.1. Let u be a positive regular Borel
measure on | —oc,0] such that w({0}) = 0 and
f]_wo] (1/(1 = r))du(r) < oc. Let

1 ‘
G(s) :/ du(r), se€\supp(u).
]—o0c.0] S —7

Then
(1) the following statements are equivalent:

(a) G(0):= lim e G(s) exists and is finite.

(b) The Hankel operator Hg is nuclear, i.e.
Hg is compact and Y2, 6; < oo, where
o; Is the ith singular value of Hg, i.e. the
square root of the ith eigenvalue of H:Hg
ordered according to magnitude.

(¢) G€ H™(RHP).
(d) Ji—oe0) (1/—7)du(r) exists.
(2) If one of the conditions of (1) holds, then

am:/ —MMF2ZW—WM
]—oc,0] T

Proof. (1) By the results in [8] (see also [9] for a
similar but different construction), it follows that the
Hankel operator Hg is unitarily equivalent to the Han-
kel matrix H = (h;-; Jo<i<oo acting on [? with 4; =
Sy 1" dv(@), n >0, where v is the postive finite
Borel measure on [—1, 1] given by

' 2
(A) = —=——du(r),
v(4) /,,(,4)(l—r)2 H(r)

for A a Borel set in [—1, 1] and

t j—

([-11] = [—00,0) -—,

pi[=1.1] = [-00.0) r—

where we take p(—1) = —oc. The Hankel matrix H is

nuclear if and only if the diagonal of A is summable
[9]. This is the case if and only if

2" dw(t) < oo.
(-1

Z hoy = Z
n=0

By Lebesgue’s monotone convergence theorem

\MR

/ dv(t)y = ST dw(t)
=11 [~1.1] ~=0

Hence H and therefore Hg is nuclear if and only if
f[~l,1](lr/(1 — 2))dv(t) < oo. Since

! 2
- d
/]—X.JJ] 1 — ((] + r)/(l _ ’,.))2 (1-— r)z /«t(r)

1
= /]oo.()] > du(r),

H¢ is nuclear if and only if flioo ol
<o, .e. (b) is equivalent to (d).
This also implies that if Hg is nuclear then

fw:/ L dur),
n=1 ]—20.0]

(1/=2r)du(r)
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(d) implies (a): For s >0, »r <0, |1/(s —r)| <
1/—r. Since f]_oo’(}](l/—r)du(r) < 00, by Lebes-
gue’s dominated convergence theorem

S—r

. . 1
lim G(s) = tim [ aur)
]—00,0]

=0~ y—0~

1
z/ — du(r).
]—o0,0] =7

(a) implies (d): Since for s >0 and r <0,
1/(s — r) > 0, we have by Fatou’s Lemma

1 1
—dp(r) =/ lim inf — du(r
/]m,o] — s u(r)

y—0+

<liminf/ ! du(r)
]_

= 0.0 S —F

= IIGIEI G(s) =: G(0) < oc.

N0

Hence (d)
(d) implies (c): For se RHP and r € #, r < 0 we
have that |[1/(s — )| < |1/r|. Hence

1
ool < [ )
1-00.0] s ~ 7|

1
/ — du(r) < oo.
]—00,0] =7

Therefore G € H>(RHP).
(c) implies (d). For seRHP, rc#, r <0,
1/(s — r) > 0. Hence by Fatou’s Lemma

1 1
/ —du(r) :/ lim inf du(r)
00,01 —F ]-o0.0] S ST

y—0+

1
< liminf
mint [ )

y—0+

N

s =04+

(2) Follows by the identities established in
(1).

Note that part (2) of the theorem generalizes a for-
mula for rational functions [6, 7] to the general situa-
tion discussed here.
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