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Abstract

Constructive procedures for the control of a class of cou-
pled spin systems with bounded amplitude sinusoidal
pulses are described. Full details are first illustrated
for a single spin % particle. The key steps for a pair
of such particles are then sketched. The fact that the
amplitudes can be arbitrarily bounded implies that the
separation between the Larmor frequencies of the indi-
vidual spin % particles can be quite small and yet the
system can be controlled by addressing each spin indi-

vidually.

1 Introduction

Spin systems arise in a variety of applications, [4, 2].
Their manipulation, therefore, is a problem which
arouses considerable interest. In this paper we will con-
sider first a single spin system and show that one can
prepare any desired unitary generator from the evolu-
tion of such a system when it is probed by & piecewise
sinusoidal magnetic field. The frequency of this field is
tuned at the Larmor frequency of the spin. It remain-
s, therefore, to specify the duration, the amplitude and
the phase of each piece of this piecewise sinusoidal field.
This is achieved in two steps. First, by a proper choice
of phase, it is shown that the system is transformed in-
to a system controlled by constant inputs in a suitable
rotating frame. Next, the amplitude and duration of
each piece is determined by finding that piecewise con-
stant control which will drive the system in the rotating
frame to a desired state. For the second step a certain
Euler angle decomposition of ST/(2) is used. The entire
procedure is fully constructive. Extension to the case
of two spins is also provided. Some of the details are
sketched at the insistence of a churlish {or perhaps web
shy) referee even though every detail can be found in the
public domain, (8]. In principle, there is no cbstruction
for three or more spins, but the requisite calculations of
exponentials of matrices, render the method less con-
structive than the case of one or two spins. It is inter-
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esting that even though the direct problem of solving
the differential equations for a two-level system driv-
en by a known sinusoidal field in closed form does not
seem to have a solution, the inverse problem of finding
a sinusoidal field which will drive the state of such a
system to another desired state is completely solvable
in closed form. The calculations for the single spin sys-
tems extend easily to similar classical systems evolving

on SO(3).

The main steps involved in the constructive methodol-
ogy for the single particle case are as follows: i) The
system is transformed into a suitable rotating frame,
so that in this rotating frame the system, when probed
by a periodic field, becomes one of a family of single-
input systems without drift, controlled by constant in-
puts. These constant inputs are the amplitudes of the
original sinusoidal control field. The frequency of each
piece of this field is the Larmor frequency of the spin.
We remark that merely passing to a rotating frame and
choosing the frequency to be the Larmor frequency is
not enough. The phases of each piece of the sinusoidal
field has to be chosen appropriately to achieve the final
target. and il) A suitable Euler decomposition is used
to determine the amplitudes and duration of each piece
of the control field.

For the case of two spin systems, the overall strategy
is similar, However, the rotating frame does not kil-
1 the drift, so that the system in the rotating frame
is one of a family of single input systems with drfit.
Further, while the analogue of Euler angle decompo-
sitions for SU(4) is reasonably straightforward to es-
tablish, an explicit calculation of the angles themselves
is non-trivial problem. Secondly, the determination of
amplitudes and durations of the pulses is now a harder
problem, since the system in the rotating frame is no
longer driftless. In this paper, we will indicate briefly
how both problems are resolved. For reasons of length,
full details for the two spin system cannot be provided
here. Details are available on the Los Alamos archive
{quant-ph/0012019). In this introduction, we will on-
ly comment on the latter of these two problems. One



method of avoiding the problems posed by drift is to
use hard pulses. These are extremely high amplitude
pulses applied for very short durations. It turns out
that the corresponding Euler decomposition of SI/(4)
factors every target as a product of exponentials of the
drift and exponentials of the control matrix. The for-
mer can clearly be obtained by free evolution. It is for
the latter that hard pulses have been suggested. The
rationale is as follows. Suppose it is desired to prepare
etB | where B is the control matrix and b € R. For this
. apply a control,

i o

u(t) =

for & units of time, where § is a small number. Then
the system’s evolution is exp(d A + 8B}, where A is the
drift. In the lmit 6 — 0, this tends to e*Z. Clearly
this is not desirable on at least two counts. First, it
yields e®® only approzimately. Secondly, to improve
the accuracy & has to be made ever smaller. This is
both impractical and even for any reasonable tolerance
requires high amplitudes. Such amplitudes have the
effect of coupling other spins, neglected in the assumed
model, to the system. In our approach, we do not view
B as the control matrix, but rather as a certain iterated
commutator of the drift and the contrel matrix (which
it happens to be). This enables (after some guiles) to
produce fields which not only prepare e®® egactly but
also can be arbitrarily bounded in amplitude.

The idea of using decompositions of ynitary matrices
to control quantum systems has suddenly become pop-
ular. The papers, {7, 9, 10], describe the utility of
such decompositions for molecular systems. The pa-
pers, [11, 12], address quantum optics and eavity QED
respectively. Neither paper, however, provides formu-
lae for the parameters entering each factor of the factor-
izations used. The papers, [16, 17, 20, 8] address spin
systems. The first studies spin systems in the weak cou-
pling limit - which is also the limit this paper will use.
The second studies a pair of spins in the strong coupling
limit. However, the z compoenent of the magnetic field
is taken to be availabie to manipulate. In particular,
it is supposed that this component can be taken to be
zero. However, this is unrealistic since the z component
is the static strong magnetic field. Without this static
field the Larmor frequencies become null and with it
the entire spin dynamics essentially vanishes. Both pa-
pers, [16, 17] use hard pulses and further do not supply
formulae for the factors entering the factorization. In
this paper (see [8] for full details) these problems are
overcome. In [20] the author extends the constructive
procedure described in [8] for two spin to the case of two
coupled strongly homonuclear particles. The techniques
mimick those in [8] (such as passage to a rotating frame
and using sinusoidal fields to switch between different
systems). However, the method for producing bounded
amplitude controls is different from that in [8].
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The balance of this paper is organized as follows. In
the next section some notation is reviewed. The nex-
t section presents the results for a single spin system.
Extensions to the case of two spins is presented in the
fourth section. The final section offers some conciusion-
8.

2 Some Terminology and Notation

Throughout this paper the following notations will be
used. The Pauli matrices will be denoted as:

(3 1)
=(13)
(8 )

In terms of this definition of the Pauli matrices, a few
important 4 x4 Hermitian matrices can also be defined:

—i

0

0
-1

hy=0, Ly =L 8o, k=129, (2.1)

3 Single Spin System

The dynamics of a single spin in atomic units with Lar-
mor frequency, w, under an external radio-frequency
field, may be described via, [4]

V= —%(wan b bosum (O +boyus®)V),  (3.2)

with V € SU(2), V(0) = I.. Here b is a constant called
the gyromagnetic ratio and the u;(¢),i = 1,2 are piece-
wise sinusoidal fields to be designed. We will choose
each piece of these fields to take the form:

ui(t) = ceos(wt + ¢} ualt} = esinfwt + ¢)  (3.3)

Thus, the frequency of each piece of both controls is
the Larmor frequency, w, of the spin. The amplitude
and phase of each piece has to be chosen. The Larmor
frequency is typically large. This is because it is directly
proportional to the strength of a static magnetic field
which is typically large and is appiied parallel to the
z- axis. The proportionality constants are related to
the spin, while the strength is, of course, apparatus
dependent.

From One Input to Two Inputs: In the spec-
troscopy literature, one does not think of the w;(t) as
two independent controls. Rather the system is probed
by a radiofrequency field with some frequency and some



phase, which is normally polarized along the z-axis.
This linearly oscillating field can be decomposed into
two counter-rotating terms, one of which can be ne-
glected when the static magnetic field is high (which it
usually is). The net effect of this that the dynamics be-
haves as if there were two periodic controls, u;(t) with
the parametric form described above. Insofar as
we are aware, the u;(t) cannot be taken to be any more
independent, i.e., the functional form of the two inputs
has to be given by Equation (3.3).

Let us first address the determination of the phase of
each piece. For this we will pass to a rotating frame.
The purpose of this rotating frame is to to render the
dynamics in the rotating frame both autonomous and
related to the Euler decomposition chosen. Specifically
let
Ut) =etf Vi) _
The rotating frame, €', is the exponential of
i
F= Ewcrz

A direct calculation now yields

U:—%cbla

where the matrix, A is parametrized in the following

fashion by the phase, ¢:

o~

Thus, by choosing ¢ = 0 one can ensure that A = o,
whereas choosing ¢ = 2L gives A = o,. This then
yields the following single-input driftless system(s) in
the rotating frame:

0 e ¢
et 0

U= —%cblaz, if =0 (3.4)

or

U= —icblay, if o=

3_7r
2 2

{3.5)

This makes the preparation of any 5 € SU(2) clear.
Simply factorize S in its o, 0y Euler angles:

S = gibPo= eiEa,, eiFa,

To generate the factor €27+ (resp. e'¥?+) choose the
phase of the field to be 0 and the power of the field (i.e.,
amplitude times the duration) to be —2% (resp. —2£2).
This gives one considerable liberty in choosing the du-
ration and the amplitude. In particular, the duration
can always be chosen to be positive. Likewise, to gen-
erate €89 choose the phase of the field to be %’r and
the power of the field to be —2%. This generates S in

the rotating frame in some time 1Ts. Thus, U{Ts) = S.
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To prepare S, in the original frame the sequence of si-
nusoidal fields has to be followed by free evolution for
the requisite time, T's, Once we have made a choice of
the duration of each of the pulses, this requisite time
can also be clearly determined.

The Euler angles D, E and F can be explicitly deter-
mined from the Cayley-Klein coordinates - which are
nothing but the entries of § written in polar coordi-
nates. It is easier to work directly with i, and oy,
than by starting with more familiar Euler angles and
using them to obtain D, E and F, [15].

Arbitrary Bounds on the Power and Amplitude:
The structure of the foregoing procedure makes it clear
that any bound on the amplitude or the power of each
piece of the field can be accommodated. For this all
that has to be done is to factorize each factor of the
Euler factorization further into exponentials of io; or
ioy.

Different Choices for Phase: Choosing ¢, different
from 0 and 7 leads to arbitary linear combinations the
matrices, 1o, and ig,, for the matrix of the driftless
system in the rotating frame. This is useful because
it is possible to explicitly factorize any € SU(2) as a
product of exponentials of linear combinations iz, and
iy, [7, 9]. One advantage of using both these matrices
is that the resulting amplitude is typically lower than
that obtained from using the Euler decompositions.

Postmultiplication of the Rotating Frame: It may
seem profitable to define U(t) = V(£)e*” for certain ob-
jectives. One such objective is obtaining a desired value
of the expectation of an observable. It is not difficul
to see that if the initial density matrix is diagonal, i.e.,
has no coherences, then etf has no effect on the ex-
pectation value. This seems attractive, since we do not
have to use the free evolution that was needed when
et premultiplied V' (#). However, now it is not possi-
ble to obtain a time-independent system in the rotating
frame. ’

Extension to S0O(3): The above procedure can be
mimicked verbatim in the following cases: i) Systems on
SU(2) with two inputs, where the drift and the control
matrices are orthogonal elements of su(2) (under the s-
tandard inner product); i) Systems on SO(3) with two
inputs, where the drift and control matrices are images
of the corresponding system on SU(2) as in i), under the
standard Lie algebra isomorphism 1 : su(2) = so(3).
The basic idea is illustrated for i). Using the orthogo-
nality of the drifts and control matrices, we obtain a Lie
algebra isomorphism v : su(2) — su(2), where ¥ maps
the drift and control of i) to the drift and control ma-
trices of the system (3.2). This exponentiates to a Lie
group homomorphism ¢ : SU(2) - SU(2). Given a de-
sired target T for 1), we choose a target S for {3.2) such



that ¢(S5) = T. Now, we find a sinusoidal field which
prepares S for (3.2). Then the same field prepares T
for i). This last argument requires some care. If we
were preparing S by piecewise constant fields, then the
fact that ¢ exponentiates ¥ would yield the conclusion.
For piecwise sinusoidal fields, we approximate the field
that prepares § by piecewise constant fields and then
follow the previous line to obtain the conclusion.

4 The Two Spin Case

Next, the extension of the foregoing section to the case
of a pair of coupled spin .i—, particles will be described.
Technical details can be found in [8]. Let the Larmor
frequencies of the two particles be w; and wy. It is
assumed that i) There are no resonances between w
and wy; and ii) that the difference between them, | w; —
wq |>> 2xJ, where J is the coupling constant between
the two spins. The coupling constant, J and the Larmor
frequencies depend both on the molecular species and
the experimental apparatus. Typically, J is quite small.
Thus, the second of the two assumptions above does
not require a wide separation between the two Larmor
frequencies.

Homonuclearity Incorporated: It is important to
notice that is not being assumed a priori that the d-
ifference between the two Larmor frequencies is much
more than the amplitude of the pulse, as is frequently
assumed to render the argument, that each spin can
be addressed individually, valid [4]. To the contrary,
we will see that regardless of the difference between
the two frequencies, we can obtain any desired bound
on the ampiitude of the pulse. This means that even
though the systemn will be controlled by individually ad-
dressing each spin, the difference between the Larmor
frequencies can be rather small Thus, the methodol-
ogy of this manuscript is applicable to homonuclear
molecules, while the hard pulse techniques necessari-
ly require the molecule to be heteronuclear. Thus, for
instance our methods are capable of handling & system
of two protons whose Larmor frequencies are slightly
different because of different “shielding effects”, [4]. In
other words, molecules whose gyromagnetic ratios are
the same (i.e., homonulcear molecules) are suscepti-
ble to the methods in [8]. For the case of “ strongly
homonuclear” molecules, i.e., the case when the Lar-
mor frequencies are equal, see [20]. The constructive
algorithms in [20] are similar in many respects to those
in [8]. However, the technique in {20} to incorporate
bounds on amplitude is different from that in [8].

The assumption that wl and w; are not resonant means
that the system can be controlled by addressing each
spin individuaily, as long as the amplitude of the field,
¢ satsifies | w1 — w2 |>> ¢, [4]. Let us first assume
that we are addressing the first spin. In other words,
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we choose our fields, u;(¢) and u2{¢) to be sinusoidal
with frequency equal to wy. Then, the assumption that
| w1 — w2 |>> 27J means that the evolution of the twe
spins in atomic units can be modelled according to:

f/ = —%(21rJIlzIgz+w1111+w2I2z+b1Ilzul (t)+b1 IlyUQ(t))V

(4.6)
with V € SU(4), V(0) = I;. The constant b is the
gryomagnetic ratio of the first spin.

If the second spin was being addressed (which mean-
s that the frequency of the u;(t) is taken to be ws),
then the resulting model would be similar to the last
equation except that Iig,k = x,y would be replaced
by Ik, k = z,y and b,, the gyromagnetic ratio of the
second particle, would be used instead of b;.

Choice of the Rotating Frame: As in the previous sec-
tion the system will be transformed to a rotating frame.
It might seem tempting to use e!#, where A is the drift -
of the system as the rotating frame. However, this is
not. useful because the matrices —ify;,i = 1,2,7 = z,y
generate only su({2) ® su(2) and not all of su(4). Thus,
unless the target is in SU{2) ® SU(2) killing the drift
is injurious to our goal. Further, using e!4 will lead to
a time-dependent system in the rotating frame. The
choice of the rotating frame, which will be made, is dic-
tated by the following decomposition of any .S € SU(4):

§ =7  eiteMe (4.7)
Here each Mj is any one of the matrices [, J», and
Liji = 1,2,j = z,y. Further details regarding the
tr, My and @ appears later. One of the important con-
tributions of the authors’ Los Alamos archive paper, [8],
is indeed to determine the ty olgorithmicaily from the
entries of S. Without such a procedure any “algorith-
m” based on (4.7) is not even remotely algorithmic. For
the moment however, Equation (4.7) suggests that etF,
with .

F = Z(unh, +wlz:)

is a useful rotating frame. Choosing the fields to be:

uy (t) = ccos{wt + ¢); ua(t) = csin{wt + ¢)

with w = wy and ¢ = 0 (resp. ¢ = ) gives the
following evolution for I/ (U{t) = e!FV (1))
U= -%mmzaz +eb AU (4.8)

where A = Iz(resp.l,). Likewise, choosing w = w;
and ¢ = O(resp. 3 gives:

U= -%(271-J111122 + e AU

with & = Iy, (resp.fsy). Thus, by choosing the fre-
quency and phase as per the recipe above yields one of



four single-input systems with drift, controlled by con-
stant inputs, in the rotating frame. The drift of each
of the four systems is —2(2mxJI.I5;), while the con-
trol matrix is upto a constant one of the four matrices,
-—?:I,'j,i = 1,2,j =I,y.

Now equation (4.7) immediately suggests that if for a
certain k, My, is I, I>, then that factor can be produced
by free evolution - this clear if £, > 0. For negative, t;
it just needs to be noted that the matrix —iI, I, is pe-
riodic (enly for free evolution terms do we use periodic-
ity). Thus, the constant t; in e~#+1:12: may always be
presumed to be positive. So it remains only to address
the factors where the My isone of I;;,1 = 1,2, =, z,y-

The following result, therefore, finishes the constructive
control, via bounded amplitude controls, for this coupled
two spin system provided the parameters, tp can be
calculated explicitly: '

Proposition 4.1 Let L € R, the matrix e~ § =
1,2,7 z,y can be explicitly factorized as
I3, exp(—ing J 1. a2, — ibiJi;), with ax > 0. The con-
stants, ay and by can be written down in terms of the
ty in Equation (4.7). Further, there is an explicit re-
finement of of the factorization to meet any ampltude
bound | -E’:- | C.

The proof of this proposition follows some inspired ma-
trix manipulations. The matrix manipulations, referred
to, are facilitated by the following crucial observation:

(iaJ I I, +iBI;)? = ~k*ly, o, B € R, k some constant
j

Similarly, the square of the commutator of the drift and
the control matrix is also, upto a constant, equal to —I;.
These observations enable us to factor explicitly the
exponentials, e~ [ € R, as products of free evo-
lution terms and a single control pulse term. The key
control theoretic insight, motivating this factorization,
is that —il;;,4 = 1,2,j = =,y is, upto a constant, an
iterated commutator of —il;, I;, with —1I; itself. In
this commutator —il,.l2,, the free Hamiltonian, ap-
pears twice, while —il;; appears once. Thus, it seems
plausible, on basis of our prior work (9], that the target
e~ LT could be prepared by three pulses, two of which
are free evolution terms and one is a constant input, ap-
plied to the system: U= —il 0 Is, U —il;;Uu(t) Thisis
indeed true. While, this phenomenon is probably false
in general it seems to be holding true for many other
classes of spin systems. For instance, some numerical
experiments that we performed seem to suggest that
this true if the system is treated in the strong coupling
limit also. In this limit, the drift and control matri-
ces have more complicated structure, which {pending
further research) preclude explicit calculations of their
exponentials in closed form.
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Remark 4.1 Undoing the Rotating Frame: fU(Ts) =
S, then in the original frame, the target e~ 75¥ S has
been prepared. Even if one uses hard pulses, Tg will
typically be bounded from below by a positive time.
So this error must be rectified. In [17] a rotating frame
is not used - perhaps because the design is piecewise
constant and further the z component of the field is
taken to be zero. Similarly, {16], does not mention this
issue even though a passage to a rotating frame is used.
The solution to this problem is to prepare the target
eToF § in the rotating frame for a parameter, T, which
is chosen to satisfy T1 + Ts = Ty, where T} is the time
it takes to prepare e?*F in the rotating frame. For this
Ty has to satisfy a certain transcendental equation. If
J >> 2 in atomic units (this is typically the case), then

a good approximation to Ty is Tg + &_‘}ﬁ

Determining the Analogues of the Euler Angles: To
make the entire procedure genuinely constructive, the
“Euler” angles, t; in (4.7) have to be related to the en-
tries of S. To gain some perspective on this question,
let us see how Equation (4.7) arises. It is well known
that, the Lie algebra su({4) admits a Cartan decompo-
sition in terms of su(2) ® su(2) and its complement in
su(4), [19]. In [16] this fact and some calculations are
used to arrive at Equation (4.7). However, they do not
give any method to find the t;. Using some Kronceker
calculus, it can be shown, specifically that:

S

= D1l giBs Ly fiF e GiDs 1o piEa l2y

einfzze—i{‘hye~i§fzye—1'91h=12:e*iTT"hy
e~ i T2y =il Ne g—i 2 p—ib2l1, 02 —iF s

—~iZI2= e—ieahgfzg eiDSIIz iEaIlyeiF:;]]g

€
etD2l2z oiBalay jiFalzs

€

In [8] the problem of finding the Euler angle analogues
is successfully tackled. The main idea is to use a mod-
ification of the Givens decomposition to constructively
factor S as a product

§=18_, 5

Here S,k = 1,...,5 is a matrix which is, upto per-
mutation, a block matrix whose blocks are I» and an
explicitly determined SU(2) matrix. S is the Kroneck-
er product €37 @ S(a, (, i), where S(a, ¢, u) is the u-
nique SU(2) matrix which conveys the vector (d,, ds) to
(|] (d1,d2) ||,0). Here (d;,...,ds) is the fourth column
of St. In [8] the fifteen real parameters, (D;, E;, Fy),i =
1,...,4,8,,k = 1,...,3 were determined explicitly for
each of the Sy, k = 1,...,6. This then provides a fac-
torization of S of the form (4.7) with all the parameters,
tx fully determined from the entries S. The advantage
over working directly with 5 is twofold. First, each of
the Givens factors is easy to compute from the entries
of S. Second, the only non-trivial part of a Givens ma-
trix is a 2 x 2, SU(2) submatrix. SU(2) matrices admit



several easily computed parametrizations in sharp con-
trast to SU(4) matrices and thus, the determination of
the (Dy, B, F;y,i =1,...,4and 6,k =1,...,3 fora
Givens matrix can be carried out in closed form.

Further Ezxtensions: In principle, there is no obstacle
to extending these results to both the case of additonal
sping and stroung coupling limits. The main difficulty
for the case of strong coupling limit is to choose a suit-
able rotating frame in which the system is autonomous.
In the weak coupling limit, when the number of spins
is three or more, analogous Euler decompositions ex-
ist. However, some of the terms cannot be expressed as
the exponential of the free Hamiltonian. Even if these
problems were ignored, the goal of constructive state
generation is still elusive. This is mainly because the
matrix exponential calculations are substantially more
complicated. While it is possible to write down an ex-
plicit formula for the exponential of an su(4) matrix,
this formula is so longwinded that extracting informa-
tion out of it is a daunting task. Thus, even for two
particles unless special assumptions are imposed on the
Hamiltonian, a fully constructive technique, along the
lines in this paper, will require more investigation.
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