

Systems & Control Letters 27 (1996) 275-277

On Stieltjes functions and Hankel operators¹

Raimund J. Ober*

Center for Engineering Mathematics EC 35, University of Texas at Dallas, Richardson, TX 75083, USA

Received 28 May 1995; revised 20 November 1995

Abstract

Let G be a Stieltjes function which is analytic in the open right half plane. It is shown that G is in $H^{\infty}(RHP)$ if and only if the Hankel operator H_G on $H^2(RHP)$ with symbol G is nuclear. If G is in $H^{\infty}(RHP)$ it is shown that the non-tangential limit of G at s=0 equals twice the nuclear norm of H_G .

1. Introduction

We will study Stieltjes functions which are analytic in the open right half plane. More precisely, let μ be a positive regular Borel measure on $]-\infty,0]$ such that $\mu(\{0\})=0$ and $\int_{]-\infty,0]}(1/(1-r))\,\mathrm{d}\mu(r)<\infty$, and set

$$G(s) = \int_{1-\infty,01} \frac{1}{s-r} \,\mathrm{d}\mu(r)$$

for $s \in \mathcal{C} \setminus supp(\mu)$. This function is analytic on $\mathcal{C} \setminus supp(\mu)$ and in particular is analytic in the open right half plane. Such functions appear in many areas of applications and have also been studied extensively from a theoretical point of view. In the rational case, the application of such functions in the area of circuit theory and systems theory has been studied in great detail by Willems [12]. System theoretic aspects and realization theory of these functions have been considered by Fuhrmann in [3] and more recently in [8]. In the Russian literature such functions have been investigated in their connection to operator nodes and operator extension problems [2, 10, 1] and [5] for their role in the theory of differential equations.

Given such a Stieltjes function G we would like to analyze the Hankel operator H_G on $H^2(RHP)$ with symbol G.

Definition 1.1. If G is an analytic function on RHP, then the operator

$$H_G: D(H_G) \to H^2(RHP); f \mapsto P_+M_GRf$$

where

$$Rf(s) = f(-s),$$

 M_G multiplication operator by G,

 P_{+} projection on $H^{2}(RHP)$

with $D(H_G) = \{ f \in H^2(RHP) : f \text{ rational, } GRf \text{ has non-tangential limit a.e. on } i\Re \text{ that is in } L^2(i\Re) \}$ is called the *Hankel operator* H_G with symbol G. If H_G extends to a bounded operator on $H^2(RHP)$, this extension is also called the Hankel operator H_G .

It follows by a theorem by Widom [11] concerning positive definite Hankel matrices acting on l^2 that H_G is a bounded operator if and only if

$$\mu([r, 0]) = O(r)$$

as
$$r \to 0$$
 [9, 8].

^{*} E-mail: ober@utdallas.edu.

¹ This research was supported by NSF grant: DMS-9304696.

Here we are interested in the question when G is in $H^{\infty}(RHP)$. It follows by Nehari's theorem, that if G is in $H^{\infty}(RHP)$ then H_G is bounded, but the converse is of course not true in general. Actually we will show that $G \in H^{\infty}(RHP)$ if and only if H_G is nuclear, i.e. if and only if H_G is compact and $\sum_{i=1}^{\infty} \sigma_i < \infty$, where σ_i is the *i*th singular value of H_G .

If G is in $H^{\infty}(RHP)$, we will also show that the non-tangential limit G(0) of G at 0 exists and that we have the explicit formula

$$G(0) = 2\sum_{i=1}^{\infty} \sigma_i$$
.

1.1. Notation

The set of all real numbers is denoted by \mathcal{R} and the set of all complex numbers is denoted by \mathscr{C} . All Banach spaces considered in this paper are spaces over the complex field \mathscr{C} . We denote by RHP the open right half plane, i.e. $RHP = \{s \in \mathcal{C} \mid Re(s) > 0\}$. The Hardy space $H^{\infty}(RHP)$ is the Banach space of functions analytic in RHP and uniformly bounded in RHP with norm $||f||_{\infty} := \sup_{s \in RHP} |f(s)|$, for $f \in H^{\infty}(RHP)$. The Hardy space $H^{2}(RHP)$ is the Hilbert space of analytic functions in RHP, such that $\sup_{x \in \mathbb{Z}} \int_{\mathbb{Z}} |f(x+iy)|^2 dy < \infty$, with norm $||f||_2 =$ $\left(\sup_{x \in \mathcal{X}} \int_{\mathcal{A}} |f(x+iy)|^2 dy\right)^{1/2}$, for $f \in H^2(RHP)$.

2. Main result

We can now proceed to the proof of the main result. We will use Howland's approach [4, 9] to the characterization of nuclear positive Hankel matrices.

Theorem 2.1. Let μ be a positive regular Borel measure on $]-\infty,0]$ such that $\mu(\{0\})=0$ and $\int_{1-\infty.01} (1/(1-r)) \, \mathrm{d}\mu(r) < \infty$. Let

$$G(s) = \int_{1-\infty} \frac{1}{s-r} \, \mathrm{d}\mu(r), \quad s \in \mathscr{C} \setminus supp(\mu).$$

Then

- (1) the following statements are equivalent:
 - (a) $G(0) := \lim_{s \in \mathcal{F}} G(s)$ exists and is finite.
 - (b) The Hankel operator H_G is nuclear, i.e. H_G is compact and $\sum_{i=1}^{\infty} \sigma_i < \infty$, where σ_i is the ith singular value of H_G , i.e. the square root of the ith eigenvalue of $H_G^*H_G$ ordered according to magnitude.

(c)
$$G \in H^{\infty}(RHP)$$
.

(d)
$$\int_{1-\infty,01} (1/-r) d\mu(r)$$
 exists.

(d) $\int_{]-\infty,0]} (1/-r) d\mu(r)$ exists. (2) If one of the conditions of (1) holds, then

$$G(0) = \int_{]-\infty,0]} \frac{1}{-r} d\mu(r) = 2 \sum_{n=1}^{\infty} \sigma_n = ||G||_{\infty}.$$

Proof. (1) By the results in [8] (see also [9] for a similar but different construction), it follows that the Hankel operator H_G is unitarily equivalent to the Hankel matrix $H = (h_{i+j})_{0 \le i,j < \infty}$ acting on l^2 with $h_i = \int_{[-1,1]} t^n \, dv(t)$, $n \ge 0$, where v is the postive finite Borel measure on [-1, 1] given by

$$v(A) := \int_{\rho(A)} \frac{2}{(1-r)^2} \, \mathrm{d}\mu(r),$$

for A a Borel set in [-1, 1] and

$$\rho: [-1,1] \to [-\infty,0]; \ r \mapsto \frac{t-1}{t+1},$$

where we take $\rho(-1) = -\infty$. The Hankel matrix H is nuclear if and only if the diagonal of H is summable [9]. This is the case if and only if

$$\sum_{n=0}^{\infty} h_{2n} = \sum_{n=0}^{\infty} \int_{\{-1,1\}} t^{2n} \, \mathrm{d}\nu(t) < \infty.$$

By Lebesgue's monotone convergence theorem

$$\sum_{n=0}^{\infty} \int_{[-1,1]} t^{2n} \, \mathrm{d}\nu(t) = \int_{[-1,1]} \sum_{n=0}^{\infty} t^{2n} \, \mathrm{d}\nu(t)$$
$$= \int_{[-1,1]} \frac{1}{1-t^2} \, \mathrm{d}\nu(t).$$

Hence H and therefore H_G is nuclear if and only if $\int_{[-1,1]} (1/(1-t^2)) dv(t) < \infty$. Since

$$\int_{[-1,1]} \frac{1}{1-t^2} d\nu(t)$$

$$= \int_{]-\infty,0]} \frac{1}{1-((1+r)/(1-r))^2} \frac{2}{(1-r)^2} d\mu(r)$$

$$= \int_{]-\infty,0]} \frac{1}{-2r} d\mu(r),$$

 H_G is nuclear if and only if $\int_{]-\infty,0]} (1/-2r) d\mu(r) < \infty$, i.e. (b) is equivalent to (d).

This also implies that if H_G is nuclear then

$$\sum_{n=1}^{\infty} \sigma_n = \int_{]-\infty,0]} \frac{1}{-2r} \,\mathrm{d}\mu(r).$$

(d) implies (a): For s > 0, r < 0, $|1/(s-r)| \le 1/-r$. Since $\int_{]-\infty,0]} (1/-r) \, \mathrm{d}\mu(r) < \infty$, by Lebesgue's dominated convergence theorem

$$\lim_{s \in \mathcal{I} \atop s \to 0^{-}} G(s) = \lim_{s \in \mathcal{I} \atop s \to 0^{-}} \int_{]-\infty,0]} \frac{1}{s-r} \, \mathrm{d}\mu(r)$$

$$= \int_{]-\infty,0]} \frac{1}{-r} \, \mathrm{d}\mu(r).$$

(a) implies (d): Since for s > 0 and r < 0, 1/(s-r) > 0, we have by Fatou's Lemma

$$\int_{]-\infty,0]} \frac{1}{-r} d\mu(r) = \int_{]-\infty,0]} \liminf_{\substack{s \in \mathcal{I} \\ s \to 0+}} \frac{1}{-r} d\mu(r)$$

$$\leq \liminf_{\substack{s \in \mathcal{I} \\ s \to 0+}} \int_{]-\infty,0]} \frac{1}{s-r} d\mu(r)$$

$$= \lim_{\substack{s \in \mathcal{I} \\ s \to 0+}} G(s) =: G(0) < \infty.$$

Hence (d)

(d) implies (c): For $s \in RHP$ and $r \in \mathcal{R}$, r < 0 we have that $|1/(s-r)| \le |1/r|$. Hence

$$|G(s)| \leq \int_{]-\infty,0]} \frac{1}{|s-r|} \, \mathrm{d}\mu(r)$$

$$\leq \int_{]-\infty,0]} \frac{1}{-r} \, \mathrm{d}\mu(r) < \infty.$$

Therefore $G \in H^{\infty}(RHP)$.

(c) implies (d): For $s \in RHP$, $r \in \mathcal{R}$, r < 0, 1/(s-r) > 0. Hence by Fatou's Lemma

$$\int_{]-\infty,0]} \frac{1}{-r} \, \mathrm{d}\mu(r) = \int_{]-\infty,0]} \liminf_{\substack{s \in \mathscr{I} \\ s \to 0+}} \frac{1}{s-r} \, \mathrm{d}\mu(r)$$

$$\leq \liminf_{\substack{s \in \mathscr{I} \\ s \to 0+}} \int_{]-\infty,0]} \frac{1}{s-r} \, \mathrm{d}\mu(r)$$

$$= \lim_{\substack{s \in \mathscr{I} \\ s \to 0+}} G(s) \leq ||G||_{\infty}.$$

(2) Follows by the identities established in (1).

Note that part (2) of the theorem generalizes a formula for rational functions [6, 7] to the general situation discussed here.

References

- [1] N. Akhiezer and I. Glazman, Theory of Linear Operators in Hilbert Space (Dover, New York, 1993).
- [2] M. Brodskii, Triangular and Jordan Representations of Linear Operators, Vol. 32 (Translations of the American Mathematical Society, 1971).
- [3] P. Fuhrmann, *Linear Systems and Operators in Hilbert Space* (McGraw-Hill, New York, 1981).
- [4] J. Howland, Trace class operators, *Quat. J. Mat. Oxford* **22** (1971) 147–159.
- [5] I. Kac and M. Krein, On the spectral functions of the string, Amer. Math. Soc. Transl., Series Z, 103 (1974) 19–102.
- [6] S. Mahil, F. Fairman and B. Lee, Some integral properties for balanced realizations of scalar systems, *IEEE Trans. Automat. Control* 29 (1984) 181–183.
- [7] R.J. Ober, The parametrization of linear systems using balanced realizations: relaxation systems, in: *Linear Circuits*, *Systems and Signal Processing: Theory and Applications* (Elsevier, Amsterdam, 1988) 313–320.
- [8] R.J. Ober, System theoretic aspects of completely symmetric systems, submitted.
- [9] S. Power, Hankel Operators on Hilbert Space, Research Notes in Mathematics, Vol. 64 (Pitman Advanced Publishing Program, 1982).
- [10] E. Tsekanovskii, Accretive extensions and problems on the Stieltjes operator-valued functions relations, in: *Operator Theory: Advances and Applications*, Vol. 59 (Birkhäuser, Basel, 1992).
- [11] H. Widom, Hankel matrices, Trans. Amer. Math. Soc. 127 (1966) 179-203.
- [12] J. Willems, Realization of systems with internal passivity and symmetrical constraints, J. Franklin Inst. 301 (1976) 605-621.