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Abstract

The purpose of this paper is fourfold: i) First, a brief
description of how finite dimensional models arise in
quantum control will be given. ii) Second, many no-
tions in quantum engineering such as universality of
logic gates, hard pulse approximation in NMR spec-
troscopy etc., will be related to controllability of sys-
tems on the unitary groups. iii) Recent results, of the
authors, on constructive controllability, in the class of
piecewise constant controls with constraints placed on
them, for systems with drift on the unitary groups will
be sketched. iv) Finally, a new decomposition of SU(2)
matrices will be provided and used to illustrate how
problems caused by periodicity arguments, to address
the presence of drift, may be circumvented.

1 Introduction

Several applications call for the control of quantum
systems. Examples are: i) Molecular control or site-
specific photochemistry, in which molecules are irra-
diated with electromagnetic fields so as to enhance
product specificity or to enable spectroscopy, [1, 6]; i-
i) Lasing Without Inversion (LWI) in which the lasing
action is achieved without putting bulk of the popula-
tion in the unstable higher energy state as opposed to
the conventional practice, [2]; iii) NMR spectroscopy,
[7, 13); iv) Quantum information systems - the con-
struction of quantum logic gates and cryptosystems,
[17]. In one form or the other all these problems can
be reduced to the problem of state preparation for a
quantum system to a desired final state. The second
problem, LWI, illustrates this. The resolution.of this
problem proceeds as follows. Call the ground state, z;
and the excited state, . Choose another state x3,
higher in energy than the ground state. Then drive the
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quantum system via an external field to go from the s-
tate (1,0,0) to a state (c1, c2,c3). The superposition of
coherent states (c,cz,c¢3) is so chosen that amplifica-
tion is maximized while keeping, | ¢2 |, the population
in the excited state at a minimum. The idea is that
this superposition will create two interfering pathways
(thus, mimicking the double slit experiment) and ma-
nipulation of these intereferences will lead to amplifica-
tion. Manipulation of such coherent superpositions(in
some cases these superpositions live in tensor produc-
t spaces - known as entangled states) is the essential
feature of all quantum control problems.

Before proceeding, a note about the bibliography is ap-
propriate. For reasons of length only immediately rel-
evant papers are cited, and in most cases survey arti-
cles which have extensive bibliographies have been pre-
ferred.

2 Finite Dimensional Models:

One may be lead to believe that quantum control
is the control of a partial differential equation (the
Schrodinger equation) and thus belongs to the purview
of distributed parameter systems. While there are ex-
amples which call for an infinite dimensional analysis
(see e.g., [3]), this viewpoint is narrow. In fact, if one
goes through the derivation of most of the partial d-
ifferential equations of physics, it becomes clear that
the passage to a partial differential equation is itself
an approximation. Thus, there is no reason a priori
to believe that a PDE model is more accurate than a
finite dimensional model. Many quantum phenomena
have been very accurately described by finite dimen-
sional models. Predictions based on such models have
been experimentally confirmed.

Thus, the viewpoint being espoused in this paper is



that the system being controlled is assumed to be de-
scribed by unitary evolution in a complex Hilbert space
whose dimension is the maximum number of indepen-
dent states that can be distinguished by the experiment.
For instance, spin systems evolve in finite dimension-
al spaces, because magnetic fields cannot excite other
modes. Similarly, microwave fields usually only cause
rotations and we can thus ignore vibrations, electron-
ic transitions etc., Of course, many of these finite di-
mensional models are valid under certain assumptions.
These assumptions have to be met by the control field
to prevent the analogue of the spillover effect. Thus
most controllability questions that have to be studied
are constrained controllability problems.

In what follows we provide a few “mathematical” jus-
tifications of the usage of finite dimensional systems.
Suppose that the original problem was given via:

m’lj’ = (Ho + V(2))¢ + Hezt?p

In the above equation, z is the spatial coordinate and
his % (h is Planck’s constant). By passing to atomic
units, one may take h = 1. Further, H;,; = Ho + V(z)
is the internal Hamiltonian, with Hp being the kinetic
energy and V (z) the potential energy. H,,: is the exter-
nal Hamiltonian (this contains the control term). For
molecular control problems, for instance, H,, is given
by —u(z)e(t). u(z) is the dipole operator and e(t) is
the external real valued electromagnetic field.

Passage to a finite dimensional model is formally jus-
tified by expanding the wave function ¥(z,t) as a fi-
nite sum of the form Y, ck(t)¢r(z). The ¢y (z) are
usually taken to be the eigenfunctions of the operator
Hy + V(z). Plugging this into Schrodinger’s equation
results in a bilinear control system

¢ = Ac + Beu(t); c(0) = ¢o (1)

The state of this system is ¢ = (c1,...,¢n) and has the

of the so called algebraic approach to molecular dynam-
ics, {10]. A related situation is that H;pn, Hezt belong to
a finite dimensional Lie algebra of operators. Passage to
the Heisenberg picture then leads to a finite dimension-
al system; iii) Assumptions about the spectrum of the
control allows us to neglect many modes. For instance,
ultra-violet radiations do not cause vibrational transi-
tions. This combined with other approximations such
as the Born-Oppenheimer approximation, [12], leads to
finite dimensional models. iv) There are reasons to be-
lieve that space is essentially “grainy” and thus quan-
tum mechanics should be studied on a lattice instead of
a continuum, [23]. The appropriate Hilbert space then
is set of L? functions on a lattice. These latter spaces
are of course just some CV, and thus the corresponding
quantum mechanics is ﬁnite-dimensﬁonal.

Thus, we are lead to consider constrained state prepa-
ration problems for the bilinear system (1). As usual it -
is is better to consider the evolution of the transition

matrix:

interpretation of being probability amplitudes. Hence

¢ takes values in a sphere.

The following is a short list of situations which justify
the use of finite dimensional models: i) Many of the
symmetry groups of quantum mechanical Hamiltonian-
s are compact. Thus, a certain problem often lives in
some irreducible representation of the group, which is
finite dimensional. Many examples of this may be found

in [5]. For instance, the chemical properties of nitrogen .

can be described by a system evolving unitarily in a
20 dimensional space. Similarly, the electronic prop-
erties of buckminsterfullerene are essentially described
by a system evolving in a 60 dimensional space. ii)
For many problems the operator, (Hp + V(z)) — u(z)
can be shown to leave a finite dimensional subspace of
the space of square integrable functions invariant. This
leads to finite dimensional models. This forms the basis
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U = AU + BUu(t),U(0) = In,U € U(N)  (2)

Due to the results of [4] we know theoretically that
not only controllability, but also constrained and bang-
bang controllability, can be ensured under appropriate
conditions. However, the system under study has drift
and there are not many explicit techniques for produc-
ing controls which effect the desired state transfer. The
few techniques which admit a drift work under circum-
stances which are not applicable to our problem. For
a survey of what is known about constructive control-
lability for classical systems we refer the reader to [11].
The potentially general technique of exploiting period-
icity to overcome drift is flawed. Thus, the results of
this paper are relevant not only for quantum systems
but also for classical mechanical systems. [19] provides
an example of an application of quantum techniques to
a classical systems.

3 Controllability, Universality and Hard Pulses

The purpose of this section is to show how notions such
as universality of logic gates in quantum computation,
and the hard pulse approximation in nuclear magnetic
resonance spectroscopy are consequences of the result-
s of, [4] on the controllability of invariant systems on
compact Lie groups.

Universality of Logic Gates: In [21] it is argued
heuristically that a generic pair of N x N anti- Hermi-
tian matrices is universal for quantum computing since
generically the Lie algebra generated by A, B is u(N).
Thus, every matrix U € U(N) can be obtained by
“switching on and off” two Hamiltonians (those repre-
sented by A and B) - whence the terminology, “ univer-



sal”. In [22] the authors conjecture that if A, B € u(N)
have the above Lie algebra generating property then
every U € U(N) can be generated by switching on and
off a single Hamiltonian (A representing the switched
off Hamiltonian and B the switched on Hamiltonian).

In [14] the relation between universality and the results
of [4] was pointed out. Since [14] was required to be
short (a page and a half) we will provide a quick proof
of this connection here. See [20] for a different proof.

Since [21] does not explicitly write down the equation
representing the dynamics of the system, the quickest
way of obtaining its results are to interpret it as the
results of [4] on unconstrained controllability-for the
driftless system:

U = AUu(t) + BUus(t)

To obtain the results of [22, 20] we have to consider a
system with drift

U = AU + CUu(t), A,C € u(N)

Then, the phraseology of [22, 20] makes it clear that
A represents the above system with the input u(t) = 0
and B = A + C, represents the system with the input
u(t) = 1. Hence, we would be done if we can show that
the Lie algebra generating condition implies bang-bang
controllability (with controls being either 0 or 1). In
[4] this is shown to be true of the control values are 1
and —1. However, this implies the desired bang-bang
controllability. Indeed, introduce new control, v(t) =
2u(t) — 1. Then if u(t) takes values 0 or 1 then v(t)
takes values —1 or 1. In terms of v the control system
reads as: '
U= (A-C)U +2CUv(t)

Clearly if the Lie algebra generated by A and B is all of
u(N) then so is the Lie algebra generated by A — C' =
A—(B—-A) =24+ B and 2C = 2(B — A). This
completes the argument.

Hard Pulse Approximation: In NMR spectroscopy
the following argument is frequently given. Assume
that A and B are two skew Hermitian matrices which
represent the free evolution and the control coupling
respectively of the system. Thus, the system under
consideration is of the form

¢ = Ac+ Beu(t)

The above model is usually valid in the absence of the
relaxation effect (see [13]). If one probes the system
with a constant pulse of high amplitude, then one may
neglect the A term in the evolution, so that the evolu-
tion of the corresponding transition matrix is essentially
given by eP** where k is a constant much larger than
one in absolute value. This is the so called hard pulse
approximation. The claim then is that every N x N
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unitary matrix U can be generated by a combination of
free evolution and hard pulses,

This can be formally shown to be valid. Indeed, con-
sider an auxilliary system;

U= AU + (B — A)Uu(t)

Now if the Lie algebra spanned by A and B is u(N)
then the same is true of the Lie algebra spanned by
A and B — A. Thus, this auxilliary system is control-
lable. By [4] it follows that every U can be generated
by controls which only take the values 0 and 1. The
time evolution corresponding to a 0 pulse is given by
an exponential of A, whereas that corresponding to the
control 1 is an exponential of B. So we get the result
that every U can be written as a product of exponen-
tials of A and B with positive coefficients. Note that no

“high amplitude controls are needed for this argument.

Indeed, high amplitude controls render extending the
hard pulse argument difficult for homonuclear systems.

4 Constructive Controllability on the Unitary
Groups

Motivated by the discussion of the preceeding subsec-
tions, we now address the following abstract problem:

Problem: Given an element S € SU(2) and two lin-
early independent elements 4, B € su(2), find a decom-
position S = I_ e(2xA+bxB) 50 that:

e O1: a;r > O for all k, and ax > 0 if by # 0
(Constructive Controllability).

e O2: | by |< C for some a priori prescribed bound
C, in addition to O1 (Constructive Bounded Con-
trollability).

e 03: by = 0 or by = ax for all k, in addition to
O1 (Constructive Bang-Bang Controllability)

The number of factors, @), is not required to be the
same for every objective above.

The terminology used in this problem can be justi-
fied by considering the preparation of the target S, via
piecewise constant controls, for the system:

U = Au+ BUu(t),U(0) = I (3)
Before a concrete result is presented on the above prob-
lem, a few comments are in order. ’

a)The reason for studying systems on SU(2) are i) this
already covers several important applications including
even classical systems, and ii) systems on higher di-
mensional unitary groups may often be addressed via



SU(2) methods in combination with approximations,
[15). Furthermore, there are several features of the 2
dimensional case which carry over to the higher dimen-
sional case (i.e., when one does not resort to approxima-
tions). In the higher dimensional case calculations are
naturally more arduous, and hence SU(2) is a good s-
tarting point. b) SU(2), and not U(2) was chosen since
either i) many examples are already in this form as in
the case of the control of electron spin; or ii) it amounts
to only neglecting an overall phase which is physically
irrelevant, {16]. ¢) The desired factorizations are also
relevant for non piecewise constant controls. Typically,
other classes of controls are handled via approximations
such as averaging or the rotating wave approximation,
[12]. An example of an N-level system controlled via
sinusoidal controls is provided in [15], Notice that, de-
pending on the approximation, the interpretation of ay
and by will be different. For instance they may repre-
sent the duration and average of a pulse or the phase
and pulse area of a periodic pulse.

Theorem 4.1 Let A and B be two linearly indepen-
dent elements of su(2). Then i) O1 can be achieved
with Q at most 4 for any S € SU(2). If in addition, A
and B are orthogonal then O2 can be achieved with Q
depending only on the target S and the bound C. Final-
ly, if A and B are orthonormal then O3 can be achieved
with @ at most 35 for any S.

Sketch of the Proof: The proof is sketched. For
further details see [16, 18]. The basic idea is to map
the given pair A and B, via a Lie algebra isomorphis-
m ! onto the drift and control vector fields of an
orthonormal pair A, B, respectively, for which the de-
sired objective has been met. To ensure that the map ¢
(there is just one choice for this map ) is a Lie algebra
isomporphism we require A and B to be orthonormal.
Orthogonality can be achieved by a preliminary con-
trol and the additional normalization can be obtained
by scalings. Clearly, a preliminary control or a scaling
does not affect 01. However, a preliminary control pre-
cludes O2, while a scaling does not. Both scaling and
preliminary controls do not respect O3.

Armed with 7, the achievement of these 3 objectives
follows the steps below: S1: Find the logarithm of S
and express it as a linear combination ¢; A + coB +
¢c3[A, B] for some real constants c¢;,4 = 1,...,3. S2:
Associate to S the matrix T = ezp(c; A+ca B+c3[4, B))
Thus, it holds that ¢(T) = S, where ¢ : SU(2) —
SU(2) is the Lie group homomorphism associated to
the Lie algebra isomorphism 1. S3: Achieve O1, O2
and O3 for the system

U = AU + BUu(t)

and the target T. Then, by virtue of the way % and
¢ are defined it follows that the same a, b, @ which
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worked for the pair A, B and the target T work for the
pair A, B and the target S.

For O1, 02 choose A = i0,,B = io,, while for O3
the pair %az, %az was chosen. Details of the specific
formulae of ag, by in terms of the elements of T (and,
thereby S) may be found in {16, 18]. While the @ for
02 and O3 could conceivably be improved by making
better choices for A and B, it is our belief that the
bound on @ for O1 cannot be improved. Indeed, for
reasons of dimension (SU(2) is three dimensional) at
least 3 factors can be expected for a general S € SU(2)
if the ag,bx are not restricted to meet O1. Further
imposition of the O1 requirement is bound to increase
the number of factors. So 4 is indeed an optimal bound
for @ for the objective O1.

For several specific examples the orthonormality con-
dition can be relaxed. One special case is when A =
iaog + iboy, B = icog + tdoy, [16]. It is not assumed
that A and B are orthonormal. Such examples arise in
the control of the electron spin and in classical systems
such as switched networks. In [18, 19] it is shown how
to meet even O3 (Constructive Bang-Bang Controlla-
bility) for certain switched network examples without
any preliminary control or scalings. Furthermore, the
number of factors required to achieve O3, in these net-
work examples, is three, [19]. Thus, where the gener-
al approach would not even have been applicable an
intrinsic approach to such pairs achieves O3 with far
fewer than 35 factors.

Finally, by modifying the central idea of the proof one
can obtain similar results on systems evolving on the
orthogonal groups SO(3) and SO(4), [16, 18, 19]. These
latter groups are related to SU(2) and it is this relation
that is exploited in these references. Many classical
systems have all or part of their evolution defined on
SO(3). The groups SO(n) arise also in the description
of switched electrical circuits, [9] (where n is the number
of circuit elements).

5 A New Decompositidn of SU(2) to Overcome
Periodicity:

One natural method; that is tempting to adopt in the
presence of drift, is to use periodicity along with con-
structive techniques for the following driftless system:
U = AUu,(t) + BUus(t) (4)
Constructively controlling this driftless system amounts
to factoring every S € SU(2) as IIY e(arxA+txB)
without requiring that ax be positive. It would seem
that this can be used to achieve at least O1 for (3) in the

following way. Consider the typical factor, e(axA+bxB)
The matrix being exponentiated - call it Cy, for brevity



- satisfies eC*t = eC+(t+nP) for some period P and all
integers n. Thus eC* = e“x(1+2P) If q < 0, it is
plausible that by making an appropriate choice for n
that the new coefficient of the drift, namely ax(1+nP)
is positive, thus providing objective O1 for (3). This
strategy has at least three drawbacks: D1: It does not
work for factors whose corresponding drift coefficient,
ag, is 0. No amount of periodicity will render a zero
drift coefficient into a non-zero drift coefficient. D2:
Even for terms where this strategy works, it may be
deleterious because it may require the application of a
pulse for a long time and thereby causing the pulse area,
| bx |, to be large. While for mechanical systems this
may only be a practical hindrance, for quantum sys-
tems it is also a serious theoretical drawback because
this may cause many approximations, such as neglect-
ing other levels and physical processes, to break down.
D3: This method fails even more in higher dimensions
because the typical element of su(N), N > 3 does not
have a periodic flow. In the results presented above
periodicity is only used to rewrite free evolution terms
with negative drift coefficients as free evolution terms
with positive drift coefficients, and even these instances
are kept to a minimum. A new factorization of SU(2)
is presented along with an example which illustrates
how to overcome D2.

For the purposes of explaining the proposed decomposi-
tion, the following notation is useful. Given a complex
number v, denote by ¥ its complex conjugate, and then

define: V(y) = exp 0_ ') 15] the following
. i 0

5
facts were established:

Proposition 5.1 i) Writing any S € SU(2) in the rep-
resentation,

we have § = V(aeSte—32))eiro: - and ii) For any
L € R, in particular it holds that e'L7= = V (v,)V (v2),
with the complex numbers given by v, = %eiak, k=12
with L =6, — 65 + .

e cosa e sin
elm™msina e % cosa

5 = Stas) = (

Note that this proposition is not the Euler decomposi-
tion as the complex numbers v,k = 1,2, 3 need not be
purely real nor purely imaginary.

Consider the following example. Let A = io, and
B = i0,. Suppose the desired target is el~iov+ioe)
This target can be achieved for the associated drift-
less system by choosing u;(t) = —1,u2(t = 1 applied
for T = 1 unit of time (note this is exactly what one
would get if the Proposition (5.1) was formally ap-
plied). Exploiting periodicity in this context means
that the flow of the vector field C = —A + B is pe-
riodic of period v/27 and thus €€ = e€(1—V2™)_ Now
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eC(l-—ﬁwr) — e—[(l—\/ivr)A+(1—\/§1r)B]- Thus, O1 has
been achieved for the given system (which has drift)

bu using a single pulse with pulse area (i.e., the corre-
sponding | by |) v2r — 1.

We will now use a different method. First notice that:
0 1
%) ©

The utility of (5) is that if the v, of Proposition (5.1),
corresponding to S(a, (, ), lies in any half-plane then
the «; corresponding to 5(§ — a,u + 7,() lies in the
complementary half-plane. This is precisely what is
needed to ensure that the coefficients of the drift term
are positive. Thus, if the 1 corresponding to S(a, ¢, 1)
does not have drift coefficient, a;, positive then the a;
corresponding to S(§ — a,p + m,¢) will be positive,
since the two corresponding 6’s differ by 7. Note that
the remaining two 4’s never pose a problem since the
relation L = §2—603+7 and the fact that L can always be
taken to be in [0, 27) means that v2 and 3 can always
be chosen to belong to the same open half plane.

(a6 =G5 —au+m0

Returning to the example notice that the target is
S(v2,0,5F). Hence Proposition (5.1) cannot be di-
rectly used since the corresponding ; is in the wrong
quadrant. However, using Equation (5 leads to S =

0 1
S(% _\/2-7 %’O) ( -1 0
obtained by free evolution, and hence with zero pulse
area. Applying Lemma to the first factor we get that it
is equal to V(v1)V (72)V (y3) where v = (5 - V2)els.

This corresponds to a pulse,.of pulse area %‘@, ap-

). The second factor can be

plied for 21%%/—5 units of time. Choosing v = Ze'%
and y3 = %eiéf', leads to zero pulse area for the second

factor and pulse area equal to 2—\"75 for the third factor.

Notice that, by virtue of this new decomposition, even
the cumulative pulse area is lower than that required
by the use of periodicity.

This decomposition of SU(2), based on Equation (5),
was not used in [16] since a different decomposition
turned out to be even more versatile. However, the
decomposition in this paper is better suited for mini-
mizing the cumulative pulse area while respecting O1.
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