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A system theoretic formulation of NMR experiments
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A detailed system theoretic description is given of NMR experiments including
relaxation effects. The approach is based on an exact and analytical solution to the mas-
ter equation. It is shown that NMR experiments can be described in the framework of
bilinear time-invariant systems. This description is used to derive closed-form expres-
sions for the spectrum of one- and two-dimensional experiments. The simulations show
that the approach accounts for the frequency dependence of a pulse, distinguishes
between soft and hard pulses and also explains artifacts such as axial peaks.

1. Introduction

In this paper we present a formulation of NMR experiments in the language of
systems theory. Systems theory has played a major role in such areas as control the-
ory, econometrics and signal processing (see e.g. [1-3]). In particular, state spage
methods have proven to be very suitable tools for the modelling and analysis of a
large array of applications. One of the main reasons for the success of these meth-
ods is that using state space theory many problems can be translated to equivalent
problems in linear algebra and can therefore be analyzed using the powerful theore-
tical and numerical methods that are available in linear algebra.

Whilst system theoretic ideas have also played a role before in NMR, (see e.g.
[4]), most of the influence that systems theory had on NMR has been through the
input-output formulation. However, the authors of this paper are not aware ofa
systematic discussion of state-space methods applied to NMR problems, especially
for 2-D experiments. In [5,6] some state space methods are used to analyze 1-D
NMR experiments from a statistical point of view. With the results that are pre-
sented in this paper we hope to be able to provide the basis for the application of sys-
tem theoretic methods to the design and analysis of NMR experiments.

A general description of NMR experiments is presented in the following section
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where it is shown that the dynamics of an NMR experiment can be represented by
a bilinear system. The method which is used to reformulate the master equationas a
bilinear system is the well-established technique of the translation of the density
matrix formulation to the language using superoperators in Liouville space (see
e.g. [4]). An important point is, however, that the state of the bilinear system at a
particular time is given by the difference of the density matrix at this time and the
equilibrium density matrix. Use of this setup allows us to incorporate relaxation
into the description and allows for the use of stability results to analyze NMR
experiments. It should, however, be stressed that our description using the frame-
work of bilinear systems is mathematically equivalent to the framework which uses
the master equation as it is usually used in the analysis of NMR experiments.

In the following section we discuss the solution of the bilinear system given a con-
stant input. The solution that we present is exact and given through basic functions
of the system matrices. In this way we use an approach which is different from
approaches which use approximate solutions to the master equation, such as those
which are based, for example, on the product operator formulism. Of course, due to
the above mentioned equivalence of the bilinear system with the master equation,
the exact solution that we use is equivalent to an exact solution of the master
equation.

Next we introduce a general description of 2-D experiments. We obtain a closed
form representation of the spectrum of a 2-D experiment using the matrices that
characterize the spin system and the particular experiment. We also discuss approx-
imations such as the pulse approximation and the low-relaxation approximation.
Using these approximations, simplifications for the expressions of the spectrum
can be obtained. In our description none of the otherwise standard assumptions
have to be made such as the high-temperature approximation.

In the final section standard experiments are discussed within our framework.
We consider a 1-D basic pulse experiment, 2-D J-spectroscopy and a COSY
experiment. The experiments are chosen to serve as basic examples for the tech-
niques that are developed in this paper. In the 1-D experiment, the simulated spec-
trum shows the loss of power of the 90 degree pulse away from resonance. The
examples were coded in MatLab and only a few lines of code were necessary to pro-
duce the simulations.

In this paper we will make repeated use of basic identities on the Kronecker prod-
uct ® and the vec operation (see e.g. [7]). The vec operation takes a matrix 4 and
produces a vector by stacking the columns of 4 below one another. We denote by
AT the transpose of the matrix 4 and by 4* the adjoint of the matrix, i.e. 4* is the
transpose together with a complex conjugation of the matrix entries.

2.Basicsetup

In this section we present an abstract approach to the basic formulation of
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NMR experiments. Starting with the master equation we derive what we call the
master system in error vector representation, which is a bilinear system. We then
discuss general state space transformations, which are equivalent to changing the
coordinate system from the laboratory frame to the rotating frame. The role which
stability plays in the context of relaxation is then pointed out. Stability of the spin
system, while being a natural concept, is also an important technical property for
the subsequent analysis of pulse experiments. Given this abstract framework it is
then quite straightforward to write down a closed form representation of the
Fourier transform of a 1-D experiment.

In defining the framework within which we are working we start with the master
equation (see e.g. [4]) and combine with it the measurement equation, i.e. we
assume that the dynamics of a spin system are described by the so-called master
system:

6(f) = —ilH (1), o(t)] = Rlo(t) — oeg], 0(t0) = 00,
y(t) = trace(Mo(t)), t=t.

Here o(t) is a n x n matrix-valued function. The # x n matrix-valued function
H(1), t >ty is the Hamiltonian of the system. The n X n matrix o, is the equilibrium
density matrix. The symbol R stands for the relaxation super operator. The n x n
matrix M is called the measurement matrix. The first equation is the well-known
master equation. The second equation is called the measurement equation. The
function y is the function of measured values, i.e. the signal given by the induced
magnetization.

ASSUMPTIONS

Throughout the paper we will make the following assumptions.

e Al: The Hamiltonian H () is a n X n hermitian matrix-valued function which
can be decomposed into two hermitian parts H; and Hz, i.e. H(t) = Hy + Hy(t),
t=>to, where H| is a constant matrix and H,(?) = Z] 1 4j(2) Hyj, with Hjj a con-
stant hermitian matrix, and u; a scalar real-valued function,j = 1,2,...,k. Then
the master system can be written as

k
a(t) = —i[H,o(t)] — iZuj(t)[sz, o(t)] — Rlo(t) — 0eg), (to) = 00,
j=1

y(t) = trace(Mo(t)), t=t.

e A2: The n x n equilibrium matrix o,, is hermitian and commutes with H, i.e.
[H 1) O'eq] =0
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 A3: If R is the matrix representation of R, i.e. Rvec(c) = vec(R(0)) for each
n X nmatrix o, then we assume that R is hermitian.

For our purposes it is often more convenient to rewrite the master system as a
system whose underlying differential equation is a vector differential equation,
rather than a matrix differential equation. This transition is simply a rewriting of
the basic equations in the language of superoperators. To this effect we define

v(t) :=vec(a(r)), t=to,

Veg 1= vec(Teg)

Ay:=—i(IQH, —HI Q1I),
Nj:=—iI®Hyj—Hy, ®I), j=1,...,k,
¢ := (vec(MT))T,

(the identity matrix I has the same dimensions as the matrices H; and H,;,

J=1,...,k),andlet Rbe the matrix representation of the super operator R. By sim-
ple application of results on Kronecker products and the vec operation we have that
the master system is equivalent to

k
o(t) = Ayv(1) + (Z “j(t)Nj) v(t) — R(v(f) — veg), v(to) = w,
j=1

y(1) =cv(t), t>1.

This system is called the master system in vector representation. A further equivalent
representation of the master system is obtained if we consider the error function e
between vand v, i.e. fort>1,

e(t) == v(t) — vgg.

Using the assumption that [Hi, 0.y = 0 , which is equivalent to Ayveg =0, we
obtain

k k
e(r) = de(r) + (Z uj(t)Nj) e(t) + 3 _buy(r), e(to) = e,

j=1 Jj=1

y(t)zce(t)+007 t>t0’
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where A := A, — R, bj:= Njveg, j = 1,...,k, e = v(0) — veg and co = cv,,. This
system is called the master systemin error vector represen tation. Note thatif ¢ = 0,
this system is a standard continuous-time bilinear state space system (see e.g. [8]).
We will therefore also refer to e as the state of the system, uy, . . ., ux as the inputs of
the system and y as its output. Note thatco = 0 is equivalent to the equilibrium state
of the system not generating an observable signal, which is the case in all standard
experimental setups. From now on we therefore make the assumption

o Adico=cv, =0.

In the following proposition it is shown that a suitable coordinate transforma-
tion can simplify the bilinear equation. This operation is simply a generalization of
the standard transformation of the laboratory frame to the rotating frame.

PROPOSITION1
Let

k k
e(t) = Ae(t) + (Z “j(t)Nj) e(t) + ) _bu(t), el(to) =eo,
=1 =1

y(t) =ce(t), t=h,

be a master system in error vector representation, with the above assumptions
and notation. Let T(f) := eF¢~), t>1,, for some n x n matrix F and set x(1)
= T(t)e(t), t=10. If T(t)AT}(t) = A, for t>1o, then the master system in error
vector representation is equivalent to the following system with state vector x:

k k
i) = (A + F)x(t) + Y w(OTONT (0)x(0) + Y_ T(ba(0),
j=1 j=1
x(to) = Xp = €p,
y(t) = cTHDOx(r), t=t0.
Proof
Note that T(t) = FT(t), t>t,. Since x(f) = T(t)e(), it follows that x(r)
= T(f)e(t) + T(1)é(t) = Fx(t) + T(1)e(t), t=to. Therefore,
k k
x(t) = Fx(f) + T(t)e(t) = Fx(1) + T(2) [Ae(t) + Z u;(t)Nje(t) + ijuj(t)]
j=1 j=1

= Fx(t) + T()AT () T (t)e(t) + zk: u,-(t)T(t)N,-T"(t)T(t)e(t)
j=1

Jj=




52 R.J. Ober, E.S. Ward/ System theory and NMR experiments
k
+ Y T()bju;(t)
J=1

= (4+F)x(t) + Xk; w() TN, T ()x(t) + i T(bu(r), t>t0,
Jj=1 j=1

with x(to) = T(Io)e(to) = e(to) = ¢gand
y(t) = ce(t) = cT~H ()T (e(t) = cT (O)x(t), t=19. S

As is stands, this result is not very useful. But in a concrete situation it will turn
out that, as would of course be expected from the very standard results on changing
the coordinate system, for specifically chosen inputs and matrix F, the terms
Sk w(OT(N;T-}(t) and 3, T (£)bju;(f) are time invariant.

The stability of the master system in error vector representation will be an impor-
tant technical tool in later sections. A condition for the stability of the system is
given in the following Proposition. The system is called stable if for each e,
etey — 0ast — oo. The system is therefore stable if in the absence of any input, the
state vector decays to zero. This means that the system approaches equilibrium as
t — o0.

PROPOSITION 2
Assume that 4, commutes with R. Then the system is stable if all eigenvalues of
R arein the open right half plane.

Proof
This follows from standard stability results (see e.g. [9]). O

If we assume that the system is in state e at time 0 and no input is applied for
t >0 the measured signal is given by

y(t) = ce'ey, t=0.

If the system is stable we can apply the Fourier transform and we obtain for
weR,
[o <]
0

Fy)w) = / ce'tege ' dt = c( / e'("""‘”)dt) €
0

= (4 — iwl) )M |®)ey = c(iwl — 4) ey .
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3.Inputs and pulses

We now present an abstract solution to the master system in error vector
representation given a constant input. The importance of this result is that the
solution is given in terms of the underlying system matrices and can therefore be
easily computed using a numerical linear algebra package such as MatLab.

The relevance of analyzing the system given a constant input is that in a suitable
rotating frame (Proposition 1) the system with certain sinusoidal inputs is
constant.

PROPOSITION 3
Let

k k
X(f) = Ax(r) + (Z Njuz(t)) x(t)+ Y bu(t), x(to) = xo,
j=1 j=1
y() = ex(t)

be the master system in error vector representation. Let the inputs to the system
be given by

uf, to<t<T,
ui(t) =
0, ¢>T,
whereu) € R. Assumethat 4, := 4 + Yo%, #!N; is invertible, then
[e(t—to)A,, _ I]A;lbp + e(t—to)A,,xo , L <t<T,
x(1) =

=D ([T — [|471h, + eT0Mrx), t> T,

=v* 0
whereb, = 3, bju;.

Proof
Note that for £, <t < T we have

x(t) = Ax(t) + (i uj-’]\/}) x(t) + Xk: bju}) = Apx(t) + b,.
=1 =1

Hence
t
x(t) = / e 4rp,ds + e 4r g,
to

Since A, is invertible we therefore have
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x(f) = ("P(- A;l)[e"AP I b, + =)y 5,

— [e(t—to)A, _ I]Ap_lbp + e(t-—to)A,,xO .

The expression for ¢ > T follows immediately from here. O

Note that a similar expression was derived in [6]. In NMR calculations often
the approximation

k
4= N
=1

is used (see e.g. [4,10]) while a pulse is applied. We call this approximation the pulse
approximation. Given the pulse approximation the solution in the previous propo-
sition is simplified.

PROPOSITION 4

Let the notation and assumptions be given as in the previous proposition.
Moreover, assume the pulse approximation and that b; = Njveg, j = 1,...,k, for
some vector ve,. Then

(
(e(r—ro)(zj; ) _ IYugg + L0 BN n<t<T,

x(1) = 4 ) "
o= ((e(T"t")(Zj=1 “,ONJ) _ I)veq +e(T—to)(Zj=1 “})Nj)xo’) , t>T,
\

( k
e(""°)(2-=1 “;-)Nj) ('Ueq + xO) — Ve t<t< T ,

ﬁ k -
\ :

Proof ’
The proof follows by verification. O

4, Two-dimensional experiments

Using the general setup introduced in the previous sections we can now analyze B
two dimensional pulse experiments. In this section we will present a general theory -
of these experiments from our point of view. The aim is to derive a general represen-
tation of the spectrum of a 2-D experiment in terms of the underlying system
matrices.
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We assume that the spin dynamics are governed by the master system in error
vector representation,

k k
é(r) = Ae(r) + (Z u,-(t)N,-) e(r) + Y _bu(r), e(to) =eo,
j=1 =1

y() =ce(t), t=t.

We define a family of input vector functions ((#"), ) in the following way. For
eachz; >0letf;,i = 1,2, 3, beaninput defined on a time interval A;,i = 1,2, 3, such
that if the system is in state e; at the beginning of the interval A;, i = 1,2, 3, then the
system will be in state |

e = T,-e1+e?, i=1,23,

at the end of the interval where T3, is a constant matrix, and e? is a constant vector,
i =1,2,3. That this representation is justified follows from Proposition 3 and
Proposition 4 since a combination of pulses and evolution periods leads to such an
affine transformation of the state of the system.

For t; >0 the input #" is then defined by

( f1i, 0<t<A,,

0, A<t<A+kty,

S, D+ ki <t<A +Ax+ kit

0, Ar+M+kt <t<A+A+1,

fi, Al+M+4H <t<AI+M+M3+1,

LO, tZ2A1+ A+ A3+ 11,

where 0 <k; <1 is fixed and determined by the particular experiment. If k&; = 0 or
ki = 1 then the obvious simplifications can be given. For each input !, #; >0, the
output y of the system is measured for 1> A; + Ay + Az + ¢ and set for £, >0

s(t, 1) =y(A1+ Do+ As+ i+ 1) =cx(A1 + Da+ A3+ 11+ 1)
Foreach #; >0 the state x;, of the system at time A; + Ay + A3 + ¢ is given by
Xy = T34 (T4 (T xo + e(l’) + eg) + eg

and
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x(A; + Ay + Az + 1 + 1) = ex,

= "4 (T34 (T4 (Tixo + €)) + €3) + €3)

= TN ATFM AT xg + €24 T3 A Ty 11 e

+ T340 1 4.
Therefore
s(t, 1) = ce'(Tze" 4 (T4 (Tyx0 + €0) + €3) + €5)
= ce T3 AT, M AT xy + ce 1 T3 A Ty 114 ed
+ ce® ATy 4ed 4 ce™ el .

We would now like to calculate the two dimensional Fourier transform of s,

G(wl,wz) = / / s(t, tz)e_i"w’e_ithdtldtz
0 0
= c(iwnl — A) " [T3P(w))(T1x0 + €3)

+ T3(iw11 — sz)'leg + 50((4)1)82] )

where P(w) =[5~ 214 Toef114e~ 11 dry and 6o(w1) stands for the delta function
with mass concentrated at 0. If xo = 0, which is the case if the experiment is started
at equilibrium, then

G(w,ws) = cliwad — A) " [T3P(w;)ed + Ts(iwn I — kaA) ™€) + So(wr)ed] -
If no pulse is applied during the evolution period, i.e. if T; = I and &} = 0, then

G(wr,ws) = c(iwa] — )" [T3(iwnd — )™ (Tixo + €)) + So(wr)ed] -
Moreover, if xo = 0, then

G(wy,ws) = cliwad — A) ™ [T3(iwn I — A)7' el + By (wr)el].
If on the other hand there is no third pulse, then 75 = I and eg = 0, therefore

G(wy,wz) = c(iwad — A) 7 [P(wi)(Tixo + €3) + (iwnd — kad) ')
Moreover, if xo = 0 then

G(wy, ws) = c(iwy] — A) " [P(w1)ed + (iwn] — kod) '€l .

In the following lemma a result is given which shows that P(w;) can be computed
using only linear algebra operations. Therefore G(wi,w,) can be calculated by only
using matrix computations.
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LEMMA 1
Let A be a n x nmatrix such that the eigenvalues of 4 are all in the open left half
plane. Then for k{, k» >0such thatk; + k; = 1and 7 ann x nmatrix, the integral

P(w) — /oo etsz TetklAe—itwdt
0

exists and
vec(P(w)) = [iwl — (I ® (kzd) + (k1AT) @ I)] ' vee(T) .
If T = I, then P(w) = (iwl — 4) ' ,w e R.
Proof
Note that since the eigenvalues of 4 are in the open left half plane the integral

P(w) exists for allw € R. By a standard result ([11]) on Lyapunov equations P(w) is
the unique solution to the Lyapunov equation

(k2 A — iwl)P(w) + P(w)(k1d) = -T.
The solution X to the matrix equation

AX+XB=C
can be writtenas[7,11]

vec(X) = (I ® A+ BT ® I)"'vec(C).
Hence

vec(P(w)) = [I ® (koA — iwl) + (k1 AT) ® I vec(—T)

= [iwl — (I ® (k24) + (k1AT) ® )] 'vec(T).
Thecase for T = I is obvious. (]

If we assume the pulse approximation and also assume that during periods A,
A,, A; only pulses are applied and no evolution takes place, then we obtain

s(t1,t2) = ce™! (T3 (ek”"‘ Ty (4T, (X0 + Veq)
- ekltlAveq + veq)—ekztlAveq + veq) - Ueq) ]

t1, 1, =0. This expression will be more compact if we also assume the low-relaxation
approximation (in the evolution period), by which we assume that in the above
expression

— HA —
—ek"'Aveq + v =0, —eat Veg + Veg =0.

This approximation can be justified from the following point of view. In an actual
experiment measurements are only obtained for a finite range of 7| values. If in this
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range relaxation is not significant, then the approximation has some validity.
Therefore, with both the pulse approximation and low-relaxation approximation

S(tl, L) = ce”4 [T3ek2t‘A Tzek‘tlA Ti(x0 + ’Ueq) — 'Ueq] ,

1, t; =0. In a final simplification step we assume that
celvg, =0, 1>0.

If A, and R commute this means that

A IR

0 = ce'vyy = ceRe'bouey = ceRvyy, 120,

where we used that e'4v,, = v, for >0, as A,v., = 0. We call this the uniform
relaxation assumption. This assumption means for example that if the magnetiza-
tion is coherently aligned with the z-axis, then relaxation to the equilibrium will not
introduce any observed magnetization. With this additional assumption we have
that

S(tl, tz) = cetzA T3ekzt'A Tzek't‘A T (X() + 'Ueq) ,
t1, t» =0. The two dimensional Fourier transform of s is then given by
G(wl, wz) = C(i(.uzl - A)_l T3P(w1)Tl (xo + ’Ueq) R

wy,ws € R

5. Example

In this section we consider basic NMR experiments for a weakly coupled spin
system consisting of two nuclei of spin 3. The three experiments which we consider
were chosen 50 as to be simple examples of various aspects of the abstract computa-
tions which were performed earlier.

5.1. MASTER EQUATION

In this subsection we set up the standard master equation for a weakly coupled
two spin system.

Let v, 2 be the two gyro-magnetic ratios, s;, 52 the shielding constants, By the
strength of the strong magnetic field in which the spins are precessing and &
Plancks’ constant divided by 27. Let J be the coupling constant and let

P_101 P_I[O —i P_1[1 0
*2101 0] Y 2li o) P20 -1

be the Pauli matrices. Set Iy :=PxQD, I,2:=h®Px, I,; =P, DL, I, := L, ® P),
Ly :=P,® L, I; := I, ® P,. Then the Hamiltonian that stands for the effects of
the strong magnetic field is as usual given by
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= v1(1 — s1)ABoL;1 + 721 — 82)ABol + JIn 1

n+um+J 0 0 0
1 0 vi—v—J 0 0
__2— 0 0 —l/1+l/2—-.7 0 ’
0 0 0 —n—mn+J

where v; := y,(1 — 5;)Bo, i = 1,2 and J = 4. Also let Hy := vihl,q + Y2kl and
Hj; := ikl + vkl and assume that the input signals are given by

uy(t) := By cos(wy(t — to + At)),

u(t) := By sin(w,(t — to + A1),

t>1tg, where Ar>0 is a fixed time interval and B is the strength of the radiofre-
quency field. The measurement operator is given by M = Iy + L + il + il)5.
The equilibrium density matrix ¢%? is given by

1 -1
0 i =——— et =: diag(c$!, 0%, 0%, 0%
trace(edt™h) glor's 03", 05", 94,

where k is the Boltzmann constant and T the temperature. Moreover let R be an
unspecified relaxation superoperator. Then the master system can be written as

2
&(t) = —i[H1,0(N)] =i ) ui(1)[Haj o(t)] = Rlo(t) — 0], 0(t0) = 00,
=1

y(t) = trace(Mo(t)), t=t.

Note that in our setup the condition A2 is satisfied, i.e. [H}, 0eg] =0
5.2. MASTER SYSTEM IN ERROR VECTOR REPRESENTATION

We now proceed to translate the above master system to the master system in
error vector representation. We have that

A=—iI®H —H ®I) -
=- ldlag(O,"Vz —.7,—1/1 —'jv_yl — I, +‘7701—V1 + v, -1
+ 7,0+ T, — 1,0, -y + T, v + 13,1 ~J,v, = 7,0) —
where R is the matrix representation of the relaxation superoperator R (we denote
by diag(dy, . . ., d,) the diagonal matrix whose diagonal entries are dy, . . ., d,). For
simplicity of presentation we are going to assume that the matrix representation R

of the relaxation superoperator is diagonal, i.e. R = diag(ri,r,...,r16). This
implies also that the system matrix A4 is diagonal. Moreover we have that
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c(vee(MTHT =(0110000100010000).
By the representation of the equilibrium density matrix 0*4 it follows that
Veg 1= vec(o®?) = (697,0,0,0,0,0%,0,0,0,0,05,0,0,0,0,05)" .

Therefore ¢y := cv,; = 0 and assumption A4 is satisfied. Hence the spin system
can be described by the following master system in error vector representation:

2 2
é(r) = Ae(r) + (Z uj(t)Nj) e(t) + Y _ buy(1),
Jj=1 j=1

e(tg) = eg := vec(0p) — Vegq

y() =ce(t), t=t. T

5.3. STATE SPACETRANSFORMATION

Letfort>t
T(t) — e—(t—to)iu,,P, ® e—(t—to)iu,P, ® e(t—to)iw,,P, ® e(t—to)iprz .

With the state r(¢) := T(¢)e(), 1>ty the master system in the ‘rotating frame’ is
therefore given by

i(t) = A,r(t) + BINr(t) + b,By, r(to) =ro:=eo,
y(1) = er()r(0)
where
A, :=idiag(0,v, — w, +7,n - wp +T,n+1 — 2wy, —12
+wp—.7,0,1/1 — 1,1 —wp—j,—-ul +wp—.7,—ul
+u2,0,1/2—wp—.7,—1/1 — vy + 2p, —11 +Wwp
+7, - +w,,+.7,0) —R,

—ih
N, :=—-(nk® QA + L ® QANRL —7L®Q(-AN®L

-MNn Q(_At) ® 18) ’
by := Nr'veq,
e (t) = elt=0e >4y

with
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0 !
Q(t) = (eiwpt 0 ) , t=0.

Note that B; = 0 describes the situation when no input is applied. In what follows
we will consider the following modification of the measured signal

V() = ey () 121y,

This has the advantage that the frequency range of the signal will be shifted from
the MHz range to the Hz and kHz range. The corresponding master system in error
vector representation is then given by

#(t) = A;r(2) + BuN,r(t) + b,By, r(to) :==rno,

(@) =cr(t), t=t.

5.4. SIMULATIONS

We are going to treat the homonuclear case and therefore assume that
7 = 72 =: 7. We first consider a basic one-dimensional experiment in which a sin-
gle 90-degree pulse around the y-axis is followed immediately by the detection per-
iod. We assume that the spin system is in equilibrium at #p =0, i.e. xo =0. In
Figs. 1(a), 1(b) and 1(c) the results of simulations are shown for a proton spectrum
on a 500 MHz instrument. The coupling constant J is J = 30 Hz. In Fig. 1(a) a
simulation of one-dimensional spectrum is given which is calculated using the pulse
approximation. In Fig. 1(b) the same experiment is simulated using the accurate
calculations based on Proposition 3 using a strong short pulse. The simulation of
the same result is shown in Fig. 1(c) for a soft long pulse. The lack of uniformity of
the excitation over the frequency range is clearly seen. The pulse approximation is
equivalent to one of the approximations which are assumed in the product operator
formulism and in most treatments using density matrix calculations. It is well
known that simulations based on such approximations predict uniform excitation
over the whole frequency range. It is clearly established in Fig. 1(c) that a simula-
tion based on the analytic solutions presented in Proposition 3 describes the fre-
quency dependence of the excitation and distinguishes between the effects of strong
and soft pulses.

In order to demonstrate the use of Lemma 1 we are going to show a simulation
of a simple homonuclear J-spectroscopy experiment, where a 90-degree initial
pulse around the y-axis is followed by a 180-degree pulse around the y-axis in the
middle of the evolution period. In Fig. 2 the spectrum is shown for a weakly coupled
spin system with J = 30 Hz. The simulation was performed using the accurate for-
mulation for the spectrum.

In the final simulation we consider a basic COSY pulse sequence, i.e. an initial
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Fig. 1(a). One-dimensional spectrum of a weakly coupled two spin system with coupling constant
J = 30 Hz, simulated using the pulse approximation.
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Fig. 1(b). Same spin system as in Fig. 1(a), simulated using accurate calculations, with a short strong
pulse.
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Fig. 1(c). Same spin system as in Fig. 1(b), simulated using accurate calculations, with a long soft
pulse.
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Fig. 2. Two dimensional J-spectroscopy of a weakly coupled two spin system with coupling constant
J = 30 Hz. The spectrum was simulated based on the accurate calculations.
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Fig. 3(a). Two dimensional COSY spectrum of the same system as in Fig. 2. The spectrum was simu-
lated based on the accurate calculations.
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Fig. 3(b). Two dimensional COSY-45 spectrum of the same system as in Fig. 3(a). The spectrum was
simulated based on the accurate calculations.
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90-degree pulse followed by another 90-degree pulse following the evolution
period.

In Fig. 3(a) the COSY spectrum is shown for a weakly coupled spin system with
J = 30 Hz. It is the same system which was considered in the simulation of the J-
spectroscopy experiment. Note the strong axial peaks in the spectrum. The calcula-
tion was performed using the accurate description, i.e. without the various approxi-
mations. In Fig. 3(b) a COSY-45 experiment is simulated for the same system.
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