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OVERLAPPING BLOCK-BALANCED CANONICAL FORMS AND
PARAMETRIZATIONS: THE STABLE SISO CASE*

BERNARD HANZON! AND RAIMUND J. OBER?

Abstract. The balanced canonical form and parametrization of Ober for the case of SISO
stable systems are extended to block-balanced canonical forms and related input-normal forms and
parametrizations. They form an overlapping atlas of parametrizations of the manifold of stable
SISO systems of given order. This extends the usefulness of these parametrizations, e.g., in gradient
algorithms for system identification. As an implication of our construction it follows that each
of the subsets of the parametrization of [R. Ober, Internat. J. Control, 46 (1987), pp. 643-670]
corresponding to a choice for the structural indices is in fact an imbedded submanifold of the manifold
of stable SISO systems of fixed order.
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1. Introduction. In [18], [19] a canonical state-space form was presented for
the set of asymptotically stable linear systems, with the property that it is balanced;
i.e., for each system represented in canonical form, the corresponding observability
and controllability Gramians are equal and diagonal (and positive definite). One
motivation for studying balanced realizations and balanced canonical forms is their
close relation to model reduction (see [19] and the references given there), which is in
turn closely related to robust control theory (see, e.g., [20], [3]). Another motivation
mentioned in [19] is the potential usefulness of balanced realizations for system iden-
tification, as indicated by [15]. In many cases, in system identification as well as in
related areas, one can reduce the problem at hand to an optimization problem in which
some criterion function is optimized over a set of systems. Very often one cannot solve
the optimization problem analytically and has to use search algorithms (e-g., gradi-
ent algorithms), in which an initial point in the set of systems is adapted iteratively
to give, ideally, a good approximation of the optimal system. In such search algo-
rithms one often uses a parametrization of the set of relevant systems. The balanced
parametrization of [19] has the advantage that by construction, problems of identifi-
ability are to a large extent avoided in such a search algorithm. The parametrization
has the property that it contains structural indices (i.e., discrete-valued parameters),
and to each possible choice of values for these indices corresponds a particular subset
of systems, for which a parametrization in terms of real-valued parameters is given.
(In fact it will be shown in section 6 that these subsets are in fact submanifolds.)
To each system corresponds a unique set of structural indices. Since the structural
indices can take a large number of values, even for rather low order systems (the num-
ber of possibilities increases fast with increasing order of the system), this means that
in a search algorithm one has either to identify the structural indices by other means
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or to apply the search algorithm to a large number of parametrized submanifolds of
systems. This is due to the fact that the parametrizations are disjoint.

Several authors (e.g. [4, 2, 10, 11, 20, 5, 6, 21, 22]) have investigated the possibility
of using so-called overlapping parametrizations (in differential geometric terms: an
atlas of coordinate charts). If one uses overlapping parametrizations, one does not
have to search through each and every of the submanifolds but instead can search
through the manifold as a whole, using the parametrizations to describe the manifold
locally and changing from one parametrization to another when required. In case the
search algorithm is of the gradient type, one can make sure that the decision rule for
changing from one parametrization to another has little effect on the search algorithm
by using a Riemannian gradient with respect to some suitable Riemannian metric on
the manifold (cf. [7, 6, 8, 22, 9, 21]).

In view of this it would be very desirable if the balanced parametrization of
[19] could be extended to give a set of overlapping parametrizations. In this paper
such an extension, will be presented for the case of SISO stable systems. In the
extension, balancedness of the realization no longer holds for all realizations. In-
stead block-balanced realizations and the corresponding input-normal realizations are
used. A block-balanced canonical form is a canonical form for which the observabil-
ity and controllability Gramians are equal and block-diagonal (and of course positive
definite).

In section 2 some basic definitions are presented, including the concept of block-
balanced realizations. In section 3 we present a Schwarz-like canonical form which
will be a building block in the block-balanced canonical forms and the corresponding
input-normal canonical forms that are treated in section 4. In section 5 it is shown how
this leads to a set of overlapping block-balanced canonical forms and a corresponding
atlas for the manifold of stable SISO input-output systems of a fixed order, and
remarks are made as to how this atlas can be used if one wants to work with balanced
and “almost balanced” realizations in search algorithms in system identification, for
example. In section 6 the imbedded submanifolds structure of the original balanced
parametrization is analyzed, using the atlas of the previous section.

2. Canonical forms, balanced realizations, and block-balanced realiza-
tions. In this section to a large extent the setup of [19] is followed. Let us consider
continuous-time SISO systems of the form

(1) &y = Az + buy,
(2) Ve = CTy,

with t € R,u; € R,z; € R*, 3 € R, A € R"*" b € R'*",c € R"*!, and (4,b,¢) a
minimal triple.

For each n € {1,2,3,...} let the set C,, be given by C, = {(A,b,c) € R"*" x
R"*! x R!%™|(A,b,c) minimal and the spectrum of A is contained in the open left
half plane}.

As is well known, two minimal system representations (A;, b1, ¢1) and (Ag, b2, c2)
have the same transfer function, g(s) = ci(sI — A1)71b1 = ca(sI — A2)~ by, and
therefore describe the same input-output behavior iff there exists an n X n matrix
T € Gl,(R) such that Ay = TA;T1,b; = Tby,c; = coT 1. In that case we say that
(Ay,b1,¢1) and (A, by, cp) are if/o-equivalent. This is clearly an equivalence relation;
write (Aj,b1,¢1) ~ (Ag,bz2,¢2). A unique representation of a linear system can be
obtained by deriving a canonical form.
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DEFINITION 2.1. A canonical form for an equivalence relation ~ on a set X is a
map

rXxX-X

which satisfies, for all z,y € X,

(i) T(z) ~ z;

(i) = ~ y => [(x) = T(y).
Equivalently a canonical form can be given by the image set I'(X); a subset B C X
describes a canonical form if for each x € X there is precisely one element b € B such
that b ~ x. The mapping X — B,z — b then describes a canonical form.

Let (A,b,c) € Cp. The controllability Gramian W, is the positive definite matrix
that is given by the integral

o0
W, = / exp(At)bbT exp(ATt)dt.
0

As is well known, W, can be obtained as the unique solution of the following Lyapunov
equation:

(3) AW, + W AT = —bb”.

In a dual fashion, the observability Gramian W, is the positive definite matrix that
is given by the integral

o0
W, = / exp(ATt)c! cexp(At)dt.
0
This matrix is the unique solution of the following Lyapunov equation:

4) ATW, + W,A = —cTec.

DEFINITION 2.2. Let (A,b,c) € Cn,. Then (A,b,c) is called balanced if the
corresponding observability and controllability Gramians are equal and diagonal; i.e.,

there exist positive numbers 1,02, ...,0, such that
(5) W, = W, = diag(o1,...,0,) = Z.
The numbers o1,...,0, are called the (Hankel) singular values of the system.

The singular values are known to be uniquely determined by the input-output
behavior of the system.
THEOREM 2.3 (see [17]). Let (A,b,c) € C,, with

k
¥ = diag(o1ny,+ -1 Oklnr))y 01 >02>...0x >0, and Zn(z) =n.

=1

Then (A, b, ¢) is unique within its i/o-equivalence class up to an orthogonal state-space
transformation of the form

Q = diag(Qh Q27 ey Qk)
with orthogonal Q; € RP®*n() §=1,... k.
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DEFINITION 2.4. Let (A,b,c) € C,,. Then (A,b,c) is called input-normal if W, =
I, and will be called o-input-normal if W, = o1,.

Similarly (A,b,c) is called output-normal if W, = I,, and o-output-normal if
W, =ol,.

It is not difficult to show that an input-normal realization is unique up to an
arbitrary orthogonal state-space transformation.

The following definition is basic to our considerations in this paper.

DEFINITION 2.5. Let (A,b,c) € C,,. Then (A,b,c) will be called block-balanced,
with indices n(i) € N,i = 1,...,k, adding up to n, if the observability Gramian and
the controllability Gramian are equal and block-diagonal; i.e., there exist n(i) x n(i)
positive definite matrices ¥;,1 = 1,...,k, such that

W, = W, = diag(Zy,. .., Zk)-

It will be convenient to call an arbitrary system representation (A,b,c) € R™*" x
R™*! x R*" block-balanced if the pair of Lyapunov equations AY + TAT = —bbT,
ATS + A = —cTc has a positive definite solution of the form T = diag(Zy,...,Sk)
(assuming neither asymptotic stability nor minimality).

Remark. The matrices £;,7=1,...,k, are in general not uniquely determined by
the input-output behavior of the system. However, the eigenvalues A\1(Z;) > A2(Z;) >
-++ 2 An(i)(Z;) of the matrices X;,¢ = 1,.. ., k, together form the set of Hankel singular
values of the system, which are uniquely determined by the input-output behavior of
the system, as remarked before.

THEOREM 2.6. Suppose that (A,b,c) € Cy, is block-balanced with indices n(j) €
N,j = 1,...,k,2§=1 n(j) = n, and the additional property A1(X1) > An)(Z1) >
)\1(22) > )\n(g) (22) > > A (Bg) 2 )\n(k)(zk) > 0.

This uniquely determines (A, b, c) within its i/0-equivalence class up to an orthog-
onal state-space transformation of the form

Q = diag(Qa,...,Qx)

with orthogonal Q; € R*M*n() =1 . k.

Proof. First note that if an orthogonal state-space transformation Q is applied
to the system representation, then both Gramians transform in the same way, and
therefore if they were equal before the orthogonal state-space transformation, then
they will also be equal after the transformation.

Now consider two i/o-equivalent systems (A, by, c1), (A2, bg, cz), which are both
block-balanced with the same indices n(j),j = 1,...,k, and with Gramians Wé’) =
w = diag(Egi), .. ,2,(:)),1' = 1,2, with the property that )\1(2?)) > )\n(l)(Egi)) >
M(ED) 2 A (B9) > -+ > MED) 2 Ay (BP) > 0,i = 1,2.

Because E;’) is symmetric positive definite for any i =1,2,5 = 1,...,k, there ex-
ists an orthogonal matrix Q;-') such that Qy)):;-i) (Qg-i))T = diag()\; (Eg-i) ), /\2(2§-’)), e
An(h) (Eg.’))). Therefore, the state-space transformation Q) := diag(Qg'),...,Qg))
applied to the system representation (A;, b;, ¢;) brings it into balanced form with non-
increasing singular values, i = 1,2. We can therefore apply Theorem 2.3 to the trans-
formed system representations, and it follows that there exists an orthogonal state-
space transformation of the form Q = diag(Q,,...,Qx) with Q; € R*®xn() § =
1,2,...,k, that transforms (A1,b1,¢;) into (Az,b2,¢2) (and  vice
versa). o

The following theorem will be fundamental for our results.
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THEOREM 2.7 (Pernebo and Silverman [24], Kabamba [12]). Let
(A,b,c)e R™*™ x R™*! x R*" be conformally partitioned as

_ [ Aun A (M _
A—<A21 Azz)’ b_(bz)’ e=(a o),

with Ay € RPOXn() 4= 1,2, and let (A, b, c) be block-balanced with indices n(1),n(2)
such that £;,X2 > 0 have no eigenvalues in common.
Then (A, b, C) eC, & (Ai,-,b,-,ci) (53 Cn(z),‘b =1,2.

3. The case k=1: A Schwarz-like canonical form for stable SISO sys-
tems in continuous time.
THEOREM 3.1. Consider the set By, of all (A,b,c) € Cy, of the following form:

ayn] —Qi 0
o 0 b?
A= ! ) _ , a11=—31<0,
‘. ‘ —Qn_1
0 Qn—1 0
a; >0, i=1,...,n-1,
by
0
b= . y b1>0,
0
c=(ec1 M o Y1), ca€R, y;€eR, j=1,...,n—-1

Each triple (A,b,¢) € By, is input-normal.

Let S,, be the set of values of the vector of parameters (b1, a1,...,0n1, C1,71y-- -,
Yn—1) such that the corresponding triple (A,b,¢) € B, i.e., such that by > 0,a; >
0,i=1,...,n, and c1,71,..., Yn-1 Such that the pair (c, A) is observable.

The set B,, describes a real analytic (hence continuous) canonical form, and the
parametrization mapping S, — B,, which maps each parameter vector to the corre-
sponding triple (A, b, c), is a real analytic diffeomorphism (hence a homeomorphism,).

If (1y---,m—1) 0 € R" 1, n > 2, then the system has several different singular
values.

Proof. The requirement that a realization is input-normal reduces the freedom of
choosing a basis of the state space to the freedom of choosing an orthonormal basis,
i.e., to the freedom of choosing an element from the orthogonal group.

Now consider the controllability matrix of a triple (A4,b,¢) € B,. It is easily
seen to be positive upper triangular. According to [19] there is a unique element
in the orthogonal group that transforms a controllability matrix to a positive upper
triangular matrix. Therefore the form presented here is canonical indeed.

Next let us show the smoothness properties. The mapping S, — B,,, which
maps a parameter vector from S, to its corresponding triple (A4, b, ¢), is polynomial,
hence real analytic.

Now consider the mapping C,, — S,,, which maps any triple (/i b, é) € C, to the
corresponding parameter vector describing the canonical form of the system. Clearly
the coefficients of the characteristic polynomial of A depend polynomially on A, and
therefore the parameters a1y, a1, ...,a,_; depend real analytically on A, as they are
rational functions of these cha.racteristic polynomial coefficients (cf. [18]).
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It remains to show that the parameter vector ¢ = (¢1,71,...,Vn—1) depends real
analytically on the entries of (A4,5,&). Let (4,b,c) denote the canonical form of the
system and g(z) := %8 := ¢(zI — A)~1b = &zI — A)~'b denote the (rational) transfer
function of the system, with monic polynomial denominator ¢(z) := det(zI — A) =
det(zI—A) and polynomial numerator p(z). It i is easy to see that the coefficients of p(z)
depend real analytically on the entries of (A, b,&). Let M(z) denote the polynomial
matrix of cofactors of (zI — A). Then one has

(6) p(2) = cM(z)Tb.

Consider m;(z), which is (—1)!** times the determinant of the matrix that is obtained
from zI — A by leaving out the first row and ith column, i € {1,...,n}:

mai(z) = (-1)'*

(031 * * * *
0
*
0 . 0 [s 700} * (SN *
0 0 z —Qi4+1 0 0
x . .
Qi1 z —Qi42 0 0
0
0
. . . - . . —Qlp.1
0 ... ... 0 0 0 0 ap-1 z

= (=1)1** x H a; | 2" + terms of lower degree in z,

where ¢ € {1,...,n}; if i = 1, the product H;____ll o is taken to be equal to one
by convention. Because H';ll a; is unequal to zero (and in fact positive) for each
i € {1,...,n} the polynomials m;(z),...,m1(2) form a basis of the linear vector
space of polynomials of degree < n over R. Therefore (6), which can be rewritten as

) cimyi(z) + imaa(z) + - + 'Yn—lmln(z) (Z)

has a unique solution ¢ = (c1,71,%2,--+,¥n—1), Which depends real analytically on
the entries of (A b ¢) and the parameters by, ,.. .y Qn_1. Since these parameters
themselves depend real analytically on the entries of (A b, &), the real analyticity of
all parameters on the entries of (A b ,&) follows. This completes the proof of the
smoothness properties.

The remaining statements follow from the fact that for v+ = 0, the form is a
canonical form for systems with only one positive Hankel singular value (i.e., all
nonzero Hankel singular values coincide); cf. [19], [18]. 0

Remarks. (i) The fact that if the asymptotically stable matrix A can be brought
into the presented form by a basis change of the state space, then the resulting matrix
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is unique, also follows from the fact mentioned in the proof that for v = 0,¢1 # 0
the form is a canonical form for systems with only one positive Hankel singular value;
cf. [19], [18]. Note that here we use a different sign convention for the off-diagonal
elements of the matrix A than in those papers. This corresponds to consideration of
the dual state-space representation.

(ii) If ¢; # 0, we define o := || > 0, which we will call a pseudosingular value. If
the vector ¥ = (1, ...,7n—1) is close enough to zero, the pseudosingular value will be
close to the true singular values of the system, because of continuity of the singular
values as a function of v and the fact that if v = 0, the system has only one singular
value and its value is o. If ¢; # 0, the system can be brought simply into o-input-
normal form by multiplying ¢ by o~%andb by o3, The resulting o-input-normal form
is a canonical form locally around ~ = 0, but not globally because the systems which
have ¢; = 0 in the previous canonical form cannot be represented in this way. (It
would lead to ¢ = 0, and therefore one cannot transform back to the input-normal
case, etc.) Locally around v = 0 it takes the following form:

ajl] —Oo1 0
A= aq 0
—Qpn—1
0 Qy—1 0
b2
a1 = - <0,
a; >0, i=1,...,n—1,
by
0
b= . y b1 >0
0
c=(sb1 Yo 'Yn—l), 86{—1,1}, ’)‘jER,j=1,...,'n—1.

(iii) Because the canonical form is input-normal, if one starts with an arbitrary
input-normal realization (fi, b, ¢) of the system, it takes an orthogonal state-space
transformation @Q in order to obtain the canonical form of the system involved. The
same holds for the (local) o-input-normal canonical form.

(iv) Clearly the canonical forms presented are controllable (because they are
input-normal; resp., o-input-normal), but observability will fail for certain choices
of ¢; the observability Gramian will be singular for such a choice of ¢. If vy = 0,¢1 # 0,
the system is observable, because the observability Gramian will be 21 (resp., o).
(In that case the system representation is o2-output-normal; resp., o-output-normal.)
Therefore, also in some open neighborhood around such a system, observability will
still hold. (This follows from the continuity of the determinant of the observability
Gramian as a function of the parameters.)

(v) This canonical form is closely related to the so-called Schwarz canonical form;
cf. [13], [14], [25].

(vi) A canonical form can be interpreted as a choice of basis of the state space
for each system. In this case the basis can be obtained as follows. Define an inner
product on the state space by the inverse of the reachability Gramian. Take the first n
columns of the reachability matrix, and apply the Gram-Schmidt orthogonalization
procedure to it, with respect to the inner product. With respect to the resulting
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set of n vectors as the basis of the state space the system has the canonical form.
This observation can in fact be used to obtain an alternative proof of the smoothness
properties stated in the theorem.

4. An input-normal and a block-balanced canonical form. Let n(1),...,
n(k) € {1,2,...,n}, Z;?:l n(j) = n, denote a partition of n as before. Let
Cr(1),n(2),...,n(k) denote the subset of all systems in Cy,, with the property that their n
Hankel singular values (multiplicities included) o(1) > (2) > --- > o(n) > 0 can be
partitioned into k disjoint sets of singular values (again with multiplicities included)
in the following way:

o(1) 2--- 2 a(n(1)) > o(n(1) +1)
> -2 0(n(l) +n(2)) > o(n(1) +n(2) + 1)

i l
e[ oo (E0) )

(8) > >0,

So we require that U(Z;=1 n(j)) > o((zgzl n(j)) +1) for ! = 1,2,...,k -1 and
o(n) > 0, of course. Note that the notation is consistent with the fact that C,
denotes the set of stable systems which have as their only “restriction” that there are
n positive singular values (multiplicities included), i.e., that the order of the system
is n.

The other extreme is Cy ... 1, which denotes the set of nth-order stable systems
with n distinct singular values. For this set of systems a balanced canonical form was
derived in [12].

Remark. The set Cy(y),....n(x) should not be confused with the subset of C,
consisting of the systems which have k distinct singular values o7 > --- > o4 > 0
with multiplicities n(1),...,n(k). Of course these systems are included in Cr(1),...,n(k)s
but they generally form only a (thin) subset.

Next we will present a canonical form on Cn(u),...,n(k)

THEOREM 4.1. Consider the set B,),....n(k) of triples (A,b,c) of the following
form:

A= (A(, N<ij<ks
A(i,j) € RPO*D), 4 je{1,...,k)},

b(1)
= b(?) , b(@) e R™D | §=1,... k,
b(k)
c=(c(1),...,c(k)), c(j)T eR™, j=1,...,k,
a(i,i)11  —afi) 0 0
a(i) 0 —afi) :

: T R . —a(i)n(i)—l
0 N 0 a(z)n(,-)_l 0



236 BERNARD HANZON AND RAIMUND J. OBER

. b?
0(1,2)11 = —3,
o(i); >0, j=1,...,n(d) -1,
b;
0
b(i) = . b; > 0,
0

C(’t) = (ci"Y(i)la-""Y(i)n(i)—l) ’ i=1,...,k,

where the parameters are to be taken such that the corresponding observability Grami-
ans 2,5 = 1,...,k, which satisfy the observability Lyapunov equations

(9) 2 A(5,4) + A(4,3)TE? = —c(i)T (i)
are fulfilling the following inequalities:
(10) A1(Z) 2 Anty (BD) > M(B3) 2 ) (B3) > -+ > M(TR) = Ay (Z2) > 0.

For each pair (,7),i # j, the matrices A(i, §), A(j, i) are determined (uniquely!) from
the following pair of linear matriz equations:

AGi, §) + A5, 9)T = —b(i)b(4)T,
(11) TIA(G, ) + AGG,9)TE2 = —c(i)Te(y).

The set Bp(yy,....n(k) describes a real analytic (hence continuous) canonical form on
Cn(),...n(k)- The 2n “free” parameters of the canonical form are

b;, a(i)h teey Ct(i)n(i)—la Ciy 7(i)1, v v7(i)n(i)—11 i=1,...,k

Let Sp(y,...nk) C R2?" be the set of all values of the parameter vector for which the
corresponding triple (A,b,c) € Buy,... nx)» i€, for alli € {1,...,k} b; >0, a(i); >
0, j =1,...,n(i) - 1, and c;,¥(1)1,...,¥(i)n()—1 Such that the matrices T;,5 =
1,...,k, found in (9) satisfy the inequalities (10). The mapping Sn(1),...,n(k) —
By(),...,n(k) which maps a parameter vector to the corresponding triple (A,b,c) is a
real analytic diffeomorphism.

The form is input-normal, i.e.,

(12) A+ AT = b7,
and has block-diagonal observability Gramian £? := diag(X2,...,%2) > 0.
Let 0(1) > 0(2) > --- > o(n) > 0 denote the n positive Hankel singular values of

the system (with their multiplicities). If for some i € {1,...,k} the vector v(i) = 0,
then 2 is a scalar matric

i—1
(13) 2? = g2 (1 + Zn(y)) X In(i),
j=1
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i—1
o | Y n()
i=1
i-1 i-1 i
>0 1+Zn(j) =0 2+En(j) =...=g0 Zn(j)
j=1 j=1 j=1
>o|l+ Z»n(j) .
j=1
The observability Gramian is diagonal if and only if for all i € {1,...,k},7(i) = 0.

Remark. A block-balanced realization can be obtained from the presented canon-
ical form by applying a state-space transformation

and

1

1 1

(14) T:=23=diag(21’,...,2,f) > 0.

The corresponding controllability and observability Gramians will both be equal to
T = diag (Zy,...,2k) > 0.

Proof. (i) To start we will show that the form presented is canonical on Cr1),...,n(k)-
Consider a system which can be represented by a triple in Cr(1y,... n(k)- A balanced
realization of the system is also in block-balanced form with partitioning indices
n(1),...,n(k). So one can find a block-balanced realization (A,b,c) of the system
with these partitioning indices. It follows from Theorem 2.6 that the requirement that
(A, b, c) is block-balanced with these partitioning indices uniquely determines (A, b, c)
up to an orthogonal state-space transformation of the form Q = diag (Q1,Q2,..-,Qk),
with orthogonal matrices Q; € R*®*n()_If (A, b, c) is in block-balanced form, it can
be brought into input-normal form with block-diagonal observability Gramian by the
state-space transformation 7!, where T is as defined in (14). It follows easily that
if (4,b,c) is in input-normal form with block-diagonal controllability Gramian ¥ =
diag (Z2....,Z2), with A (52) > Ay (B2) > M(Z2) 2 Au)(EB) > -~ > M () >
An(r)(Z2) > 0,32 € R*®*n() then (A, b, ) is uniquely determined up to an orthogo-
nal state-space transformation of the form Q = diag (@1, Qz2,- - -, Qr) - If such a trans-
formation is applied, then (A(i,4),b(i), c(s)) is transformed to (QiA(i,)QT, Qib(3),
¢(i)QT) . Note that (A(i,4),b(s),c(i)) € Cn() because of Theorem 2.7, and there-
fore it follows from Theorem 3.1 that there is a unique choice for Q; which brings
(QiA(5,1)QT, Qib(3), c(4)QT) into the required canonical form.

We need only to check that by using the solutions A(3,j), A(j,4) of (11) the
Gramians indeed have the required block structure, which is straightforward and left
to the reader.

(i) Second, we will show the smoothness properties. Clearly the mapping
Sn(1),..nk) — Bn(1),...n(k) which maps any parameter vector in Sp(1),..n(k) tO
the corresponding triple (A,b,¢) € Bn(1),...,n(k), is real analytic.

Now consider the mapping Cpr(1),...n(k) = Sa(1),...n(k)s which maps a triple
(/i, b, &) to the parameter vector of the corresponding canonical form.

The map which assigns to (A, b, é) the coefficients of the characteristic polynomial
of the product of the Gramians is real analytic. The zeroes of this polynomial are the
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squared singular values. Now consider the polynomial

az)= ] (-o(i)?.

j=n(1)+1

Because on Cy,3),... n(x) the inequality o(n(1)) > o(n(1) + 1) holds, the coefficients of
a(z) depend real analytically on those of the characteristic polynomial of the product
of the Gramians (see, e.g., [16]).

Let X2 = Wc% W,,Wc% , where W and W, are the controllability and observability
Gramians, respectively, of (A,b,&); W, and W, depend real analytically on (A4,b,¢).
The matrix a(X?) has as its range space an n(1)-dimensional linéar subspace of R™
which clearly depends real analytically on (A, b,¢). The corresponding orthogonal
projection matrix II;, which maps an arbitrary vector z € R™ to its orthogonal
projection in the linear subspace spanned by the columns of a(X?) (i.e., the linear
subspace which is obtained by taking the direct sum of the eigenspaces of the largest
n(1) eigenvalues o(1)2,.. ,a(n(l))2 of ¥2), depends real analytically on a(¥2).

Now consider (II; W, 7AW“ II,, I, W, % b, ~WEIIl) with corresponding controlla-
bility Gramian II; and observability Gramian I1;$2II; = I1; £? = %2II,. (Because of
the way II; is constructed, it commutes with ¥£2.) We can now apply the canonical
form of Theorem 3.1 to find a basis for the range space of II; (which corresponds to
the state space there) depending real analytically on (f’i, b, &). The first basis vector
is

LW %5
[
(LW *b|

the second one (Gram-Schmidt orthonormalization) is obtained by normalization of
the vector

oL,W. i AW, W, %5

G ‘LW ATwo imw, b) .
- XHIWC 2b;

(ETWC— LW 55)

and so on. Clearly this choice of basis of the range space of II; is real analytic. With
respect to the resulting basis of the n(1)-dimensional state space the triple

(n1 3 AWAT,, IO, ;%S,awﬁnl)

takes the form (A(1,1),5(1),&(1)), as described in Theorem 3.1:

a(l, 1)11 -—a(l)1 0 e 0
3 a(1)1 0 —a(l)z :
A, = 0 o) 0 )
: ) . _a(l)n(l) 1
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b3
a(l, 1)11 = '_Ea

a(1); >0, j=1,...,n(1) -1,
b
- 0
=1 . |, b1 >0,
0
6(1) = (CI’ 7(1)17 cee 7'7(1)7&(1)—1) )
and therefore this triple and the parameters describing it depend real analytically
on (A,b,¢). Similarly for any i € {1,...,k} the matrix triple and the parameters
describing it depend real analytically on (A, b, ). This proves the real analyticity of

the mapping which maps (fi, b, €) to the parameters of the canonical form.
(iii) The remaining statements follow from the results in [19]. a

5. An atlas of overlapping block-balanced canonical forms.

THEOREM 5.1. Let the state-space dimension n be fized. The canonical forms
Cn@),..n(k) — Bn(,...nky, MJ) € {L,...,n},j = 1,...,k, Z§=1 n(g) =n k€

1,...,n}, form an overlapping set of real analytic (hence continuous) canonical forms

covering Cy,. Each of the sets Cy1),... n(k)s 237:1 n(j) = n, is an open subset of Cy,
and together they cover C,,.

Proof. Let P(n;k) = {(n(1),...,nk)n(F) € {1,...,n}i = 1,...,k;
Zle n(j) = n}, the set of partitions of n into k parts. It is trivial to show that

(15) U U Cr(1),....n(k) = Chn,s
k=1 (n(1),....n(k))EP(n;k)

because Cp(1),...n(k) C Cn for each partition (n(1),...,n(k)) of n and for £ = 1 one
has n(1) = n and Cp(1) = Cy. Clearly for each partition (n(1),...,n(k)) of n the set
Cn(1),...,n(k) is an open subset of C,. The remaining properties follow from Theorem
4.1.

COROLLARY 5.2. The set of mappings

¢ : Cr(1y,...;nk)/ ~— Sn(),..n(k) C R?",
(n(1),...,n(k)) € P(n;k), k=1,...,n,

which map each equivalence class of triples to the corresponding parameter vector
in the canonical form, forms an atlas for the real analytic manifold of stable SISO
input-output systems of order n.

Proof. Any input-output system has a minimal state-space realization which is
unique up to choice of basis of the state space. Therefore, the equivalence classes of
(minimal!) triples in C,, can be identified with stable SISO input-output systems, and

" the result follows from the theorem. O

Remark. A motivation for using this atlas rather than, for example, just the
Schwarz-like canonical form B,, is the following. Suppose one wants to use balanced
realizations. Then one can use the balanced parametrization of [19]. However, this
parametrization is discontinuous at all points of Cy, \ C1,.._ 1, i.e., in all triples (fi, b, ¢)
which have two or more coinciding singular values. Also, the complement Cy .. 1, of
the set of discontinuity points consists of 2™ topological components, one component
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for each sign pattern of the vector ¢ (which cannot have zero components in this case;
cf. (9), (10) with n(i) = 1,i = 1,2,...,k); this should be compared to C,, which
has only n + 1 topological components (the Brockett components). It appears that
this is a serious disadvantage if one wants to use balanced realizations and balanced
parametrizations in, for example, search algorithms for system identification, because
one has to find out first which is the right “cell” of the parametrization. Another
difficulty is that the balanced parametrization will tend to become numerically ill
behaved if two or more of the Hankel singular values of the system are close to each
other. For example, for the class of second-order systems, the determinant of the Lo-
induced Riemannian metric tensor of the balanced parametrization can be calculated
(e.g., using a computer algebra package) to be

52p2 (-9101 — 8202 ) 2
192\ 00—

8101 + 8202
in the notation of [19]. Here the s; and s, are the sign parameters, which are either
+1 or —1. It follows that if two Hankel singular values come close, for given values of
bi and bs, then the parametrization becomes ill conditioned in the sense that a small
parameter change may lead to a large change in the system (in the L,-sense) and/or
a large parameter change may lead to only a small change in the system (again in the
Ly-sense).

In order to overcome these difficulties one could use the overlapping block-balanced
canonical forms as follows. If (4, b, &) has k distinct Hankel singular values o7 > 05 >
*++ > 0k > 0 with respective multiplicities n(1),...,n(k), then one can use the block-
balanced continuous canonical form on Ch(v),...n(k) locally around (A, b,&). If one
is moving away from (fi, b, €) in a search algorithm, for example, one has to decide
whether the canonical form corresponding to a different partition should be used: if
the largest n(1) singular values differ sufficiently from each other, one could use, e.g.,
C1,...1,n(2),...n(k) (Where there are n(1) ones in the subindex before n(2)), etc. In this
way one would use balanced realizations and “almost-balanced” realizations while
moving around in the set of nth-order systems, without encountering discontinuity
points.

6. On the imbedded submanifolds structure of the balanced canonical
form. Consider the balanced canonical form for C, of [19]. For each k € {1,...,n}
and each partition (n1,ny,...,nk) € P(n;k) let Ky, ., denote the subset of C, of
systems with k distinct singular values o1 > 02 > - -+ > o}, which have multiplicities
n1,MN2,...,Nk, respectively. Clearly K, . n. C Chy,, . n. and equality holds only if
k=mn, ni =1, i =1,...,n. The mapping Kn,,..n. — Bn,,..nx N Kn,, . .n, is
a canonical form on K,,, . ., the restriction of the canonical form Cnpoone —
B,,,...ni to Ky, . n.. This canonical form on Kn,,...n, is input-normal with diagonal
observability Gramian W,,. If one applies the state-space transformation (14) (which
is diagonal here), then one obtains the balanced canonical form of [19] restricted to
Kp,,....n- Clearly on Ky, ... n, the balanced canonical form is smooth (real analytic),
while it is of course not even continuous on C,. Both the balanced canonical form
and the corresponding input-normal form parametrize K, ny,.ni/ ~ by the parameters
b; > 0,a(i); > 0,j =1,...,n; —1,¢; # 0,i = 1,...,k. Because (c1y-..,ck) has 2%
possible sign patterns, it follows that K,,, . ./ ~ has 2F topological components, each
real analytically diffeomorphic to R™**. It follows clearly that Ky, . ./ ~ is a real
analytic manifold. The question arises whether it is a regular submanifold of C, ]~
in the sense of [1] and therefore an imbedded submanifold (cf. [1], esp. Lemma 5.2).
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The answer is affirmative and is a direct consequence of the construction developed
in the previous sections.

THEOREM 6.1. For each k € {1,...,n} and each partition (ny,...,nx) € P(n; k)
the subset Ky, n,/ ~ is a regular submanifold of C,/ ~ and therefore an imbedded
submanifold with the inclusion as the tmbedding map.

Proof. 1t follows from [1, Chapter III, section 5| that it suffices to show the socalled
n + k-submanifold property for K, .. n,/ ~ . This property is said to hold if for each
point p € Ky, ... n,/ ~ there exists a coordinate neighborhood U, ¢ on Cy,/ ~ with lo-
cal coordinates €1v o 7€2n such that (1) ‘P(p) = (0’ LR aO)’ (ll) (,O(U) = {(61’ v ’€2n)| -
€< & <e€i=1,...,2n} and (iii) (U N Kn,,..n/ ~) = {€ € o(Ullbnsk+1 =
-+- = £, = 0}. The n + k-submanifold property can be shown to hold as follows.
Suppose that the parameter values of point p € Kn,, . n,/ ~ are b, (i)} > 0,5 =
1,...,n;—1,c # 0; of course at p, ¥(i)1 = - - - = ¥(i)n,—1 = 0. Now choose the local co-
ordinates £, . . ., £2n, as follows: (£1,...,&nsk) = (b1 —'b(l)7 a(l)l"'a(l)cl)’ ooy —1—
(1) _j,e1 ~ b2 — 83, a(2)1 — a(2)},..., 02,1 — a(2)%, 1,62 — 5 3bk —
bg’a(k)l - a(k)(lj’ s ’a(k)nk—l - a(k)gk—l’ Ck — Cg), (£ﬂ+k+1v vee 1€2n) = (7(1)1’ ceey
Y(Dny=1y- -3 Y(k)1s - - -y Y(K)ny—1)- Clearly (i) holds. It follows from Theorem 4.1 that
there exists a neighborhood U of p such that (ii) holds, and from Theorem 4.1, (iii)
follows. a

Acknowledgment. Discussions with Dr. J. M. Maciejowski are gratefully ac-
knowledged.

Note added in proof. In a forthcoming article by the present authors in Linear
Algebra and its Applications, the results presented here are extended to various classes
of SISO and multivariable systems.
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