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It is shown that a large class of two-dimensional NMR spectra is characterized by a matrix
algebra and an invariant subspace. Both the matrix algebra and the invariant subspace
are determined by the system matrices of the bilinear system which describes the NMR
experiments.

1. Introduction

In an earlier paper ([4]) the following system theoretic setup was introduced to
describe (multidimensional) NMR experiments. (For a general introduction to NMR
experimentation see, e.g., [1,2].) The basic relationship between inputs u1 and u2 to
the system, i.e., the excitation signals or, in particular, the radiofrequency pulses, and
the measured output y, i.e., the measured induced magnetization, is given described
by a bilinear system,

ẋ(t) =Ax(t) + u1(t)N1x(t) + u2(t)N2x(t) + b1u1(t) + b2u2(t), x(t0) = x0,

y(t) = cx(t),

where x is a state vector, A, N1, N2 are square matrices, b1 and b2 are column vectors
and c is a row vector.

A key step in analyzing NMR experiments is the analysis of the effects of a typical
input, i.e., a pulse. In [4] it was shown that, for example, in the case of a weakly
coupled two spin system, the effects of a radiofrequency input can be described after
a suitable state-space transformation by a bilinear system with constant input. More
precisely, an NMR system is usually such that if the inputs are given by

u1(t) = B1 cos
(
ωp(t− t0 + ∆t)

)
, u2(t) = B1 sin

(
ωp(t− t0 + ∆t)

)
, t > t0,

the input–output relationship can be described by a bilinear system of the form

ẋr(t) =Ar(ωp)xr(t) +Nr(ωp, ∆t)xr(t) + br(ωp, ∆t)ur, xr(t0) = x0,

y(t) = ei(t−t0)ωpcxr(t),

 J.C. Baltzer AG, Science Publishers
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with ur = B1. The important fact is that the input B1 = ur is constant. If
Ap(ωp, ∆t,B1) := Ar(ωp, ∆t) + urNr(ωp, ∆t) is invertible, this equation can be solved
with the solution given by

xr(t) = e(t−t0)Ap(ωp,∆t,B1)x0 +
(
e(t−t0)Ap(ωp,∆t,B1) − I

)
Ap(ωp, ∆t,B1)−1br(ωp, ∆t)B1,

t > t0.

For the remainder of the paper we will assume that Ap(ω, ∆t,B1) is invertible whenever
we write (Ap(ω, ∆t,B1))−1. If a system is in state x0 at time t0 just before a pulse is
applied, the pulse will move the system to the state

x1 = P1x0 + z1

at time T > t0, where

P1 :=P1(T , t0,ωp,1, ∆1t,B1) := e(T−t0)Ap(ωp,1,∆1t,B1),

z1 :=
(
e(T−t0)Ap(ωp,1,∆1t,B1) − I

)
Ap(ωp,1, ∆1t,B1)−1br(ωp,1, ∆1t)B1.

Note that this representation also includes the case in which no pulse has been applied.
In this case z1 = 0 and P1 = e(T−t0)Ar . Hence the effects of a sequence of k pulses
on an initial state is given by

xk =Pk
(
Pk−1

(
· · ·
(
P2(P1x0 + z1) + z2

)
· · ·
)

+ zk−1
)

+ zk

=PkPk−1 · · ·P1x0 + PkPk−1 · · ·P2z1 + PkPk−1 · · ·P3z2 + · · ·+ Pkzk−1 + zk.

Therefore we can write

xk := T1x0 + e1,

where

T1 := PkPk−1 · · ·P1

and

e1 := PkPk−1 · · ·P1x0 + PkPk−1 · · ·P2z1 + PkPk−1 · · ·P3z2 + · · ·+ Pkzk−1 + zk.

The three blocks of pulses that often characterize a two-dimensional experiment are
therefore determined by three matrices T1, T2 and T3, and three vectors e1, e2 and e3.
Here the notation is such that the pair (T1, e1) describes the preparation block of
pulses, (T2, e2) represents any possible pulses in the middle of the evolution period,
and (T3, e3) describes the pulses during the mixing period. Note that any pulse within
a block of pulses during which no input signal is applied is also considered to be a
pulse, i.e., a pulse with zero level input. Hence ([4]) the free induction decay of such
a system is given by

s(t1, t2) = cet2AT3e(t1/2)AT2e(t1/2)AT1x0 + cet2AT3e(t1/2)AT2e(t1/2)Ae1

+ cet2AT3e(t1/2)Ae2 + cet2Ae3, t1, t2 > 0.
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As usual, in the above expression t1 stands for the measured time and t2 for the length
of the evolution period.

The spectrum of a two-dimensional experiment is then given by

G(ω1,ω2) = c(2πiω1I−A)−1[T3P (ω1)(T1x0+e1)+T3
(
2πiω1I− 1

2A
)−1

e2+δ0(ω1)e3
]
,

where

P (ω1) :=
∫ ∞

0
e(t1/2)AT2e(t1/2)Ae−2πiω1t1 dt1, ω1 ∈ <,

and δ0(ω1) stands for the delta function with mass concentrated at 0.
In this paper we will only consider the case, where T2 = I and e2 = 0, i.e., the

case when no pulses are applied in the center of the evolution period. Moreover, we
shall assume that before each scan the system is in equilibrium, i.e., x0 = 0. Then the
spectrum is given by

G(ω1,ω2) = c(2πiω1I −A)−1T3(2πiω2I −A)−1e1 + δ0(ω1)e3, ω1,ω2 ∈ <.
The term δ0(ω1)e3 arises from the term cet2A in the time domain data. Note that since
it is independent of t1, it is a constant in the t1 time direction. In the analysis of
experimental data this term would be removed before applying the Fourier transform.
We can therefore assume that the spectrum is given by

G(ω1,ω2) = c(2πiω1I −A)−1T3(2πiω2I −A)−1e1, ω1,ω2 ∈ <.
Thus far, we have not taken into consideration techniques such as phase-cycling

(see, e.g., [1,2]). Phase-cycling can be seen to be a special case of adding together
free induction decays corresponding to different experiments. We will therefore study
experiments which are obtained by adding free induction decays together with the
same evolution period t2 and for which only one of the blocks of pulses is changed.
Using such addition schemes we therefore obtain spectra of the form

G(ω1,ω2) = c(2πiω1I −A)−1

(
k3∑
j=1

λjT3,j

)
(2πiω2I −A)−1

(
k1∑
l=1

µle1,l

)
,

ω1,ω2 ∈ <.
Here T3,1,T3,2, . . . ,T3,k3 determine k3 different pulse blocks in the mixing period, and
λ1,λ2, . . . ,λk3 are complex constants. The k1 vectors e1,1, e1,2, . . . , e1,k1 are determined
by the k1 different preparation pulse blocks, and µ1, . . . ,µk1 are complex constants.

In this paper we analyze the class of spectra that can be obtained by applying
different pulse sequences and addition schemes. It is clear that such an analysis of the
mixing period necessitates a careful study of all the possible combinations

∑k3
j=1 λjT3,j .

This is the topic of section 2. In section 3 we will examine the term
∑k1

l=1 µle1,l, which
characterizes the preparation period of the experiment.

We will only study 2-D experiments in this paper. However, the extension of the
methods presented here to higher dimensional experiments is obvious.
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2. The mixing period and matrix algebras

In this section we are going to study the set T given by all possible matrix
expressions of the form

∑k3
j=1 λjT3,j . As pointed out in section 1 the mixing period of

a two-dimensional NMR experiment is characterized by such an expression. We aim to
derive representations of this vector space which are more amenable to computations
and analysis than this general description. In fact, we are going to show that this set
is a matrix algebra and we are going to determine generators of it.

It follows from the discussion in section 1 that each matrix T3 has a representation
of the form

T3 =
k∏
j=1

e(tj−tj−1)(Ar(ωp,j )+B1,jNr(ωp,j ,∆jt)),

for 0 < t0 < t1 < · · · < tk. Note that this representation immediately implies that
the matrix product of two elements in T is again in T , i.e., that T forms an algebra.
(See, e.g., [3] for the definition of an algebra.)

We now show that for each ω > 0, B1 > 0, ∆t > 0, Ar(ωp) +B1Nr(ω, ∆t) ∈ T .
To see this first note that T is closed since it is a finite dimensional vector space. As
et(Ar(ωp)+B1Nr(ω,∆t)) ∈ T for each t > 0 we also have that the derivative (Ar(ωp) +
B1Nr(ω, ∆t))et(Ar(ωp)+B1Nr(ω,∆t)) ∈ T for t > 0. Therefore the derivative evaluated
at 0, i.e., (Ar(ωp) +B1Nr(ω, ∆t)) is also in T . Since (Ar(ωp) +B1Nr(ω, ∆t)) ∈ T for
all B1 > 0 we also have that Ar(ωp) ∈ T . Since T is a vector space this also implies
that Nr(ωp, ∆t) ∈ T .

We now show the following theorem.

Theorem 1. (1) T is a matrix algebra (over the complex field) which is generated
by the matrices Ar(ωp), Nr(ωp, ∆t), ωp > 0, ∆t > 0, i.e., each element in T can be
obtained by forming linear combinations of arbitrary products of these matrices.

(2) If Ar(ωp) = A1
r + ωpA

2
r and if Nr(ωp, ∆t) = eiωp∆tN1

r + e−iωp∆tN2
r , then T

is generated by A1
r, A

2
r, N

1
r and N2

r . Here A1
r, A

2
r, N

1
r and N2

r are assumed to be
constant matrices independent of ωp and ∆t.

Proof. (1) As was argued above T is an algebra. It follows from the remarks preced-
ing the statement of the theorem that the algebra T ′ generated by Ar(ωp), Nr(ωp, ∆t),
ωp > 0, ∆t > 0, is a subalgebra of T .

To show the other inclusion, i.e., that T ⊆ T ′ recall that by the Cayley–Hamilton
theorem each matrix exponential can be written as the linear combination of a finite
number of powers of the matrix. This implies that each element in T can be generated
by the matrices Ar(ωp), Nr(ωp, ∆t), ωp > 0, ∆t > 0.

(2) If Ar(ωp) = A1
r + ωpA

2
r, ωp > 0, then clearly A1

r and A2
r are in T . If

Nr(ωp, ∆t) = eiωp∆tN1
r + e−iωp∆tN2

r , then

Nr(ωp, ∆t) = cos(ωp∆t)
(
N1
r +N2

r

)
+ i sin(ωp∆t)

(
N1
r −N2

r

)
, ωp > 0.



R.J. Ober, E.S. Ward / Multidimensional NMR spectra 5

From this it follows immediately that N1
r + N2

r and N1
r − N2

r are in T . Hence, N1
r

and N2
r are also in T .

Given A1
r, A

2
r, N

1
r and N2

r , the generating matrices of (1) can be obtained in the
obvious way. Hence, A1

r, A
2
r, N

1
r and N2

r indeed generated T . �

The special situation which is treated in part (2) of the theorem is encountered
in NMR, for example, for the case of two weakly coupled spins (see [4]). In this case
it is also straightforward to obtain spanning vectors for the vector space T , which is
useful for computational purposes.

Corollary 1. With the assumption and notation of part (2) of the theorem let

M0 :=
[
A1
r A

2
r N

1
r N

2
r

]
and recursively define Mk by setting

Mk :=
[
A1
rMk−1 A

2
rMk−1 N

1
rMk−1 N

2
rMk−1

]
, k = 1, 2, . . . .

Then the block entries of Mk, k = 1, 2, . . . , span T .

As discussed in section 1 the spectrum of a 2-D experiment is given by

G(ω1,ω2) = c(2πiω1I −A)−1T3(2πiω2I −A)−1b,

where we have set b := e1. If we assume that A is diagonal with eigenvalues
a1, a2, . . . , an, then the spectrum can be written as

G(ω1,ω2) =
n∑
j=1

n∑
l=1

cj
2πiω1 − aj

tjl
bl

2πiω2 − al
,

where c := c(c1, c2, . . . , cn), b := (b1, b2, . . . , bn)T, T3 := (tij)16i,j6n.
Redundancies occur in this description of the spectrum if A has eigenvalues with

multiplicities. Assume that ar1, ar2, . . . , ark are the eigenvalues of A with all possible
multiplicities removed. To remove the redundancies in the description of the spectrum,
we construct the k × n matrix Q, whose entries are either zeros or ones. The first
row of Q is constructed as follows. In the first entry enter 1 corresponding to the
eigenvalue a1. Then enter a zero in the second entry if a2 6= a1, otherwise enter 1.
Similarly, in the jth entry enter 0 if ak 6= a1 and 1 if ak = a1. The rth row,
1 < r 6 k, of Q is constructed as follows: Consider the first eigenvalue al in the list
a1, a2, . . . , a+ l, . . . , an which is not equal to any of the eigenvalues ar1, ar2, . . . , ark−1
and enter 1 at the corresponding entry of the row, i.e., its lth entry. Enter 0 in the
first l − 1 entries of this row. Then enter a zero in the (l + s)th entry of the row if
al+s 6= al and 1 otherwise, for s = 1, . . . ,n− k.

Now let

Qb := b1 :=


b1

1

b1
2...
b1
k

 ,
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cQ∗ := c1 :=
(
c1

1 c
1
2 . . . c1

k

)
,

QT3Q
∗ := T 1

3 :=
(
t1jk
)

16j,l6k.

With this notation we then have a ‘reduced’ representation of the spectrum given by

G(ω1,ω2) =
k∑
j=1

k∑
l=1

c1
j

2πiω1 − arj
t1jl

b1
l

2πiω2 − arl
.

Further redundancies can occur in the description of the spectrum if b1 or c1

have zero entries. If c1
j , the jth entry of c1, is zero then the pole 1/(2πiω1 − arj )

will not appear in the spectrum. Similarly, if the lth entry of b1 is zero, then the pole
1/(2πiω2 − arl ) will not appear in the spectrum. Moreover, if c1

j is zero then the jth
row of T 1

3 is irrelevant for the appearance of the spectrum and similarly, if b1
l is zero

then the lth column of T 1
3 is irrelevant for the appearance of the spectrum. To study

this effect on the algebra T let C be the ‘projection matrix’ that is obtained from the
k × k identity matrix by deleting the jth row if the c1

j = 0, for some j ∈ {1, . . . , k}.
Analogously, define B to be the projection matrix that is obtained from the k × k
identity matrix by deleting the lth column if b1

l = 0, for some l ∈ {1, 2, . . . , k}. Let
now

T r3 :=
(
trjl
)

16j6nb
16l6nc

:= CT 1
3B,

br :=


br1
br2
...
brnb

 := B∗b1,

cr :=
(
cr1 c

r
2 . . . crnc

)
:= c1C∗.

Then

G(ω1,ω2) =
nc∑
j=1

nb∑
l=1

crj
2πiω1 − arj

trjl
brl

2πiω2 − arl
.

Note that in general nb 6= nc, i.e., T r3 is not necessarily a square matrix.
In the ‘reduced’ representation of the spectrum which was just discussed, the set

of all T r3 matrices is given by

T := CQT Q∗B =
{
CAT3Q

∗B | T3 ∈ T
}
.

While in general Tr is not a matrix algebra it is in an obvious way a subspace of the
vector space of nc × nb matrices with complex entries.

Of particular interest from an experimental point of view is whether an experiment
can be devised such that a particular diagonal- or cross-peak can for example be
suppressed or made to appear without unduly influencing other parts of the spectrum.
Since a peak has the general form crjt

r
jlb

r
l /((2πiω1 − arj )(2πiω2 − brl )), this problem
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is related to the question whether or not experiments can be found that can set the
trjl-entry of T r3 to zero or to another value without changing the other entries of T r3 .
If this is possible, we call this a switchable 2-D pole. We say that 2-D pole is an
(a, b)-pole if the pole is given by v/((2πiω1 − a)(2πiω2 − b)) for some constant v. It
is easily seen that the (arj , b

r
j )-pole is switchable if and only if Ejl ∈ Tr, where Ejl is

the nc × nb matrix such that all entries are zero with the exception of the (j, l) entry
which is 1.

Similarly, we call a collection (arn1
, brn1

), . . . , (arns , b
r
ns) of 2-D poles switchable

if two experiments can found such that in the first experiment all the coefficients of
the poles are non-zero and in the second experiment all coefficients are zero, but the
coefficients for the other 2-D poles are the same for both experiments.

We have the following result.

Proposition 1. The collection (arn1
, brm1

), . . . , (arns , b
r
ms) of 2-D poles is switchable if

and only if there exist nonzero coefficients λ1,λ2, . . . ,λs such that
∑n

l=1 λlEns,ms ∈
Tr.

3. The preparation period and invariant subspaces

It was shown in section 1 that the preparation period of a two-dimensional NMR
experiment is determined by the expression

∑k1
l=1 µle1,l. It will be the topic of this

section to analyze the set E of all such expressions. In particular, we are going to
show that the set of all such expressions is an invariant subspace of Cn. It was shown
in section 1 that each e1,l is given by

e1,l := Pk,lPk−1,l · · ·P2,lz1,l + Pk,lPk−1,l · · ·P3,lz2,l + · · ·+ Pk,lzk−1,l + zk,l,

where

zj,l :=
(
e(tj,l−tj,l−1)Ap(ωp,j,l ,∆j,lt,Bj,l) − I

)
Ap(ωp,j,l, ∆j,lt,Bj,l)

−1br(ωp,j,l, ∆j,lt)Bj,l

and

Pj,l := Pj,l(tj,l, tj,l−1,ωp,j,l, ∆j,lt,Bj,l) := e(tj,l−tj,l−1)Ap(ωp,j,l ,∆j,lt,Bj,l),

j = 1, . . . , k, l = 1, 2, . . . , k1. Here we have assumed as will be done throughout the
remainder of this paper that x0 = 0.

We have the following theorem.

Theorem 2. (1) We have

E = span
{
T br(ωp, ∆t) | ωp > 0, ∆t > 0

}
,

where span(V ) denotes the linear span of the set of vectors V and T is defined as in
section 2.

(2) E is the smallest linear subspace of Cn that contains br(ωp, ∆t) for ωp > 0,
∆t > 0, and is invariant under Ar(ωp) and Nr(ωp, ∆t) for all ωp > 0, ∆t > 0.
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(3) If Ar(ωp) = A1
r + ωpA

2
r, if Nr(ωp, ∆t) = eiωp∆tN1

r + e−iωp∆tN2
r and if

br(ωp, ∆t) = eiωp∆tb1
r + eiωp∆tb2

r, then E is the smallest subspace of Cn that contains b1
r

and b2
r and is invariant under A1

r, A
2
r, N

1
r and N2

r . Here A1
r, A

2
r, N

1
r , N2

r , b1
r and b2

r

are assumed to be constant matrices independent of ωp and ∆t.

Proof. (1) We begin by showing that E ⊆ span{T br(ωp, ∆t) | ωp > 0, ∆t > 0}. To
do this we first show that a vector z as defined above is in span{T br(ωp, ∆t) | ωp >
0, ∆t > 0)}. Let ωp > 0, ∆t > 0, B1 > 0 and set

z :=
(
etAp(ωp,∆t,B1) − I

)
Ap(ωp, ∆t,B1)−1br(ωp, ∆t)B1.

Then

z=
(
etAp(ωp,∆t,B1) − I

)
Ap(ωp, ∆t,B1)−1br(ωp, ∆t)B1

=

( ∞∑
r=0

1
r!

(
tAp(ωp, ∆t,B1)

)r − I)Ap(ωp, ∆t,B1)−1br(ωp, ∆t)B1

=

( ∞∑
r=1

1
r!

(
tAp(ωp, ∆t,B1)

)r)
br(ωp, ∆t)B1,

which shows that z ∈ span{T br(ωp, ∆t) | ωp > 0, ∆t > 0)}.
We now show that if y0 ∈ span{T br(ωp, ∆t) | ωp > 0, ∆t > 0}, then for ωp > 0,

∆t > 0, t > t0 and B1 > 0, we have that

Py0 + z

is in span{T br(ωp, ∆t) | ωp > 0, ∆t > 0}, where

P := e(t1−t0)Ap(ωp,∆t,B1),

z :=
(
e(t1−t0)Ap(ωp,∆t,B1) − I

)
Ap(ωp, ∆t,B1)−1br(ωp, ∆t)B1.

This is the case since z ∈ span{T br(ωp, ∆t) | ωp > 0, ∆t > 0} by the above argument
and since P ∈ T . Since a general element in E is the linear combination of elements
of the form (see section 1)

Pk
(
Pk−1

(
· · ·
(
P2(P1x0 + z1) + z2

)
· · ·
)

+ zk−1
)

+ zk,

the inclusion E ⊆ span{T br(ωp, ∆t) | ωp > 0, ∆t > 0} follows immediately from
what was just shown.

We now need to show that span{T br(ωp, ∆t) | ωp > 0, ∆t > 0} ⊆ E . To do this
let v ∈ {T br(ωp, ∆t) | ωp > 0, ∆t > 0}, i.e.,

v = PkPk−1 · · ·P2br(ωp, ∆t),

where ∆t > 0, ωp > 0 and

Pj = e(tj−tj−1)Ap(ωp,j ,∆jt,Bj )
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with 0 < t1 < t2 < · · · < tk and ωp,j > 0, ∆jt > 0, Bj > 0, j = 2, 3, . . . , k. In order
to show that v ∈ E , we first show that

PkPk−1 · · ·P2z1(t) ∈ E ,

where

z1(t) :=
(
e(t−t0)Ap(ωp,∆t,B) − I

)(
Ap(ωp, ∆t,B)

)−1
br(ωp, ∆t), 0 < t < t1, B > 0.

Set

zj :=
(
e(tj−tj−1)Ap(ωp,j ,∆jt,Bj ) − I

)(
Ap(ωp,j, ∆jt,Bj)

)−1
br(ωp,j, ∆jt)Bj ,

j = 2, 3, . . . , k. By definition of E , zj ∈ E for j = 1, 2, . . . , k, and Pkzk−1 + zk ∈ E .
Since E is a vector space this implies that Pkzk−1 ∈ E . Similarly, by definition of E ,
we have that PkPk−1zk−2 + Pkzk−1 + zk ∈ E . Again using that E is a vector space,
this implies that PkPk−1zk−2 ∈ E . Proceeding recursively we show that

PkPk−1 · · ·P2z1(t) ∈ E , 0 < t < t1.

Let T3 := PkPk−1 · · ·P2 and set r(t) := T3z1(t), 0 < t < t1. Since E is a finite
dimensional subspace of Cn, it is closed. Hence,

v=PkPk−1 · · ·P2br(ωp, ∆t) = T3Ap(ωp, ∆t,B)
(
Ap(ωp, ∆t,B)

)−1
br(ωp, ∆t)

= T3 lim
t→0

z1(t)
t

= lim
t→0

r(t)
t
∈ E .

(2) Clearly, E = span{T br(ωp, ∆t) | ωp > 0, ∆t > 0} is a linear subspace of
Cn that contains br(ωp, ∆t) for ωp > 0, ∆t > 0, and by the characterization of T in
theorem 1 is invariant under Ar(ωp) and Nr(ωp, ∆t) for all ωp > 0, ∆t > 0.

Conversely, an invariant subspace of Cn that contains br(ωp, ∆t) for ωp > 0,
∆t > 0, and is invariant under Ar(ωp) and Nr(ωp, ∆t) for all ωp > 0, ∆t > 0, contains
the elements of {T br(ωp, ∆t) | ωp > 0, ∆t > 0}.

(3) The statement follows from (2) in conjunction with theorem 1. �

In [4] it was shown that the spectrum of a 1-D NMR experiment is given by

G(ω) = c(2πiI −A)−1e0, ω ∈ <,

for some vector e0. The only parameter in this description which can be adjusted in
an experiment is e0. If addition schemes are introduced that are analogous to those
introduced in section 1 for 2-D systems, then the set E describes all possible vectors e0.
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