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SYSTEM THEORETIC ASPECTS OF COMPLETELY SYMMETRIC
SYSTEMS

RAIMUND J. OBER

System theoretic aspects of completely symmetric systems will be discussed both
for discrete time and continuous time systems. Realization theoretic results are
presented. Necessary and sufficient conditions are given for the boundedness of
the observability and reachability operators. The asymptotic, exponential /power
stability of a completely symmetric system is characterized through the support
of its defining measure. For continuous time systems the boundedness of the
system operators is analyzed.

1 Introduction

In this paper we consider completely symmetric systems. Finite dimensional completely
symmetric systems or relaxation systems have received a considerable amount of attention
(see e.g. [17]). The primary aim of this paper is to examine this class of systems in the
infinite dimensional case. In the Russian literature such systems have been investigated in
their connection to operator nodes and operator extension problems ([4], [16]). Transfer
functions of completely symmetric systems are Stieltjes functions for which there is a rich
literature, see e.g. 1] for their role in operator theory and [7] for their role in the theory of
differential equations. System theoretic investigations of subclasses of this class of systems
can be found for example in [6}, [3], [9]..

In this paper we present a system theoretic study of this class of systems without addi-
tional assumptions such as the boundedness of the input and output operators for continuous
time systems. We investigate both discrete time and continuous time systems. Particular
emphasis is placed on the analysis of system theoretic properties through properties of the
transfer function. The reachability and observability of the systems is characterized through
the so-called defining measure of the system. It will be shown that a completely symmetric
system has bounded reachability and observability operator if and only if the defining mea-
sure is a Carleson measure. The exponential stability of a completely symmetric system is
characterized through the support of the defining measure. A realization result is also given.

Discrete time systems are analyzed first in Section 2. Continuous time systems are then
investigated in the subsequent section. The bilinear transform that was studied in [10] will
be used to translate several of the discrete time results to a continuous time setting.
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1.1 Notation

The set of all real numbers is denoted by R and the set of all complex numbers is denoted
by C. If A C R then x4 denotes the characteristic function of the set 4, i.e. x4(A) =1 for
Aedand xa(A)=0for xe R\ A

All Banach spaces considered in this paper are spaces over the complex field C. Given
a Hilbert space our convention is that the scalar product is linear in the first component
and anti-linear in the second component. For H;, H, Hilbert spaces, L(H,, H;) denotes
the space of bounded linear operators T : H, — H,. For an operator T on a Hilbert
space the spectrum is denoted by o(T). The point spectrum is denoted by 0,(T). For
an operator T' the Hilbert space adjoint is denoted by T*. The open unit disk is denoted
by D, ie. D = {z € C | |z| < 1}. The exterior of the closed unit disk is denoted by
D., i.e. D, = {z € C| |2] > 1}. We denote by RHP the open right half plane, i.e.
RHP = {s € C | Re(s) > 0}.

For a measurable function F : @ — C we say that the integral f, fdv exists if [, | f|dv <
co. For a regular positive Borel measure v on a subset 4 of R, the Hilbert space of functions
on A that are square integrable with respect to v is denoted by L?(4,v).

The Hardy space H®(RHP) is the Banach space of functions analytic in RHP and
uniformly bounded in RHP with norm ||f||e := sup,cpyplf(s), for f € H®(RHP).
The Hardy space H*(RHP) is the Hilbert space of analytic functions in RH P, such that

1
Sup=c® Jrlf(z + iy)’dy < oo, with norm ||f|l, = (sup:e;: Jr |f(:c+iy)|2dy)2, for f €
H2(RHP).

2 Discrete time systems

A quadruple (Aq, Bg, C4, Dy) of operators is called a discrete-time system with input space
U, output space Y and state space X with U, Y, X being separable Hilbert spaces if A4
is a contraction on X, By € L(U,X), Cy € L(X,Y), Dy € L(U,Y). The system is called
admissible if —1 ¢ g,(A44) and limysy a1 Ca(AT + Ag) 7! By exists in the norm topology. We
denote by DZ’Y the set of admissible systems with state space X, input space U and output
space Y. :

We now define what we mean by completely symmetric discrete time systems. In this
paper we only consider single input single output systems, i.e. systems such that U and Y
are one-dimensional.

Definition 2.1 A discrete-time (admissible) single input single output system (Aq, By, Cy, Dg)
is called completely symmetric if it coincides with its dual system, i.e. if

Aa= Ay Ba=Cy Dy= Dy,
and +1 ¢ 0,(Aqg).

The following proposition gives a characterization of the transfer function of a completely
symmetric system.
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Proposition 2.1 Let (44, By, C4, Dy4) be a completely symmetric discrete time system with
transfer function Gy(z) = Cy(zI — Ag)'By+ Dy, z € D,. Set G(2) := L[G4(2) — Gy(c0)],
z € D. Then there exists a unique positive finite Borel measure v on [—1,1] such that for
z€D,

1

-,y l-—tz

Gi(z) = i 2" = dv(t),
n=_)

and for z € D,,

Gal) = [ !_ivt) + D

-1, 2=t
with ap = fi_y y t"dv(t), n > 0.

Moreover,
1
v({-1,1}) =0,
2
lim a, = 0.
n—o0

In particular, if Aq = [i_, ytdE(t), is the spectral decomposition of Aq with Borel o-algebra
Q) then v is the Borel measure given by

v(w) =< E(w)B4,Bs >, we.
Proof: We have for z € D,

1 1 .
Gilz) = ;Cd(;I — Ag)"'By = Cy(I — zA4)"'By

o0 o o0
=CyY (zAs)"Ba= Y Cyz"A3By= Y Bjz"ALBy

n=0 n=0 n=0
— * N n — — n n ,
= ’§)de /[_m]t dE(t)By = ;:%z /[_m]t d < E(t)Bq4, By >
xR [
= "gz /[_m]t du(t) = /[-1,11 g S hdu(t)

1
- /[—1,1] 1- tzdu(t)’

where Ay = f_, ;jtdE(t), is the spectral decomposition of A4 with Borel o-algebra Q and v

is the Borel measure given by v(w) =< E{(w)By, By >, w € Q. This measure is finite and
positive since for w € Q

v(w) =< E(w)By, B4 >=< E(w)Bjy, E(w)Bs >= ||E(w)B4l|*> < || B4l)?

and ;
v(w) =< E(w)By, By >2> 0.
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Assume that there is another positive finite regular Borel measure u such that

= t"dt=/ "du(t), n>0.
= f gt oy b WD), n2
Let f be a continuous function on [-1, 1]. By Weierstrass’s theorem for e > 0 there exists a
polynomial p,(t) = -%_, A.#" such that SUPyer_13) | f(¢)—pa(t)| < €. Then since Ji-1,1) Padps =
f[-m) Pndv,

)
- = - n - - nd
' (—l,l] fdu /[—l,l] fdul I/[~I,1] fdu -/[—1,1] b dﬂ ( [—1,1] fdu /[.—-l,l] P V)I

< [f = Paldp + |f — paldv
[_1’1]

- ["'111}
<eu([-1,1]) + ev([-1,1)).
Hence Sy fdp = Ji-1,y fdv for all continuous functions f on [~1,1]. Therefore, by the
Riesz representation theorem ([13], p. 40) y = v.
1.) Note that since by assumption +1 ¢ 0,(A4), it follows ([14], Theorem 12.29) that
E({-1,+1}) = 0. Hence y({~1,+1}) =< E({-1,+1}B;, By >=0.
2.) Clearly, |t"| < 1 and lim,_,o, t" = 0 for ¢ €]-1,1[. As »({-1,1}) = 0 we have forn > 0

that
= t"du(t) = t"du(t) = t"dv(t).
an /[] 20, /[1 u(t) /][ du(t)
Since the measure v is finite we have by the Lebesgue dominated convergence theorem that

an t"dv(t) -5 0

- ]_1»1[
as n — oo. (m}

Given a completely symmetric discrete-time system or its transfer function we call the
measure v constructed in the previous Proposition the defining measure of the system or
transfer function.

We now show that functions with the above integral representation are analytic outside
the support supp(v) of the measure v, where supp(v) is the complement of the largest open
set A with v(4) = 0.

Lemma 2.1 Let v be a finite positive regular Borel measure on [—1,1] such that v({-1,+1}) =
0. Then the function f given by

sz(z)::/ 1

-1y z—t¢

dv(t)

is analytic on C \ supp(v).

A consequence of this Lemma is that if Ga(z), z € D,, is the transfer function of a
completely symmetric system (Aq, By, C4, Dg), G4 can be extended analytically to C\ supp(v)
where v is the defining measure of the system. The continuation has the same integral
representation

Gale)= [ 2

11z = tdl/Ft) + Dy,

z € C\ supp(v).
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2.1 Stability

A discrete-time system (Ag, By, Cy, Dy) is called asymptotically stable if limy,_,o, Az = 0 for
z € X and power stable if there exists 0 < r < 1 and 0 < M < oo such that [|AZ|| < Mr"
forn=0,1,2,....

Lemma 2.2 Let (Ag, By, Cy, Dy) be a completely symmetric discrete-time system. Then
1. (Aq, B4, Cq, Dy) is asymptotically stable.
2. (Aq, Ba, Cy, Dy) is power stable if and only if 0(A4) C [—a, a] for some 0 < a < 1.

Proof: Let Az = [_,;)AdE(}) be the spectral representation of A4. Note that as +1 ¢
0p (Ag), we have that E({—1,1}) = 0. Let = be a vector in the state space X. Then for
n >0,

n.2 _ n12 — 2n
Mgl = [ WPAEL) = [ IVIdEL0),

as E({-1,1}) = 0. Since [A\®| — 0, as n — o0, it follows by the Lebesgue dominated
convergence theorem that ||A%z||? — 0. Hence the system is asymptotically stable.

It follows from the formula for the spectral radius, i.e. p(Ag) = infa>1 ||A3||*/* that the
system is power stable if and only if the spectral radius is strictly less than 1. This is of
course the case here if and only if 6(A4,) C [—¢, ] for some 0 < < 1. (m]

2.2 Observability and reachability

For a discrete-time system (Aq, By, Ca, Da) the observability operator Oy is defined by Oy :
D(Og) = I%; 7 — (C4AlT)n0, where D(Og) = {z € X | (C4A3z)n30 € I3 }. The system is
said to have bounded observability operator if D(O4) = X in which case Oy is a bounded
operator. The system is called observable if it has a bounded observability operator with
zero kernel. The reachability operator R4 of the system is defined by Ry : D(R4) — X;
Ra((uihi<ick) = T2 AiBu;, where D(Ry) is the set of finite sequences in (3. The system
is said to have bounded reachability operator if R4 extends to a bounded operator on I. If
such an extension exists, the extension will also be called the reachability operator and will
be also be denoted by R4. The system is called reachable if it has a bounded reachability
operator with dense range.

For power stable systems it is easily seen that they have bounded observability respec-
tively reachability operators.

Lemma 2.3 A power stable completely symmetric discrete-time system has bounded reach-
ability and observability operator.

Proof: The result is easily verified. u]

In order to give a characterization of the boundedness of the observability and reachability
operators for general completely symmetric systems we need to introduce the notion of a
Hankel operator. Let h, € C for n = 0,1,... and consider the operator H : [}, — [} given
by the matrix H = (hatm)nm>o0.
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Lemma 2.4 Let (A4, By, Cq, Dy) be a completely symmetric discrete-time system. Then
D(0Oy) is dense in X, O4 = R} and the Jollowing statements are equivalent.

1. The system has bounded reachability operator.
2. The system has bounded observability operator.

3. The Hankel operator H is bounded where H is given by the matriz H = (CaAH By)ij»o.
Moreover, the system is observable if and only if it is reachable.

Proof: The proof follows from duality arguments and the fact that H = OR. a

The following theorem is now an immediate consequence of Widom’s theorem that char-
acterizes the boundedness of positive Hankel operators (see [11]).

Theorem 2.1 Let (Aq, By, Cy, Dy) be a completely symmetric discrete-time system with
defining measure v. The system has bounded reachability respectively observability opera-
tor if and only if v is a Carleson measure on (—1,1] which is the case if and only if

Y, 1)) + v([-1,—e]) =01 - a)
asa— 1.

Proof: The theorem follows by combining the previous Lemma with Widom's theorem ([11],
Theorem 1.6). a

We can now address the problem of the observability and reachability of completely
symmetric discrete time systems.

Theorem 2.2 Let (Aq, By,Cq,Dy) be a completely symmetric discrete-time system with
bounded reachability and observability operator. Let Ay = Ji-1 AdE(Q), be the spectral de-
composition of Ay with spectral decomposition E defined on the Borel o-algebra Q on [-1,1].
Then the system is reachable/observable if and only if

Nuea ker(CyE(w)) = {0}.
Proof: We show that N,eq ker(C4E(w)) = ker(0;), where @y is the observability operator
of the system. Let = € ker(Qy), then for each n > 0,y € Y,

0 =<y, C4Afz >=< Cgy, A3z >=< Cyy, /[_l ’ MAE(\)z >= /[-.1 . AE, cay(A).

By Weierstrass’s theorem and the Riesz representation theorem ([13], Theorem 6.19) this
implies that the complex Borel measure w ~» Ezcpy(w) =< Ciy, E(w)z > on [-1,1] is the
zero measure, i.e. < y,CqE(w)z >= 0 for all w € Q and therefore z € ker(C4E(w)) for all
w € €. Hence z € Nyen ker(C4E(w)).
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Let now z € Nyen ker(C4E(w)). Then fory €Y, w € Q,
E. c;y(w) =< Ciy, E(w)z >=<1y, CyE(w)x >=0.

Hence E; g;y(w) =0 forallw € 2 and n 20

_ n . = * n = * n = n .
0= /[_ml)\ dE, c34(N) =< Cy, /[_l | NAEQ)z >=< Cly, Az >=<1, Catz >

1

This implies that C44%z = 0, n > 0, and therefore Oyz =0, i.e. T € Ker(0y). o

2.3 Realization theory

In Proposition 2.1 we showed that the transfer function of a discrete time completely symmet-
ric system has a particular integral representation that is determined by the defining measure
v. The defining measure was shown to be a positive finite Borel measure on [-1,1] such that
v({-1,1}) = 0. In the following realization result we are going to show that the converse
is also true. Given a positive finite Borel measure v on [—1,1] such that »({-1,1}) =0
we establish the existence of a completely symmetric discrete time system whose defining
measure is v.

Theorem 2.3 Let v be a positive finite Borel measure on [—1,1], such that v({~1,1}) = 0.
Let c € C and let

Gule) = [ !

7o tdu(t) +c

for z € C \ supp(v). Let X = L*([—1,1},v) and define
By:C— X, U > X[-1,1]%;
Ag: X - X, T+ Mz;
Cd = B;,

Dd =C,

where (Mz)(t) = tz(t), t € [-1,1].
Then

1. (A4, Ba,C4, Dy) is a completely symmetric discrete time system whose transfer function
1] Gd.

2. The system (Ad, Bs, Ca, Da) has bounded reachability or observability operators if and
only if v is a Carleson measure.

8. If v is a Carleson measure then the system is observable and reachable.
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Proof: 1.} Clearly B; and A4 are bounded operators and Ay is self-adjoint. Since o{4,) C
[-1,1] and A4 is self-adjoint, Ay is a contraction. As v({-1, 1}) 0, we have that g,(A44) C
] = 1,1[. Hence the system has a transfer function G} which is analytic on D,, where for
2€D,,and u,y €C,

< y,Gi(2)u >=<y,(Cu(z] — Ag)"'By+ Dy)u >=< Byy, (zI — Ag)"'Bqu > + < y, Dgu >

=< X(-1,0% (2] = M) 'xeigu > +yci = y du(t)ﬁ + yeit = yGq(z)a.

-1z —
Hence the system is a realization of G4. Clearly the system is completely symmetric.
2.) This is a consequence of Theorem 2.1 .
3.) Let v be a Carleson measure. The system is reachable and therefore also observable if
range(R) is dense in L?(v). Let u = (ug, u1, . ..,us,0,0,...) then for t € [-1,1],

(Ru)(t) = (3 ABus)(t) = (3 Mixpoqu)(t) = 3t

i=0 =0 i=0

Hence range(R) is dense in L?(v) if the polynomial functions (¢');>o span L?(v). But this
is the case by ([13], p.69) and Weierstrass’s theorem. That the system is observable follows
by duality. m]

An observable and reachable discrete-time system (A4, By, Cy4, D4) with reachability op-
erator R and observability operator O is called par-balanced if O*O = RR". The duality
properties of a completely symmetric observable and reachable system imply that such a
system is par-balanced.

The following proposition is due to N. Young ([18]) and shows that a par-balanced real-
ization is unique up to a unitary state-space transformation. ,

Lemma 2.5 Let (A4, By, C4, Dy) be a reachable and observable par-balanced realization of
a transfer function G. Then all reachable and observable par-balanced realizations of the
transfer function G are given by (UAU*,UBy, C4U*, Dy), where U is unitary.

Hence we have the following Lemma.
Lemma 2.6 Let G4 be the transfer function of a completely symmetric discrete time sys-
tem. Then (Aq, Ba,Cy,Dy) is a completely symmetric realization of G4 if and only if
(Ag, By, Cy4, Dy) is a par-balanced realization of G,.

In the following Lemma the spectral minimality of a completely symmetric system is
established.

Corollary 2.1 Let v be a positive finite measure on [—1,1] such that v({-1,1}) = 0 and
assume that v is a Carleson measure. Let

1
Gal2) = /[—1,1] z
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for z ¢ supp(v). If (A4, B4, Cy4, D) is a par-balanced realization of G4, then
0(Ga) = 0(Ad) = supp(v),

where 0{Ggq) denotes the set of singularities of Gy, i.e. those points in the complez plane at
which Gq has no analytic extension. Moreover, the spectrum of Aq has only simple multi-
plicity.

Proof: The realization of Theorem 2.3 is par-balanced. Since by Lemma 2.5 all par-balanced
realizations are related to this realization by a unitary transformation, we can assume without
loss of generality that (Ag, Bg, Cy, Dy) is the realization of Theorem 2.3. This realization is
reachable, observable and Ay is self-adjoint. Therefore, it is spectrally minimal (see [3],[5]),
ie. 0(Gq) = 0(Ay) and by ([12], p.229), o(A4) = supp(v). Moreover, by ([12], p.232), Ad
only has simple spectrum.

In the following corollary the stability question is addressed again.

Corollary 2.2 Let v be a positive finite measure on [—1,1] such that v({-1,1}) = 0 and
assume that v is a Carleson measure. Let

mm:[ ),

-11] 2

for z ¢ supp(v). If (A4, By, Cy4, Dq) i3 a par-balanced realization of G4, then the system is
asymptotically stable. It is power stable if and only if

supp(v) C [~a, q
for some0 < a< 1.

Proof: This follows immediately from the previous corollary and Lemma 2.2. o

3 Continuous-time systems

In this section we will consider continuous time completely symmetric systems. To study
these systems in appropriate generality we need to deal with systems with unbounded oper-
ators. Such systems are now defined.

If A is the generator of a strongly continuous semigroup of contractions on the Hilbert
space X then D(A) is a Hilbert space with inner product induced by the graph norm ||z||% :=
llz||? + l|Az||%, = € D(A). Denote by D(A)) the Hilbert space of antilinear functionals on
(D(A), 1| - 4) with norm [If|I" := supyyy, <1 |f(z)], f € D(A)). We then have the rigged
structure

D(4) € X ¢ D(A).

For the adjoint (A*, D(A*)) we have similarly D(4*) C X C D(A*)"). We can now define
admissible continuous-time systems (see [10]).
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Definition 3.1 A quadruple of operators (A, B, C., D,) is called an admissible continuous
time system with state space X, input space U and output space Y, where X , U, Y are
separable Hilbert spaces, if

1. (Ac, D(Ac)) is the generator of a strongly continuous semigroup of contractions on X.
2. B.:U — (D(A)O, ]| -|I') is a bounded linear operator.

8. Ce : D(C;) = Y is linear with D(C;) = D(A.) + (I — A)'B.U and Cypa, :
(DA N - la.) = Y is bounded.

4. C(I — A))7'B. € L(U,Y).

5. A, B, C. are such that lim sem Ce(sI — A;)"'B, = 0 in the norm topology.

We write C',é’y for the set of admissible continuous time systems with input space U,
output space Y and state space X.

In order to define what we mean by a completely symmetric continuous time system we
need to recall the definition of the dual of an admissible continuous time system (see [10]).

Definition 3.2 Let (A, B, Cc, D.) € Cy¥. Then the dual system (4., B, C., D,) of (A., B,, C., D,)
1s given by

1. (A, D(A.)) = (A2, D(A})), the adjoint operator of (A, D(A.)).
2 B::Y = D(A)); y o B(y)]] :=< v,Cu() >.
3. Cc: D(Co) » U, D(C.) = D(A,) + (I — A)~'B.Y, where C.zq is defined by
< u,Cezg >= Be(u)[zo)
forzo € D(AL), ue U, and |
< Ceto,u >=< yy, Co(I — A.)"'Bou >
Jorzo=(I-A)"'By, yo€Y,ucl.
4 De:=D!:Y U,

The dual system of an admissible system is admissible. If the continuous time transfer
function G(s) : RHP — L(U,Y) has an admissible realization (4, B, C,, D.), then the dual
system (A, B, C, D) is a realization of the transfer function G(s) := (G(3))*, s€ RHP.

We now define a completely symmetric continuous-time system. As in the discrete-time
case we restrict ourselves to systems with one dimensional input and output spaces.

Definition 3.3 An admissible system (A, B, C., D.) with one dimensional input and out-
put space is called completely symmetric if

Ac = Acy Bc = Cq: Dc = bc
and 0 ¢ 0,(A.), where (Ac, B.,C., ﬁ,_.) is the dual system.

.
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Our method of analysis of continuoys time completely symmetric systems is mainly based
on relating these systems to discrete time completely symmetric systems. This will be done
by the bilinear transform between continuous time and discrete time admissible systems.
For a discussion of the background of this technique and the particular formulation which
we will need see [10].

In the following theorem (see [10]) we introduce the map T : DY¥ — C%¥ that trans-
forms discrete time systems to continuous time systems.

Theorem 3.1 Let (A4, B4, Cs, D) € DYY, then T((Aa, B, Ca, Da)) =: (Ac, B,Ce, D) €
C%Y, where the operators A, Be, Ce, D, are defined as follows:

1 A= (T+A) " HAg=1) = (Aa~D)(I+As)"Y, D(A.) :== D{(I+A4a)~ 1) This operator
generates a strongly continuous semigroup of contractions on X.

2. The operator B, is given by:
B.:=V2(I + Ay)"'By: U = D(A2));
u > V2(I + Ag) "' Ba(u)[z] :=< Ba(u), (I + AL Hz) >x .
3. The operator C, is given by:

Ce:D(C) = Y5 o limVIC, + 497z,

A>1
where D(C;) = D(Ac)+(I—A.)*B.U. On D(A.) we have Cypa,) = V2Ca(I+Aq)~".
4. D.:= Dy — lim,}‘—;ll Ca(M + Ad)—le.

Moreover, let the admissible discrete time system {Agq, By, C4, Dy) be a realization of the
transfer function

Ga(z) : D, = L(U,Y),
i.e. Ga(2) = Cy(2] — Ag)"'By+ Dy for z € D,. Then

(AC) ch CC7 Dc) = T((Ad, Bd) Cdy Dd))
s an admissible continuous time realization of the transfer function

1+s

Gu(s) = G,,( ) . RHP = L(U,Y),
s € RHP.
The inverse map is considered in the next theorem ({10]).

Theorem 3.2 Let (A, B,,C.,D.) € c’,ﬁ"’, then T~Y((A,, B.,C., D.)) := (A4, B4,Ca, D,) €
D%’y, where the operators Aq, By, Cy4, Dy are defined as

1. Ag:= I+ A)(I - Ae)7Y, and for z € D(A.) we have that Aqx = (I — A)~H(I + A.)z.
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2. By:=V2(I - A;)"'B..
8. Caq:=V2C(I — A)™".
4. Dy:=C.(I - A)"*B. + D..

Moreover, let the admissible continuous time system (A, Be, Ce, D.) be a realization of the
transfer function G, : RHP — L(U,Y), i.e. G(s) = Ce(sI — Ac)'B.+ D., s € RHP.
Then

(Ad) Bdi Cd1 Dd) = T-l((Acv BC) Cm Dc))

is an admissible discrete time realization of the transfer function

z-1
Ga(z) = G. (Z+ 1) ,  zeD.

The following Lemma shows that T maps completely symmetric discrete-time systems
to completely symmetric continuous-time systems.

Lemma 3.1 Let (A4, Ba, Ca, D4) be an admissible discrete-time system and let (A, B, Cc, De):=
T((A4, Ba, Ca, Da)). Then (A, Be,Ce, D.) is completely symmetric if and only if (Ad, Ba, C4, Dy)
is completely symmelric.

Proof: This follows immediately from the fact that the map T maps the dual system of
(Ad, Ba, Ca, Dg) to the dual system of (Ac, Bc, Ce, D) (see [10]). Moreover, +1 ¢ g,(Aq) if
and only if 0 ¢ 0,(A.). Note that —1 ¢ 0,(A4) by the definition of admissibility. u

In order to be able to define the bilinear transform for a discrete-time completely sym-
metric system (Ag, By, Cy, Dg) the following admissibility condition (Section 2). has to be
satisfied. It is required that the limit lim:»} Cya(MI + Ag) !By exists. If

Ga(z) = Cy(zI — Ad)_le + Dy = / !

dv(t) + Dy,
(~1,32—t¢ v(t) + Da

z ¢ C \ supp(v), is the transfer function of the system this is equivalent to requiring that

1
. —1 T
lim CaM + 497 Ba = lim /[_m] T
exists.

The following Lemma gives a necessary and sufficient condition for a discrete time com-
pletely symmetric system to be admissible.

Lemma 3.2 Let (A4, By, Cy, Dg) be a completely symmetric discrete-time system with trans-

fer function
1

z—1

Gulz) = Ca(zl — Ag)"'By+ Dy = /[_‘ 7O + D

B




System theoretic aspects of completely symmetric systems 245

z & C\ supp(v), where v is the defining measure. Then the system is admissible, i.e.
lim »1 Ca(M + Ag)~ By exists if and only if the integral

1
A—l,l] 1+ tdu(t)

ezists. Moreover, if fi_y ) %_Hdu(t) exists then

. -1
?;:Cd(AI+Ad) Bd--—/1 ]1+t dv(t).
Proof: Let for A > 1, t € [-1,1]
1
Ml =317
Clearly hy(t) > 0 for t € [-1,1]. Let A; > A, > 1. Then for ¢ € [-1, 1]
1 1 A2 — A

ha (1) = ha,(t) =

- < 0.
A+t A+t (Al +t)(/\2+t)

Hence as A — 1, A > 1, h, monotonically increases to h;. Assume that

/[“]Ht ()—/ ]1(t)du(t)

exists. Then by Lebesgue’s monotone convergence theorem
. -1 T —
?in Ca(M + Ag) By = 1:_;.11 [ 0d() = /[_m] hy(t)du(t)

and the system is admissible.
Now assume that the system is admissible, i.e. lim 21 Ca(M] + Ag)~' By exists and is
finite, then by Fatou’s Lemma

< — = = imi
0< /[-1,11 1+tdu(t) /[_l’xlhl(t)du(t) /[_wlu;nznllnfh,\(t)du(t)

S tiginf ha(t)d(t) = lim Cy(M + Ag)™ By
’ A=

A-ol

Therefore f_, T-lﬁd"(t) exists. This completes the proof. a

In the context of the boundedness condition of Theorem 2.1 the following result is of
interest for admissible discrete time systems.

Lemma 3.3 Let v be a positive finite Borel measure on [—1,1] such that v({-1}) =0 and
such that fi_ y $i;dv(t) exists. Then

¥([~1,~a]) = O(1 - )

as a1,
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Proof: We have that

1

1 1
2 — > -1, —
/[.—1,1] 1+ tdu(t) - ./[-1,_,,] 1+ tdl/(t) =1- au([ 1, a])

which implies the claim. n]

In the following Lemma many of the technical details are worked out that are necessary to
translate the results on the transfer functions of discrete time completely symmetric systems
to the continuous time case.

Lemma 3.4 Let v be a finite positive Borel measure on [—1,1], such that v({-1,1}) = 0.
Let

t—1
1{-1, —o0,0f; ¢ rorl
p:[~1,1] = [~00,0f; 1+ 2y
where we take p(—1) = —oo. Then
1 2

u(A) = [ 50 - nPdwe ) = [ e T

Jor all Borel sets A in [—00,0}, defines a, not necessarily finite, positive reqular Borel measure
on [~00,0], such that p({—00,0}) = 0. We therefore consider i as a positive reqular Borel
measure on | — 00, 0].

Moreover,

1

_ 2
w4 = [ des ) = [ e dut),

for all Borel sets A in [-1,1].

2. for f a measurable function on [-1,1], f[_m] f(®)dv(t) exists if and only if f]oo,o](f o
p'l)(r)r"");du(r) exists. If one of the integral ezists, both integrals exist.
For g a measurable function on]— 00,0, Si-00,0) 9()dp(r) ezists if and only if J-1y(go
p)(t)(l—ft);du(t) ezists. If one of the integrals exists, both integrals are equal.

3. The map V : L*([~1,1),v) = L?(Joo, 0], &) with

V2 147
Ve = (721 (H), o <r <0,
is unitary with inverse V-1 : L(] — 00,0}, &) = L2([-1,1], v), where
o= (2 (1), eest

and (V=1(g))(~1) arbitrary.
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supp(p) = p(supp(v) \ {-1}),
supp(v) \ {1} = p™" (supp(n))-

5. u is such that fi_o 0 Ldu(r) ezists if and only if v is such that Ji_y yy 7 _Hdu(t) ezists.
If one of the mtegra]ls ezists then both are equal.

6. if p is such that fi_ g 2dp(r) < oo then p([r,0]) = O(r) as v — 0— if and only if
v([-1,—-o]) + ¥(a,1)) =01 - ) as a = 1.

7. if u is such that f]_m,oﬁi—rdu(r) exists then

Ge(s) = / 3T ——du(r)

is an analytic function on C \ supp(u) = C \ p~ (supp(v) \ {-1}).
Moreover, if

Gd(z)=/[-1,11z [1]1+t dv(t)
for z € C\ supp(v) then .
Gc(s) =Gy (1 -_*- :) )
for s € C\ supp(p). Also
lim du(r)

ew Ym0} 8 —

Proof: Let ji be the finite positive regular Borel measure on [—00, 0] defined by
(A4) = (vp')(A) = v(p™'(A4))

for each Borel set A in [—00,0]. Note (see e.g. [2], Theorem 6.12, p. 213) that for each
measurable function f on [~1,1] we have that [i_, ;) f(t)dv(t) exists if and only if fi_eq(f©

p~1)(r)d(vp~t)(r) exists. If one of the integrals exists both are equal. For the measure p
deﬁned by

u(a) = [ 20 - dop™)0) = [ 30 - rPdat) = [ o)

we therefore have

A= [ deen =[5 r)z du(r)

for each Borel set A in [—1,1]. We have used that if r = &=, for ¢ € [~1,1], then t =

and 757 (1+t)2 = %(l - 7‘)2- We have that

p({—00,0}) = / dv(t) =0,

2
v({-1,13) (1 +1)?
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since v({—1,1}) = 0. Hence we can consider v as a positive Borel measure on ] — 00, 0]. We
have also shown 1.).

2.) Follows immediately from the proof of 1.).

3.) Follows immediately from 2.).

4.) This is verified easily.

5.) We have

/]—oo 0gl—

=[50 = [ 0= D

{~1,1) 2V T 41
1
= —dy(t
/(—1,1] 1+¢ v(t),
which implies the claim.

6.) Note that by Lemma 3.3 v([-1,~-a]) = O(1 — a) as o — 1 since f] —o00) Ty d(r) =
Jy T5:0v(t) exists. For 0 < a < 1, we have that —1 < p(a) < 0. Then

2
W[, 1]) = Ahmﬂ pdu(r) = meafﬁﬂmm
This identity implies that
3P, 0) € sl 0D < [ )

=WMJDSH{%?MMMJD=WMMMNU

Since 0 < —p(a) < f;z-”-(gl =1-—a < —2p(a) we therefore have

p(a)
#([e(e), 0]) _1p(lp(@),0]) _ v([e,1})
—apla) "2 —2p(a) S 1-a = 2#lp(@),0) < —ple).

As o — 1 if and only if p(a) = 0—, these inequalities imply that u([r,0]) = O(r) as r — 0—
if and only if v([a, 1) = O(1 —a) as @ -3 1.

7.) Assume that the measure y is such that S-o0,0] 12-du(r) exists. Then by 5.) J-
exists. Hence by Lemma 2.1

1 1
Galz) = /[_u] ——du(t) + /[_m] 0

defines an analytic function on C \ supp(v). For s € C \ supp(u) let

1+s 1 1
Gels) = ( s) B /[—1,1] I—'_L: - tdu(t) + /(-1,1] 1+ td’/(t)

1

L1] T.lﬁd_”(t)

_/11].9 = (1+t)2d v(t)

la- r)’d(vo™")(r)

]-00,0] s—r2
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1

= J~o0,0 § — rdu(r).

Note that for s € R, s > 0, the function

1
s—r

fs: ]—00,0] 0 R, 7>

is positive. Also for s > 1, f, < f; and by assumption f; = |fi| is integrable. By Lebesgue’s
dominated convergence theorem we have as lim,_,o, f, = 0 that

i [ ) =Jim [ Adue) = [ Jim £0dut)

en J]—o00] S —T —00,0] 7+

o] u(r)

Remark 3.1 In [11] a transform technique similar but not identical to the one in the pre-
vious Lemma was used to analyze unitarily equivalent Hankel operators.

We now show that the transfer function of a completely symmetric continuous time
system has an integral representation similar to discrete time completely symmetric systems.

Proposition 3.1 Let (A, B,,C., D) be a completely symmetric continuous time system
with transfer function G.(s) = C.(sI — A.)"'B.+ D,, s € RHP. Then there erists a unique
positive reqular Borel measure p on ] — 00, 0] such that

1
Gels) = /1-00,01 ——du(r) + D, s€RHP,

Moreover,

1. G, can be eztended analytically to C \ supp(p) where the extension is given by

1
Gels) = /]_mm ——du(t)+ D, s €C\ supp(n).

2. the integrals

1
A—m,o] 1- Td”(r)

and

1
Jr T )
erist.



250 R.J. Ober

Proof: Let (Aq, Ba, Ca, Dg) = T7H{(Ae, B, C:, D;)) be the corresponding discrete time ad-
missible system. Since the bilinear transform preserves duality, the discrete time system is an
admissible completely symmetric system. Let G4 be the transfer function of (44, By, Cy4, Dy).
By Proposition 2.1 there exists a unique positive finite Borel measure v such that

1
Galz) = /[—1,1] z—t

Let G, be the transfer function of the continuous time system. Then by Theorem 3.1

dv(t)+ Dy, 2z €D,

G.(s) = Gy (i h z) . scRHP.

Let p be the positive Borel measure on ]—o0, 0] constructed in Lemma 3.4. Since the discrete
time system is admissible we have by Lemma 3.4 that fj_, o 755du(r) = Jiay %_Hdu(t) exist.
Using Lemma 3.4 part 7, for s € RHP,

G(s) = /[1 ]_+_ du(t)+D,,_/]

-00,0]

(r) + Dy — /[ L)

-1, 1+¢

Since lim .ex f_., o1 ==du(r) = 0 we have that D, = Dy — [;_, ; 7=dv(t). Hence
ot J1=00,0] s—r (=11 T4¢

Gels) = / o3 —dﬂ(r) +D..

Also by Lemma 3.4 part 7 G, is analytic on C \ supp(g). The uniqueness of u follows from
the fact that G, and G4 are bilinearly related and that v is unique. This shows 1.)

2.) That fi_, 72:du(r) exists has already been established. To complete the proof note
that

Jra T 0 = [a e~ ™0 = [ 300 <o

As in the discrete-time case we refer to the measure u as the defining measure of the
continuous time completely symmetric system or its transfer function.
3.1 Stability

A continuous-time system (A, B, C,, D.) is asymptotically stable if lim,_,, e*A<z = 0 for all
z € X and ezponentially stable if there exists 0 < M < oo and w < 0 such that ||le!4¢|] < Met
forallt > 0.

Proposition 3.2 Let (A, B;, Ce, D.) be a completely symmetric continuous-time system.
Then

1. (A, B, C., D.) is asymptotically stable.
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2. (A, B.,C,, D.) is exponentially stable if and only if 0(A.) C] — o0, ] for some § < 0.

Proof: 1.) The asymptotic stability follows from the discrete-time result by applying the
fact ([15]) that a semigroup is asymptotically stable if and only if the co-generator is also
asymptotically stable.

2.) Let (e*4);>0 be the semigroup of contractions with generator A, Let A
= Jl—co0] ME «()) be the spectral decomposition of A.. Then by the functional calculus
for unbounded selfadjoint operators ([14]), fort > 0

tAc tA
e _/]—oo,O]e dE.(A).

1t follows by ([8], Proposition A-III, 2.1) that the semigroup is exponentially stable if and
only if r(e4<) < 1, where 7(T) is the spectral radius of the operator T. But by the spectral
mapping theorem for selfadjoint operators

o(efe) = eolAc),

This implies that the semigroup is exponentially stable if and only if a(4.) C] — oo, ] for
some 3 < 0. o

3.2 Observability and Reachability

The definition of observability and reachability of admissible continuous time systems is now
given.

Definition 3.4 Let (A, B.,C., D) € C,lé'y, then the operator
0. : D(O,) - LL([0,0]); z — (Cce*x)s>0
is called the observability operator of the system (A, B., C, D.), where D(O;) =
{z € X | Ceeth<x exists for almost all t € [0, 00[ and (Cee**x)i>0 € LL([0, 00[)}.

We say that (Ac, Be, Ce, D;) has a bounded observability operator if D{(A.) C D(O,) and O,
extends to a bounded operator on X. This extension will also be denoted by O,.

If (Ac, Be, Ce, D.) has a bounded observability operator O such that ker(O.) = {0}, then
the system (A, B, Ce, D) is called observable. .

Let (Ac, B, C., Dc) be the dual of (Ac, Be,C., D.). If the observability operator O, of
(Ac, B.,C.,D.) is a bounded operator on X, the adjoint of O, is called the reachability
operator, denoted R, of (A, B.,C, D), i.e. R, = O‘ If R, ezists and range(R.) is dense
in X, the system (A, B,,C., D.) 1s said be reachable

We need to define Hankel operators for continuous time transfer functions.
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Definition 3.5 If G. is a L(U,Y) valued function analytic on RHP, then the operator
HGc,RHP : D(HGC,RHP) — H%(RHP), f > P+MGch
where
Rf(s) = f(~s)
Mg,  multiplication operator by G,
P,  projection on HL(RHP)

with D(Hg, ,rup) = {f € H(RHP): f rational, G.Rf has non-tangential limit a.e. on
iR that is in L} (iR)} is called the Hankel operator Hg, rup with symbol G.. If Hg, rup
extends to a bounded operator on HE(RH P), this extension is also called the Hankel operator
Hg, rup.

If it is clear from the context that the Hankel operator is defined with respect to RHP
we will drop the subscript RHP and write Hg instead of Hg rup.

Lemma 3.5 Let (A, B.,C.,D,.) be a completely symmetric continuous time system and
let G, be its transfer function. If O, is the observability operator and R. the reachability
operator, then D(O,) is dense in X, O, = R and the Jollowing statements are equivalent,

1. the system has bounded reachability operator.
2. the system has bounded observability operator.
3. the Hankel operator Hg, rup is bounded.

Moreover, the system is observable if and only if it is reachable.

Proof: The proof follows from the discrete time result and the fact (Theorem 7.7 in [10])
that under the bilinear transform the discrete time observability (reachability/Hankel) op-
erator and the continuous time observability (reachability /Hankel) operator are unitarily
equivalent. O

We can now characterize the boundedness of the observability /reachability operator of a
continuous time completely symmetric system.

Theorem 3.3 Let (A, B,,C,, D) be a completely symmetric continuous time system with
defining measure u. The system has bounded reachability/observability operator if and only

if
#([r,0]) = O(r)
asr — 0—.
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Proof: Let (A4, By, Ca, Dg) := T ((A, B, Ce, D;)) be the corresponding discrete time sys-
tem with defining measure v. By Proposition 3.1 fi_ g s=du(r) exists. Hence by Lemma 3.4
part 6; ¥([~1, —a]) + v([a, 1]) = O(1 — @) as @ — 1 if and only if p([r,0]) = O(r) as r — 0—.
Since by Theorem 7.7 in [10] the observability operator of the continuous time and discrete
time system are unitarily equivalent, the result now follows from the discrete time result

(Theorem 2.1). o

We now establish a reachability/observability criterion for continuous time completely
symmetric systems.

Corollary 3.1 Let (A, B.,C., D.) be a completely symmetric continuous-time system with
bounded reachability and observability operator. Let A, = [. foo AdE()) be the spectral decom-
position of A., with spectral family E defined on the Borel g-algebra on ] — 00,0]. Then the
system 1s observable/reachable if and only if

Nuea{z € D(A.) | z € ker(C.E(w))} = {0}.

Proof: Let (A4, By, Ca, Da) := T7'((Ac, B, Ce, D)) be the corresponding discrete time
system. The proof is based on the fact that (Ay, By, Cy4, Dy) is observable if and only if
(A, B., C., D,) is observable ([10]). Also since A, and A, are related by a Cayley transfor-
mation, E is also the spectral family associated with the spectral decomposition of A4. Note
that by ([14], p.365)

E)(I+ Ag)™ S (I + Ag)'E(w)

for w € Q. We first show that N,ea{zr € D(A;) | z € ker(C.E(w))} # {0} implies that
NuenkerCqE(w) # {0}. Let w € Q and = € D(A.) = D((I + Aa)™!) such that C.E(w)z = 0.
Let y = (I + Ag)~'z. Then by the above

EW)(I+Ag) 'z =(I+ Ag) 'E(w)z
and therefore E(w)z € D{(I + Aq)™'). Therefore
R
V2

Hence N enkerCyE(w) # {0}. We now show the other implication. Let w € Q and z # 0
such that C4E(w)z = 0. Set y = (I + Ag)z. Note that y # 0 since —1 ¢ 0,(A4). Then
E(w)z = E(w)(I+A44)"'y = (I+Aq4)'E(w)y and therefore E(w)y € D((I+Aq)™") = D(A.).
Also

C4E(w)y = C4E(W)(I + Ag) "'z = C4(I + Ag) 'E(w)z = —=C.E(w)z = 0.

0 = CiE(w)z = CaE(w)(I + Ag)~'y = Ca(l + Agd)E(w)y = %
Hence y € N en{z € D(A.) | C.E(w)z = 0}. o

C.E(w)y.
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3.3 Realization theory

To most efficiently study realization theory for continuous time completely symmetric sys-
tems we first apply the bilinear transform to the discrete time realization of Theorem 2.3

Lemma 3.6 Let (Ag, Ba, Cy, Dy) be the discrete time realization of Theorem 2.8 of the trans-
fer function

Gy(z) = /[. 7o d t)+¢c, zeC\ supp(v),

where v is a positive finite Borel measure on [~1,1] such that f_, 4 1 +t dv(t) < oo and ¢ is
a constant. Let

(ACa BC) CC) Dc) = T((Ady de Cd) Dd))

be the corresponding continuous time system. Then the state space of the continuous time
system is X = L%([—1,1],v). The operators of the continuous time system are given by

1.
A.: D(A,) = X;

where

Acz)(t) = { (S'T)I(t), ;lilt <1

and

u(t) < oo}.

—heﬁﬂlHWI/

B.:U - (D(A))Y,

where forue U

B.(u) : D(A.) = C; z»-n/'/

3. For z € D(A,),
Cex = V2 / T tz(t)du(t)

Ifz € (I - A)™'Beu, then x = x(_, yu for some u € U, and

1
CCIL' = /[‘—1,1] 1—+—tdu(t)u

D":c—/[‘n]l-H v(t)-
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Proof: We use Theorem 2.3.
1.) We know that D(A.) = D((I + A4)™"). But

DI +497) = (s € P(-L10) | (15o0) € L(-110)

For z € D(A,)

1

A = (Ag— (I + Ag) "'z = ((%) :c(t)) e

2.) Since A, is self adjoint, (D(A2))") = (D(A.))"). Forue U, z € D(A,)

B.(u)[z] = V2 < Bau, (I + A)) 'z >= \/5/[._1 . x[_l,ll(t)u-llﬁxt).du(t)

= \/_/ -——:c(t)du(t)u

L1+t

3.) Forz € D(A,),
Cez = V2C4(I + Ag) 'z

ForyeY,
< Cex,y >y=< \/§C¢(I + Ad)'lz,y Sy= \/2_ < (I+ Ad)":c, Cyy >y
=Va[ .TF tx(t)xl I0.20
= \/5/ ]_l z(t)dv(t)7.
Hence

z=3 /[-1,11 - itz(t)du(t).

Ifz € (I — A)"'B.U, then z = 715341: = -\}5)([_1,1]11 for some u € U (see p.448 in [10]).
Hence 1

CCI = 75
by the admissibility of (A4, B4, C4, D4) and Lemma 3.2.
4.) The expression for D, follows since

1
. H -1 —
C.Bqu = lg_)l{} Ca(AT + Ag)'Bgu = /— e dv(t)u

D.= Dd—llmCd()J+A¢) 1By=c -/ “]mdu ).

We are now in a position to prove the realization theorem for continuous time completely
symmetric systems. .
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Theorem 3.4 Let u be a positive regular Borel measure on | — 00,0] such that u({0}) =0
and fi_o, ) 755d0(r) < 00 and let

Gels) = [ 5=yau)
for s € C\ supp(u). Let X = L(] — 00,0), ). Define

1.
Ac:D(A) = X; 203 (rE(r)-cocrso »
with D(AJ) = {z € L) = 00,0}, ) | fi-cny 2(r)rPPdu(r) < o0}.

B.:U = D(A)";

U (:c - -/]—00,0] mdp(r)u) .
3. For x € D(A,),
Cx= /]_m'o]z(r)dp(r).

For z € (I — A.)"'B.U we have z(r) = f_C",,X]-oo,o](T)U, oo <1 <0, for someu €U,
then set

Cc:r=/] ! du(r)u.

©0,0] 1-7r
4 D, =0.
Then

1. the system (A, B, Cy, D.) is an admissible completely symmetric system with transfer
function G..

2. the system (Ac, Be,Ce, Dc) has bounded reachability and observability operator if and
only if u([r,0]) = O(r) as r = 0—.

3. if the system (Ac, B, Cc, D) has bounded reachability and observability operator then
the system is reachable and observable.

Proof: Note that by Lemma 3.4 G, is -an analytic function on C \ supp(y) such that
lims»e Ge(s) = 0. Let v be the measure on [—1,1] as in Lemma 3.4 then by Lemma 3.4part
4

o= (122)

for s € C \ supp(p), where

1 1
mm_ﬁwzdwm+ﬁwrnwm
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z € C\ supp(v). Let (Aq4, Bq, Cy, Dy) be the realization of G4 given in Theorem 2.3. Then
by Lemma 3.6 and Theorem 3.1

(4., B,,C., D,) == T((A4, B4, C4, Ds))

is an admissible completely symmetric continuous time realization of G, with state space
L?([-1,1},v). To obtain a realization with state space L%(] — 00,0], u) we perform a state
space transformation with the unitary operator V' of Lemma 3.4part 3. We will show that
the resulting system (A, B, C,, D.)} is as defined in the statement of the Theorem.

By Lemma 3.6

D(A;) ={z € L}([-1,1),v) | oL (If_(:)tl)zzdu(t) < 00}.

Let z € D(A.) then by Lemma 3.4

2P FGE 2
./ -1 (1+ t)2d v(t) = A—-oo,()] (1 + .I:i:;) (1- 7’)2du( )

= [l (3] SZa = [ oG ae,
Hence
Vo) =toe -0 | [ o182 ) < o)
={ge0~o0,0Lu) | [ lotr)rPdutr) < oo},
To determine A, let g € V(D(A,)). Then
w00 = 2550 (57)

and

(AV=0)(0) = VEr o (57)

(t+1)27 \t+1
-1 < t<1. Hence

r tr _
VAV = LVt ( =

o () o

l—r

for —o0 <1 <0.
To determine B; let u € U, z € D(A,), then

B(u)[z] = V2 /[

— ZDdv(t)u = V3 ! (1 +r

2
]1+t —oo()]l+ l—r)(l—r)"’dﬂ(r)u
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N2 T TETY
- ]-00,0 1 — rz (1 — r)du(r)u
= [, TAEdu(
Hence for g € D{A;), u € U,

B.(u)[g] = r)du(r)u.
(w)[g] /]. o g{r)du(r)
To determine C, recall that for z € D(A4))

C;:c = \/5/[_1,1]

x(t)du(t)—\/_/wou-‘__t (1+:)( = yedulr)

= v2 x(HT) du(r)

l~o00] 1 —7 \1-—71

= A—w,O](VI) (r)du(r).

Hence for g € D(A,),
Ceg = []_m'o]y(r)du(r)-
Ifze (- A'c)‘lB'U then z = Xj_co,0t for some u € U. Therefore

1 2
/1]1+t - —00.0]1+-L(1 r)2dﬂ( u

du(r)u /_m,o]ﬁ(Vr)(r)du(r)
=C.V(a).

J—c0,0} 1 -r

Since by Lemma 3.4
,]Hg Gc(s) =0,
SER

we have that D, = 0.

Since (4., B,,C., D.) is a completely symmetric admissible realization of G.. Since V is
unitary (A, B, C., D.) is a completely symmetric admissible system whose transfer function
is G;. This shows 1.)

2.) Follows from Theorem 3.3.

3.) The bilinear transform and unitary map V preserve the boundedness of the observability
and reachability operators. They also preserve observability and reachability of the system
([10}). Since under the assumption (Aq, By, Cy4, Dy) is reachable and observable this implies
the reachability and observability of (A, B,, C,, D.). m]

An admissible observable and reachable continuous time system (A, B, C,, D,) is called
par-balanced if 070, = R.R;, where O, is the observability operator and R, is the reacha-
bility operator. As in the discrete time case the duality properties of a completely symmetric
observable/reachable system imply that such a system is par-balanced. We have the following
result on the uniqueness of completely symmetric or equivalently par-balanced realizations.




System theoretic aspects of completely symmetric systems 259

Lemma 3.7 let G, be the transfer function of a completely symmetric system. Then

1. (A, Be, Ce, D;) is an observable/reachable completely symmetric realization of G, if
and only if (A, B, C., D.) is & par-balanced realization of G,.

2. if (A, B, C;, D) is an observable/reachable completely symmetric (par-balanced) real-
ization of G, then all other observable/reachable completely symmetric (par-balanced)
realization are given by (UAU*,UB.,C.U*, D.), where U is a unitary operator.

Proof: The proof follows from Lemma 2.5 and Lemma 3.1 since the bilinear transform
preserves complete symmetry, par-balancedness and unitary equivalence of systems ([10]).
O

In the following corollary the boundedness of the input and output operators is investi-
gated.

Corollary 3.2 Let (A, B, C., D.) be a completely symmetric reachable/observable contin-
uous time system with defining measure u. Then

1. the input operator B. : U — X is bounded if and only if C. : X = Y is bounded.

2. the input operator B. /the output operator C, is bounded if and only if y is a finite
measure.

3. if (A, Be, Ce, D.) is the realization given in Theorem 3.4 and if B, is bounded then B,
can be represented as
B.:U = X; 4 Xj-co,0t

Proof: By the previous Lemma we can assume that the system (A,, B., C., D,) is the real-
ization given in Theorem 3.4.

1.) The statement is a consequence of the duality between B, and C..

2.) Assume that u is finite then using the Cauchy-Schwarz inequality, for = € D(A,),

1/2
Cel =1 [__ 0l < ([ au(9) " bellorg-marn

Hence C. is bounded on (D(Ac),|| - l|x). Since D(A) is dense in (X,] - ||x), C. can be
extended to a bounded operator on X.

Assume that C, extends to a bounded operator on (X, || - ||x) but u is not finite. Then
there exists € X = L%(] — 00,0}, ) such that = ¢ L!(] - 00,0}, ). The integral represen-
tation of C, implies that C. is not bounded.

3.) If B, acts as a bounded operator then for u € U, z € D(A,),

Blel = [

which implies the claim. @]

) 2(B)dp(r)u =< Xj-ogt, T >

We can now establish the spectral minimality of observable/reachable completely sym-
metric systems. '
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Corollary 3.3 Let u be a positive regular Borel measure on ]—00, 0] such that i_, o tdu(r)
ezists and p([r,0]) = O(r) as r — 0—. Let

Gls)= [

J-00,0) 8§ ~ T

du(r)

for s € C\ supp(p). If (Ac, Be,Ce, D.) is a par-balanced respectively observable/reachable
completely symmetric realization of G, then

0(Ge) = o(Ac) = supp(p),

where 0(G.) denotes the set of singularities of G.. Moreover, the spectrum of A has only
simple multiplicity.

Proof: The follows from the discrete time result, the spectral mapping theorem for selfad-
joint operators, Lemma 3.4 part 4 and Lemma 3.4 part 7. m]

The stability properties of completely symmetric systems are now considered again.

Corollary 3.4 Let (A, B.,C., D.) be a completely symmetric observable/reachable contin-
uous time system with defining measure u. Then

1. the system is asymptotically stable.
2. the system is exponentially stable if and only if
supp(u) €] — 00, -0
for some o > 0.

3. if the system is ezponentially stable, the Hankel operator Hg, rup is compact, where
G, is the transfer function of the system.

Proof: 1.) Follows from Proposition 3.2 .

2.) Follows from Proposition 3.2 and the spectral minimality of the realization (Corol-
lary 3.3).

3.) Under this condition the transfer function is analytic and bounded in the right half
plane and is continuous on the extended imaginary axis. The result therefore follows by
Hartmann’s theorem (see e.g. [11]). o

We now consider conditions for the boundedness of A..

Corollary 3.5 Let (A,, B, C., D.) be a completely symmetric continuous time reachable/observable

system with defining measure u. Then
1. A, is bounded if and only if
supp(p) € [~a, 0]
for some a > 0.
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2. if A. i3 bounded then Bc and C, is bounded.

Proof: Since the system is observable and reachable we have by Corollary 3.3 that o(u) =
o(A.). If A; is bounded then o(A.) is compact. 1.) now follows since a selfadjoint operator
is bounded if and only if the spectrum is bounded. ’

2.) Follows from 1.) and Corollary 3.2) part2. o
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