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Abstract

In this paper an approach to the problem of generating
unitary operators (and thus states) of a finite-dimensional
quantum system is discussed. The method consists of
decomposing the given unitary matrix into a product of
ones with a special structure. This special structure is de-
pendent on any approximation being used or laboratory
constraints (and the control which respects both) and is
chosen beforehand.

1 Introduction

Several problems in chemistry, nuclear magnetic reso-
nance, optics, quantum information processing call for
the creation of a prescribed unitary matrix from the evo-
lution of a controlled quantum system. The applications
in chemistry (specifically molecular control) are discussed
in the survey paper [10]. Nuclear magnetic resonance
applications of this control theoretic problem were ad-
dressed in talks in this conference. Likewise, in quantum
computing an important problem is the creation of the
unitary matrix which will serve as a particular logic gate.
Several other novel applications, such as lasing without
population inversion call for the preparation of a certain
coherent superposition of states.

These problems may be described mathematically as
either of the two following problems. First, create a de-
sired final state z; € S (S is the unit sphere in CM) from
the evolution of the following controlled bilinear system:

% = Az + Bzu(t); 2(0) = 2, (1)

The second problem is analogous, but is posed at the
level of the invariant system on U(M) which describes
the evolution of the unitary generator corresponding to
the system (1). Create a desired unitary matrix Uy from
the evolution of the following system:

U = AU + BUu(t); U(0) = In 2
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In both (1) and (2) the matrices 4 and B, which are M x

M skew-Hermitian matrices, are matrix representations

of the internal Hamiltonian and the external coupling to

the control u(t) respectively. Note that other applications*
lead to modified versions of the above two equations. For

instance, in nuclear magnetic resonance experiments the

system of interest is an affine inhomogeneous system with

two inputs. The text [1] has some driftless systems as one

of its models.

Remark 1 i) It is customary to start with Schrédinger’s
equation, ¥ = (Ho+V(2))¥+ H.:¥, where Ho+V(z) is
the internal Hamiltonian and H.,: is the external Hamil-
tonian. One example of H,.; is —u(z)(t) in the con-
trol of molecular dynamics via electromagnetic radia-
tion. Here u(z) is the dipole and u(t) is the electro-
magnetic radiation. One then obtains equation (1) from
it via one or more of the approximations from physics
(e.g; the Born-Oppenheimer approximation in chemical
physics, the finite-level approximation used to describe
lasers, molecular dynamics and control problems, ...).
Some of the approximations and their limitations have
been analyzed mathematically. However, scientists from.
various disciplines who use these approximations have a
very good understanding of their range of applicability.
Many of the spectacular theoretical predictions of quna-
tum mechanics and their experimental confirmations are
based on such approximate models, and thus (1) is fre-
quently a good starting point for further considerations.
To give an extreme illustration of this principle, we point
out that whilst the passage from quantum to classical still
has its mathematical mysteries, no engineer would hesi-
tate in using classical equations of motion in arriving at
control designs for macroscopic systems. Furthermore,
the discussion below on state steering will be based on
the existence of known specific functional forms for the
control u(?). These forms are known to the respective sci-
entists to respect the approximations used in arriving at
(1) or its variants. It is also of interest to note that while
A and B may be thought to be the matrix elements of
the internal and external Hamitonians respectively, they
are frequently obtained from experimental data (such as
spectroscopic data). A thorough discussion of this and
related issues may be found in (2).
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ii) The state space for (1) is the unit sphere S in C¥.
In quantum computing applications CM is usually the
tensor product of several copies (the number of copies
is the same as the number of qubits) of C2%. This cor-
responds to the multi-particle picture of the implemen-
tation of quantum gates (such as ions in a trap). This
picture is, of course, in keeping with the classical view of
bits and is also driven by the structure of the algorithms
such as Shor’s algorithm. However, there is some interest
in viewing these qubits as pairs of levels of a single parti-
cle. One reason is that single particles are more immune
to the effects of decoherence than are several particles in
tandem. .

Since the unitary group and several other subgroups
thereof act transitively on the unit sphere S, the problem
of final state preparation of (1) can be subsumed by the
final state preparation problem for (2). In fact, since the
isotropy group corresponding to these transitive group
actions are known, one can explicitly parametrize those
matrices V € Ups such that Vzo = ;. Thus obtaining
z; starting from zo can be (constructively) reduced to
the problem of preparing any one of these Vs starting
from the identity matrix Ips. Thus our subsequent dis-
cussion will be confined to the latter problem. In (7] a
measurement scheme is discussed which can be cast as
the problem of the preparation of specific unitary ma-
trices. Thus, in certain applications, even state readout
amounts to final state preparation for (2).

2 A Constructive Scheme

In this section we will discuss the constructive procedure
referred to in the abstract. Let us first make a couple
of observations which are relevant. First, viewing (2) as
an invariant system on a compact Lie group one can de-
termine whether (2) is completely controllable. This can
be found in (6] and it makes essential use of the results
of {3]. However, this system has drift and thus there are
no constructive techniques for path planning, as opposed
to the case of systems without drift (4, 9]. While it is
possible to make use of the structure of the drift term
to come up with heuristics for path planning, these typ-
ically lead to complicated inputs. Thus we will use a
different approach. First, a prescribed functional form
for the input with a few floating parameters serving as
our knobs will be imposed. This functional form is typi-
cally a consequence of both technological limitations and
the use of an approximation which is respected by this in-
put. These approximations enable us to more completely
describe the response of the system to the given input.
A typical example is the use of a sequence of monochro-
matic pulses (with predetermined frequencies) with the
pulse area and phase as knobs together with the rotating
wave approximation, [8]. The second observation con-
sists in observing that any U; € U(M) is eC* times a
special unitary matrix. Since the e<¢ factor cannot be

experimentally observed, any well posed state prepara-
tion problem should be susceptible to the case when Uy
is special unitary. We will assume that this is so from
now on.

Bearing these remarks in mind the constructive proce-
dure consists of the following steps:

1. Assume that the underlying physical system can be
controlled by addressing pairs of states at a time.
One situation where this condition is met is that of
a finite-level atom with wide separation (i.e., no res-
onances or near resonances) between the differences
in energy levels of the atom, and which is further
that if state i and j cannot be directly accessed from
one another due to selection rules then there exist
other states forming a ladder between i and j which
enable us to access i from j and vice-versa.

2. Choose a functional form for the input such that
both i) the response to the two-dimensional subsys-
tem can be explictly computed via perhaps an ap-
proximation; and ii)the functional form, along with
possible bounds for the parameters in the functional
form, respect any approximation that was chosen.
An example of this is the case of a sequence of
monochromatic inputs with known bounds on the
pulse area which will respect the fact the finite num-
ber of levels approximation.

3. Compute ex-
plicitly the matrix in SU(2) (parametrized by the
knobs) which results in response to this input. This
parametrized form is the special structure referred
to before. For that purpose the following proposi-
tion which computes explictly the exponential of an
arbitrary linear (time-varying) combination of Pauli

01

matrices is useful, {7]:
= %( 10 ) i
1 0

il _01> and o; = ((1) _01) be the Pauli
matrices. Then we have

Proposition 1 Let o

\//\(t)' .2
(——2——)Ia+1m

where a(t), B(t) and 7(t) are real valued functions of
time, and

exp(ia(t)o+0(t)oy+7(t)o:) = cos

At) = (a(t)? + 8 + (1))

4. Show that, any matrix in SU(2) can be written as a
product of matrices in SU(2) which have the special
structure obtained in the step above. In this regard
we note that this can always be done provided the
logarithm of this special structure lies in the span
of any two of ig;, igy or ig,. This is essentially a
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controllability argument since the Lie algebra gener-
ated by any two of these matrices is all of su(2), the
Lie algebra of SU(2). Doing so constructively and
respecting any parameter bounds imposed by labo-
ratory considerations requires extra effort. One such
instance is described in [7].

5. Show that any matrix Vy € SU(M) can be written as
the product of a sequence of matrices which are ten-
sor products of Ips_» (the (M —2) x (M —2) identity
matrix) and a 2 x 2 block with the special structure
obtained in step 3. If no special structure is required
and no selection rule type constraints are present,
then a procedure for this is well known, [5]. Essen-
tially one reduces each column of V; to a unit vector
in CM by taking subvector of length two at a time
and then premultiplying by a matrix in SU(2) which
results in one of the components being zero. That
there is at least one such matrix is a consequence
of the fact that SU(2) acts transitively on spheres
(of a given radius) in C?. The presence of selec-
tion rules introduces some extra complications. The
special structure requirement means, in conjunction
with step 4, that more than one premultiplication by
matrices in SU(2) may be required.

It is worth noting that the matrices which enter into
the product decompositions of V; can be completely de-
scribed by V; and the selection of the parameters which
enters the functional form of the control input can be
determined, in view of step 3, from these factors in the
product expansion of V; by solving simple transcendental
equations.

We believe that this methodology could be profitably
applied to the control of various systems arising in quan-
tum mechnaics. This should also extend to approxi-
mate path planning for invariant systems on compact Lie
groups, if one can identify conditions which lead to weak
coupling between susbsystems of the full system.
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