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Abstract

State space methods have proved to be powerful theoretical and computational tools in a
number of areas of applications, in particular filtering and control theory. In this paper we
advocate the use of state space methods for the study of discrete probability densities on the
set {0, 1, 2, . . .}. The fundamental approach is to consider the class D of all discrete proba-
bility densities that can be represented as the impulse response/convolution kernel of a finite
dimensional discrete time state space system. We show that all standard operations such as
the calculation of moments, convolution, scaling, translation, product, etc. can be carried out
using system representations. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

State space methods have proved to be theoretically and computationally powerful
tools in various areas of applications, including filtering, signal processing and in
particular control theory. The strength of the approach in the realm of theory lies
in the fact that often very general situations can be treated with linear algebra tools.
From a computational point of view the large array of methods from numerical linear
algebra can be employed.
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In this paper we show that state space methods can be used to deal with discrete
probability densities. In particular, we show that essentially all standard probability
theoretic calculations can be performed in a state space setting. This is done
with the expectation that state space methods might become a tool equally impor-
tant in probability theory as they are in other applications. In another publication
[4] the authors have studied the question how state space methods can be used to
investigate a continuous time filtering problem that involves rational probability
densities.

In this paper we are going to consider state space methods for the calculation
with discrete probability densities. In particular, we are going to analyze the class
D of discrete time probability densities that admit a finite dimensional state space
description. More precisely, we consider discrete probability densities, i.e. sequences
pk , k = 0, 1, 2, . . . , with pk � 0, k = 0, 1, 2, . . . , and

∑∞
k=0 pk = 1, that admit a

finite dimensional state space realization (A, b, c, d) such that

p0 = d, pk = cAk−1b, k = 1, 2, . . . , (1)

where the system (A, b, c, d) is such that A is an n × n matrix, b is an n × 1 vector,
c is an 1 × n vector and d is a scalar. The system (A, b, c, d) is called a minimal
realization of the probability density (pk)k�0 if n is the smallest dimension for which
a system exists such that (1) is satisfied. Therefore the set D consists of all sequences
(pk)k�0 such that
(1) pk � 0, k = 0, 1, 2, . . . ,

(2) there exists a system (A, b, c, d) such that p0 = d , pk = cAk−1b, k = 1, 2, . . . ,

(3)
∑∞

k=0 pk = 1.
For later technical reasons we also define the set U that consists of all ‘un-nor-
malized’ probability densities and the zero sequence, i.e. all sequences that satisfy
conditions (1) and (2) while (3) is replaced by

∑∞
k=0 pk < ∞.

In the following lemma we are going to quote a fundamental stability result that
asserts that for a minimal realization of a probability density in D all eigenvalues of
A are in the open unit disk.

Lemma 1.1. Let (A, b, c, d) be a minimal realization of a discrete-time probability
density in D. Then A is discrete-time asymptotically stable, i.e.

|λ(A)| < 1

for all eigenvalues λ(A) of A.

Proof. Let (pk)k�0 ∈ D and let (A, b, c, d) be a minimal realization of (pk)k�0.
Since

∑∞
k=0 pk = d +∑∞

k=1 |cAk−1b| < ∞, the result is a standard system theo-
retic stability test (see, e.g. [1, p. 208]). �

An important tool in system theory is the transfer function which we will show is
very closely related to the generating function of the probability density. Let (pk)k�0
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be a probability density in D with state space realization (A, b, c, d). The transfer
function of the (discrete-time) system (A, b, c, d) is given by

G(z) =
∞∑

k=0

z−kpk

= d +
∞∑

k=1

z−kcAk−1b

= d + z−1c

( ∞∑
k=1

z−(k−1)Ak−1

)
b

= d + z−1c

( ∞∑
k=0

(z−1A)−k

)
b

= d + z−1c
(
I − (z−1A)

)−1
b

= c (zI − A)−1 b + d.

Note that this is a rational function in the independent variable z. Standard results in
system theory show that two (not necessarily minimal) realizations of a probability
density function in D have the same transfer function (see, e.g. [5]). As a conse-
quence Lemma 1.1 implies that the poles of the transfer function of a probability
density in D are in the open unit disk.

As mentioned earlier, the transfer function of the realization of a discrete-time
probability density (pk)k�0 in D is closely related to the generating function of the
density. If X is a random variable with probability density (pk)k�0 then the generating
function is given by

E(sX)=
∞∑

k=0

skpk =
∞∑

k=1

skcAk−1b + d = G(s−1) = c
(
s−1I − A

)−1
b + d.

Hence the generating function can be obtained from the transfer function by a
simple inversion of the independent variable. In this context it is important to men-
tion that Kronecker’s theorem [5] implies that each probability density with a
rational transfer function of McMillan degree n has a minimal state space realization
of dimension n.

We now discuss a number of examples.

Example 1 (Densities with finite support). Let (pk)k�0 be a discrete probability
density with finite support, i.e. there exists n such that pn �= 0, pk = 0, k > n. A
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realization for such a density is given by

A =




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


 , b =




1
0
...

0


 ,

c = (
p1 p2 · · · pn−1 pn

)
, d = p0,

which implies that the density is in D. The transfer function is given by

G(z) = p0 + z−1p1 + z−2p2 + · · · + z−npn

= znp0 + zn−1p1 + · · · + z1pn−1 + pn

zn
.

Note that if pn �= 0, the numerator and denominator of this rational function are co-
prime. In this case we also therefore have that the realization (A, b, c, d) is minimal.

Example 2 (Geometric distribution). For λ > 1,

pk = λ − 1

λk+1
, k = 0, 1, 2, . . . ,

is the geometric distribution with parameter λ. A minimal realization for this density
is given by the one-dimensional system (A, b, c, d) with

A =
(

1

λ

)
, b = (

1
)
,

c =
(

λ − 1

λ2

)
, d = λ − 1

λ
,

which implies that the geometric density is in D. The transfer function of this real-
ization is

G(z) = λ − 1

λ2(z − λ−1)
+ λ − 1

λ
= (λ − 1)z

λz − 1
.

Example 3 (Poisson density). Consider the Poisson density, i.e. let pk = e−λλk/k!
for k = 0, 1, 2, . . . Then we can see that no finite dimensional system (A, b, c, d)

exists that realizes the density, i.e. such that (1) is satisfied. It is well known that the
generating function of a random variable X with Poisson density with parameter λ is
given by EsX = eλ(s−1). We know that the generating function of a random variable
with density in D is rational. This therefore shows that the Poisson density is not
in D. However, in many applications where detectors have a finite range a Poisson
density has to be ‘cut off’ to properly model the actual detection process. This results
in a density that has finite support and therefore falls in our class. The fact that the
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Poisson density can be approximated appropriately by one with finite support also
follows from the well-known Poisson limit theorem [2].

The material in this paper is organized as follows. In the subsequent section we
show how moments of densities in D can be calculated using state space techniques.
In a further section we present state space formulae for standard calculations with
probability densities such as scaling, shifting, convolution, etc. This is followed by
examples that demonstrate the use of the methods presented here.

We use the following notation: The symbol C stands for the field of complex
numbers. The symbol D (Section 1) denotes the set of discrete probability densities
that admit state space realizations. Similarly, the symbol U stands for the set that
contains the ‘un-normalized’ probability densities that admit a state space realization
(see, Section 1) and the zero sequence.

2. Moments

In this section we are going to study the calculation of moments of random vari-
ables with discrete densities in D from the point of view of state space systems. The
nth moment E(Xn) (n � 1) of a random variable X with discrete probability density
(pk)k�0 is, if it exists, given by

E(Xn) =
∞∑

k=0

knpk.

Assume that the discrete probability density (pk)k�0 is in D and has a state space
realization (A, b, c, d). First consider the Laurent expansion for the transfer function
G(z) = c(zI − A)−1b + d given by

G(z) =
∞∑

k=0

z−kpk = d +
∞∑

k=1

z−kcAkb.

Lemma 1.1 implies that G is analytic in an open neighborhood of infinity that in-
cludes the unit circle. Hence, in particular G(z) exists for all z ∈ C with |z| = 1. We
can therefore also define the following differentiation operator combined with a shift
by

�G(z) := −z
d

dz
G(z) := −z

∞∑
k=1

(−k)z−k−1pk =
∞∑

k=1

kz−kpk =
∞∑

k=0

z−kp̃k,

where we have set p̃0 := 0, p̃k := kpk , k � 1. Note that the above mentioned analy-
ticity of G guarantees that the sum converges in an open neighborhood of infinity that
includes the unit circle. We therefore immediately have the first part of the following
lemma which is closely related to standard results on the generating function of a
random variable with discrete probability density.
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Lemma 2.1.
(1) Let X be a random variable with discrete probability density (pk)k�0 in D. Then

EX = �G(1).

(2) Let (A, b, c, d) be a stable realization of the probability density. Then

EX = c(I − A)−2b.

Proof.
(1) Follows from the above arguments since

EX =
∞∑

k=0

kpk = �G(1).

(2) We have

�G(z) = −z
d

dz
(c(zI − A)−1b + d)

= −zc

(
−(zI − A)−1

(
d

dz
(zI − A)

)
(zI − A)−1

)
b

= zc
(
(zI − A)−1(zI − A)−1

)
b.

Evaluating this expression at z = 1 we obtain the result. Here we use the fact that
I − A is invertible because A is assumed have all its eigenvalues in the open unit
disk. �

In order to calculate higher order moments we need to collect a few more details.

Lemma 2.2. Let (A, b, c, d) be a system and let

r0 := d, rk := cAk−1b, k = 1, 2, . . .

Assume that
(1) rk � 0 for all k = 0, 1, 2, . . .

(2) All eigenvalues of A have modulus strictly less than 1.
Then (rk)k�0 ∈ U.

This is the consequence of a standard stability result (see e.g. [1, p. 208]).

Proposition 2.1. Let X be a random variable with discrete probability density
(pk)k�0 in D and let G be its transfer function.
(1) Let (p̃k)k�0 be the Laurent coefficients of �G, i.e. p̃0 := 0, p̃k := kpk , k � 1.

Then (p̃k)k�0 ∈ U.
(2) For n � 1,

(�nG)(z) =
∞∑

k=1

knz−kpk.
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(3) For n � 1, the moment EXn exists and is given by

EXn = (�nG)(1).

(4) Let (A, b, c, d) be an asymptotically stable state space representation of �nG,

n = 0, 1, 2, . . . , i.e.

�nG(z) = c(zI − A)−1b + d,

(here �0G = G). Then

�n+1G(z) = zc(zI − A)−2b = cd(zI − Ad)−1bd,

where

Ad =
(
A 0
I A

)
, bd =

(
b

0

)
, cd = (

c cA
)
.

Proof. (1) Clearly p̃k � 0 for k = 0, 1, 2, . . . That this sequence has a rational trans-
fer function was shown in the proof of Lemma 2.1, part (2). Therefore a state space
realization of (p̃k)k�0 exists. From Lemma 2.1, part (2), it follows that

∑∞
k=0 p̃k <

∞. Therefore (p̃k)k�0 is an element of the set U, by definition.
(2) and (3) By Lemma 2.1 the result is correct for n = 1 and by (1) the Lau-

rent coefficients of �G are in U and are given by p̃0 = 0, p̃k = kpk . Now assume
that the result is correct for n = n0 � 1 and that the Laurent coefficients (p̃k)k�0 of
(�n0G)(z) are in U and are given by p̃0 = 0, p̃k = kn0pk . Then

(�n0+1G)(z) = �

( ∞∑
k=1

z−kp̃k

)
=

∞∑
k=1

kz−kp̃k =
∞∑

k=1

z−kkn0+1pk.

By (1) the Laurent coefficients of (�n0+1G)(z) = � (�n0G) (z) are in U. Hence,
the induction is complete. We therefore have for all n � 1 that EXn exists and is
given by

(�nG)(1) =
∑
k=0

knpk = EXn.

(4) For n = 0 this result follows from the proof of Lemma 2.1 and a simple com-
putation. For n � 1 the proof is analogous. �

Recursively applying part (4) of the previous result will provide state space rep-
resentations of �nG for n � 1. These state space representations can then be used
with part (1) of the result to obtain a state space formulation for the nth moment.
As an example we are now going to provide a state space description for the second
moment.

Example. Let X be a random variable whose discrete probability density is in D
and has an asymptotically stable state space realization (A, b, c, d). Then by Propo-
sition 2.1 part (4) �G has a state space realization (A1, b1, c1, d1) given by

A1 =
(

A 0
I A

)
, b1 =

(
b

0

)
, c1 = (

c cA
)

, d1 = 0.
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Note that this realization is again asymptotically stable, in fact the set of eigenvalues
of A1 is equal to the set of eigenvalues of A, which forms a subset of the open unit
disk. By Proposition 2.1 part (4) the first moment EX is then

EX = c1(I − A1)−1b1.

To obtain an asymptotically stable state space representation (A2, b2, c2, d2) of �2G

we apply Proposition 2.1 to the state space representation (A1, b1, c1, d1) of �G and
obtain

A2 =




A 0 0 0
I A 0 0
I 0 A 0
0 I I A


 , b2 =




b

0
0
0


 ,

c2 = (
c cA 2cA cA2

)
, d2 = 0.

Now by Proposition 2.1 part (3) we have that

EX2 = c2(I − A2)−1b2.

This essentially establishes the required result. It is, however, worthwhile pointing
out that the state space representation (A2, b2, c2, d2) is far from minimal, i.e. an-
other realization of �2G exists with lower state space dimension. To see this we
perform a state space transformation with the non-singular matrix

T =




I 0 0 0
0 I 0 0
0 0 0 I

0 −I I 0


 ,

i.e. consider the system

(Ã2, b̃2, c̃2, d̃2) := (T A2T −1, T b2, c2T −1, d2),

which has the same transfer function �2G as (A2, b2, c2, d2). Now,

Ã2 =




I 0 0 0
0 I 0 0
0 0 0 I

0 −I I 0






A 0 0 0
I A 0 0
0 0 A 0
0 I I A






I 0 0 0
0 I 0 0
0 I 0 I

0 0 I 0




=




A 0 0 0
I A 0 0
0 2I A I

0 0 0 A


 ,

b̃2 =




I 0 0 0
0 I 0 0
0 0 0 I

0 −I I 0






b

0
0
0


 =




b

0
0
0


 ,
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c̃2 = (
c cA 2cA cA2

)



I 0 0 0
0 I 0 0
0 I 0 I

0 0 I 0


 = (

c 3cA cA2 2cA
)

,

d̃2 = 0.

As can easily be verified (see also the Kalman decomposition in e.g. [1,5]) we have
that the subsystem (Â2, b̂2, ĉ2, d̂2)

Â2 =

A 0 0

I A 0
0 2I A


 , b̂2 =


b

0
0


 ,

ĉ2 = (
c 3cA cA2

)
, d̃2 = 0,

has the same transfer function �G2 as the higher dimensional full system (A2, b2,

c2, d2). Furthermore this realization is again asymptotically stable. Hence

EX2 = ĉ2(I − Â2)−1b̂2.

If the nth moment is to be calculated, a realization of �nG(z) can be comput-
ed by repeated application of the realization formula for the image of � when ap-
plied to a transfer function. If the realization for �nG(z) that is found in this way
is (An, bn, cn, dn) then the nth moment is given by E(Xn) = cn(I − An)−1bn + dn.
There is an alternative way to calculate these moments that circumvents the realiza-
tion of �nG(z) and is given in terms of the realization (A, b, c, d) of G(z). We have
the following proposition.

Proposition 2.2. Let X be a random variable with discrete probability density
(pk)k�0 in D. Let (A, b, c, d) be an asymptotically stable realization of the prob-
ability density and G its transfer function. Define a sequence of polynomials

q(α; n) = q0(n) + q1(n)α + · · · + qn−1(n)αn−1, n = 1, 2, . . . ,

recursively as follows:

q(α; 1) = 1,

q(α; n + 1) = (nα + 1)q(α; n) + α(α − 1)q ′(α; n), n = 1, 2, . . . ,

where q ′(α; n) denotes the derivative of q(α; n) with respect to α. Then the nth
moment of the density with transfer function G and asymptotically stable realization
(A, b, c, d) is given by
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E(Xn) = cq(A; n)(I − A)−n−1b

=
n−1∑
j=0

qj (n)cAj (I − A)−n−1b, n = 1, 2, . . .

Proof. The proof will be by induction on n = 1, 2, . . . Use will be made of the
homogeneous polynomials q̃(z, α; n), n = 1, 2, . . . , that are related to the polyno-
mials q(α; n), n = 1, 2, . . . , by the formula

q̃(z, α; n) = zn−1q
(α

z
; n
)
, n = 1, 2, . . .

For each n = 1, 2, . . . the degree of homogeneity of q̃(z, α; n) is n − 1, which is also
the degree of q(α; n). This can be shown easily by induction from the definition of
q(α; n), n = 1, 2, . . . Therefore Euler’s theorem on homogeneous functions can be
applied to give the following equality:

�q̃(z, α; n)

�z
= (n − 1)

q̃(z, α; n)

z
− α

z

�q̃(z, α; n)

�α
, n = 1, 2, . . .

Note further that q̃(1, α; n) = q(α; n), n = 1, 2, . . . , and
�q̃(1, α; n)

�α
= q ′(α; n), n = 1, 2, . . .

What will be shown is that the following equality holds:

�nG(z) = zncq̃(z, A; n)(zI − A)−n−1b, n = 1, 2, . . .

From this the formula in the proposition follows by substituting z = 1. The inverse
(I − A)−1 exists because (A, b, c, d) is an asymptotically stable realization. For n =
1 this says that �G(z) = zc(zI − A)−2b, which was shown to hold in Lemma 2.1.
Now suppose that the formula is correct for n = n0. By applying � to the formula
for �n0G(z) we obtain the following equality:

�n0+1G(z) = �
(
zcq̃(z, A; n0)(zI − A)−(n0+1)b

)
= − zcq̃(z, A; n0)(zI − A)−(n0+1)

− z2c
�q̃(z, A; n0)

�z
(zI − A)−(n0+1)

− z2cq̃(z, A; n0)(−n0 − 1)(zI − A)−(n0+1)b.

The three terms appearing in this formula can be rewritten as follows. The first one
can be rewritten as

zc
(− q̃(z, A; n0)(zI − A)

)
(zI − A)−n0−2b.

Using Euler’s formula presented above, the second term can be rewritten as

zc

(
−(n0 − 1)q̃(z, A; n0)(zI − A) + A

�q̃

�α
(z, A; n0)(zI − A)

)
×(zI − A)−n0−2b.
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The third term can be rewritten as

zc ((n0 + 1)zq̃(z, A; n0)) (zI − A)−n0−2b.

Adding up these terms we obtain

�n0+1G(z) = zc

(
(n0A + zI)q̃(z, A; n0) + A(zI − A)

�q̃(z, A; n0)

�α

)
×(zI − A)−n0−2b,

which can easily be seen to be equal to

cq̃(z, a; n0 + 1)(zI − A)−n0−2b

as was to be shown. �

3. Operations on probability densities

In this section we are going to discuss state-space formulations of operations on
discrete probability density functions in D.

3.1. Convolution of two probability densities

If X1, X2 are two independent random variables with probability densities ρ1, ρ2,
then it is well known that X = X1 + X2 has probability density ρ = ρ1 ∗ ρ2, where
∗ denotes the convolution [2]. The following proposition shows that if ρ1, ρ2 ∈ D
then ρ is also in D. An explicit realization is available in terms of the realization of
ρ1 and ρ2.

Proposition 3.1. Let ρi, i = 1, 2, be two discrete probability densities in D, with
state space realizations (Ai, bi, ci, di) and transfer functions Gi, i = 1, 2.

Then the convolution ρ, i.e. ρ := ρ1 ∗ ρ2 is in D and has a realization (Ac, bc,

cc, dc) and transfer function G given by

Ac =
(

A1 b1c2
0 A2

)
, bc =

(
b1d2
b2

)
,

cp = (
c1 d1c2

)
, dc = d1d2,

Gc(z) = G1(z)G2(z).

If the realizations (Ai, bi, ci, di), i = 1, 2, are asymptotically stable, then the
realization (Ac, bc, cc, dc) is asymptotically stable as well.

Proof. That Gc = G1G2 follows since the z-transform transforms convolution into
a pointwise product of the transfer functions. It is easily verified that (Ac, bc, cc, dc)
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is a realization of Gc. From the block upper triangular structure of Ac it follows
that det(zI − Ac) = det(zI − A1) det(zI − A2). Therefore any eigenvalue of Ac is
either an eigenvalue of A1 or an eigenvalue of A2 or both. So if (A1, b1, c1, d1) and
(A2, b2, c2, d2) are asymptotically stable realizations then the realization
(Ac, bc, cc, dc) is also asymptotically stable. That ρ is a probability density is a
standard result, which can also be seen from the fact that Gc(1) = G1(1)G2(1).
Hence ρ is in D. �

3.2. Translation and scaling of a probability density

In the next straightforward lemma the effect of translation and scaling of a random
variable on the state space realization of the density is considered.

Proposition 3.2. Let X be a random variable with probability density ρ in D. Let
(A, b, c, d) be a realization of ρ with transfer function G.
(1) Let x0 > 0 be an integer. Then the random variable X + x0 has a probability

density q(x) = ρ(x − x0) which has a realization (At , bt , ct , dt ) with transfer
function Gt given by

At =




0 0 · · · 0 0 c

1 0 · · · 0 0 0 · · · 0

0 1 · · · 0 0
...

...
...

...
...

...

0 0 · · · 1 0 0 · · · 0
0 0 · · · 0 0 A




, bt =




d

0
...

0
b


 ,

ct = (
0 0 · · · 0 1 0 · · · 0

)
, dt = 0,

and

Gt(z) = z−x0G(z), z ∈ C.

The size of the first block diagonal subblock of At is x0 × x0. If (A, b, c, d) is an
asymptotically stable realization then so is (At , bt , ct , dt ).

(2) Let X be a random variable with probability density ρ is in D. Let (A, b, c, d)

be an n-dimensional realization of ρ with transfer function G.
Let a � 1 be an integer. Then the random variable aX has a probability density
ρa which is in D and has a realization (As, bs, cs, ds) given by

As =




0 0 · · · 0 A

In 0 · · · 0 0

0 In

. . . 0 0
. . .

. . .
. . .

...

0 0 · · · In 0




, bs =




b

0
...

0


 ,
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cs = (
0 0 · · · 0 c

)
, ds = d.

The system matrices are presented in block partitioned form with As being an
a × a block matrix whose blocks are of size n × n. Its transfer function Gs is
given by Gs(z) := Gs(z

a), z ∈ C. If (A, b, c, d) is an asymptotically stable re-
alization, then so is (As, bs, cs, ds).

Proof. (1) First note that x0 can be considered to be a random variable with prob-
ability density function pk = 0 for all k �= x0 and px0 = 1. Note that (pk)k�0 ∈ D.
By Example 1 in Section 1 we have that the x0-dimensional system (A1, b1, c1, d1)

is a minimal realization of (pk)k�0, where

A1 =




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


 , b1 =




1
0
...

0


 ,

c1 = (
0 0 · · · 0 1

)
, d1 = 0.

By the convolution formulae of Proposition 3.1 we have the desired result. Because
A1 is a nilpotent matrix, its only eigenvalue is zero and hence (A1, b1, c1, d1) is
asymptotically stable. If (A, b, c, d) is asymptotically stable, it then follows from
Proposition 3.1 that (At , bt , ct , dt ) is asymptotically stable as well.

(2) If the random variable X has probability density ρ = (ρ(k))k�0 then aX with
a > 1, an integer, has probability density ρa = (ρa(k))k�0, with ρa(k) = ρ(n) for
each k such that k = an for some positive integer n and ρa(k) = 0 otherwise. This
implies that the transfer function of ρa is given by

Ga(z) =
∞∑

k=0

z−kρa(k) =
∞∑

k=0

z−akρ(k) =
∞∑

k=0

(za)−kρ(k) = G(za),

where G is the transfer function of ρ.
To verify that (As, bs, cs, ds) is indeed a realization of ρa first note that

Asbs = (
0 bT 0 · · · 0

)T
A2

s bs = (
0 0 bT 0 · · · 0

)T
...

Aa−1
s bs = (

0 0 0 0 · · · bT
)T

Aa
s bs = (

bTAT 0 0 0 · · · 0
)T

.
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Continuing inductively, this shows that

ds = d = ρa(0) = ρ(0), csbs = 0 = ρa(1),

csAsbs = 0 = ρa(2), . . . ,

csA
a−2
s bs = 0 = ρa(a − 1), csA

a−1
s bs = ρ(1) = ρa(a),

csA
a
s bs = 0 = ρa(a + 1), . . .

Recursively, this shows that (As, bs, cs, ds) is a realization of ρa . Hence ρa is in
D. Now suppose (A, b, c, d) is an asymptotically stable realization. Then the eigen-
values of A all have modulus less than one. Now suppose λ is an eigenvalue of As

and let ξ = (ξT
1 , . . . , ξT

a )T be an associated eigenvector, partioned into a subvectors
of size n. From the eigenvalue equation Asξ = λξ it follows that Aξa = λξ1 and
ξi = λξi+1, i = 1, . . . , a − 1. Therefore Aξa = λaξa, which implies that λa is an
eigenvalue of the matrix A. Hence |λa| < 1, which implies |λ| < 1, because a is
positive. Therefore the realization (As, bs, cs, ds) is asymptotically stable. �

3.3. Product of two probability densities

In conditional probability calculations it is regularly necessary to calculate the
product of two probability densities. The following result shows that multiplication
of probability densities leads to a sequence in U. If this sequence is non-zero, a nor-
malization results in a probability density in D. For an example of such calculations
see Section 3.6.

Proposition 3.3. Let ρi, i = 1, 2, be two discrete probability densities in D, with
state space realizations (Ai, bi, ci, di) and transfer functions Gi, i = 1, 2.

Consider the pointwise product ρ̃, i.e. ρ̃(k) := ρ1(k)ρ2(k), k = 0, 1, 2, . . .

Assume that ρ̃ is not identically zero, i.e. that
∑∞

k = 0 ρ̃(k) > 0. Then ρ is in D,

where

ρ(k) := 1∑∞
k=0 ρ̃(k)

ρ̃(k), k = 0, 1, 2, . . .

The system (Ãp, b̃p, c̃p, d̃p) given by

Ãp = (A1 ⊗ A2) , b̃p = (b1 ⊗ b2) ,

c̃p = (c1 ⊗ c2) , d̃p = d1d2

(here ⊗ denotes the Kronecker product) is a realization of ρ̃, i.e.

ρ̃(0) = d̃p, ρ̃(k) = c̃pÃk−1
p b̃p, k = 1, 2, . . .

If (A1, b1, c1, d1), (A2, b2, c2, d2) are asymptotically stable realizations, then so is
(Ãp, b̃p, c̃p, d̃p). If (Ãp, b̃p, c̃p, d̃p) is an asymptotically stable realization, then the
system (Ap, bp, cp, dp) given by
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Ap := Ãp, bp := b̃p,

cp := cc̃p, dp := cd̃p

with c = 1/(c̃p(I − Ãp)−1b̃p + d̃p), is an asymptotically stable realization of ρ.

Proof. We first verify that the system (Ãp, b̃p, c̃p, d̃p) is a realization of ρ̃. For
k = 1, 2, . . . , we have

ρ̃(k) = ρ1(k)ρ2(k)

= (
c̃1Ãk−1

1 b̃1
)(

c̃2Ãk−1
2 b̃2

)
= (

c̃1Ãk−1
1 b̃1

)⊗ (
c̃2Ãk−1

2 b̃2
)

= (
c̃1 ⊗ c̃2

)(
Ãk−1

1 b̃1 ⊗ Ãk−1
2 b̃2

)
= (

c̃1 ⊗ c̃2
)(

Ãk−1
1 ⊗ Ãk−1

2

)(
b̃1 ⊗ b̃2

)
= (

c̃1 ⊗ c̃2
)(

Ã1 ⊗ Ã2
)k−1(

b̃1 ⊗ b̃2
)
,

and for k = 0,

ρ̃(0) = ρ1(0)ρ2(0) = d1d2.

Each eigenvalue η of Ãp can be written as a product η = λµ, where λ and µ are
eigenvalues of A1 and A2, respectively. Therefore, if (A1, b1, c1, d1) and (A2, b2,

c2, d2), are asymptotically stable realizations, then |λ| < 1 and |µ| < 1, hence |η| =
|λ||µ| < 1 and so (Ãp, b̃p, c̃p, d̃p) is an asymptotically stable realization. Here we
have used standard results on Kronecker products (see, e.g. [6]). This shows (Ap, bp,

cp, dp) = (A1 ⊗ A2, b1 ⊗ b2, c ⊗ c2, d1d2) is a realization of ρ̃ = ρ1ρ2. Note that

∞∑
k=0

p̃k = d̃k +
∞∑

k=1

c̃pÃk−1
p b̃p = G̃(1),

where G̃ is the transfer function of the system (Ãp, b̃p, c̃p, d̃p). Note that by as-
sumption

∑∞
k=0 p̃k = G̃(1) �= 0.

Therefore ρ = (1/G̃(1))ρ̃ is a discrete probability density. If (Ãp, b̃p, c̃p, d̃p) is
an asymptotically stable realization of ρ̃ then G̃(1) = c̃p(I − Ãp)−1b̃p + d̃p and it
easily follows that (Ap, bp, cp, dp) is a realization of ρ with G(1) = 1. This shows
that ρ is in D. �

3.4. Mixing of random variables

One way to construct new random variables is by mixing of random variables. The
next proposition shows that if X1, X2 have probability densities in D then a mixing
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of these random variables leads to a new random variable Y which has a probability
density in D.

Proposition 3.4. Let X1, X2 be random variables with discrete probability densities
ρ1, ρ2 in D. Let 0 < p < 1 and define a random variable Y with probability density
ρY by

Y =
{

X1 with probability p,

X2 with probability 1 − p.

Then:
(1) The probability density ρY of Y is in D.
(2) If (Ai, bi, ci, di) is a realization of ρi, i = 1, 2, then (AY , bY , cY , dY ) given by

AY =
(

A1 0
0 A2

)
, bY =

(
b1
b2

)
,

cY = (
pc1 (1 − p)c2

)
, dY = pd1 + (1 − p)d2,

is a realization of ρY . If (A1, b1, c1, d1) and (A2, b2, c2, d2), are asymptotically
stable realizations, then (AY , bY , cY , dY ) is an asymptotically stable realization.

(3) If Gi is the transfer function of ρi, i = 1, 2, then the transfer function GY of ρY

is given by

GY = pG1 + (1 − p)G2.

Proof. (2) The proof is a straightforward verification. The set of eigenvalues of
AY is the union of the sets of eigenvalues of A1 and A2. Therefore if (Ai, bi, ci, di),

i = 1, 2, are asymptotically stable realizations, then all these eigenvalues have mod-
ulus less than one, hence (AY , bY , cY , dY ) is an asymptotically stable realization.

(1) Since ρY has a realization by (2) we have that ρY is in D.
(3) Follows immediately from (2). �

3.5. Realizations of discrete probability densities

An important consequence of the operations that were presented earlier is that
the class of densities D is closed under these operations, i.e. that all the respective
calculations can be performed without leaving the class. In particular, this means that
all the calculations can be done using state space methods.

An interesting question in the same context is which discrete-time systems (A, b,

c, d) give rise to discrete probability densities in D. This issue is addressed in the
following proposition.

Proposition 3.5. Let (A, b, c, d) be an n-dimensional discrete-time system, i.e. let
A be an n × n matrix, b an n × 1 vector, c a 1 × n vector and d a scalar. Let (pk)k�0
be defined by
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p0 := d, pk := cAk−1b, k = 1, 2, 3, . . .

(1) If (A, b, c, d) is an internally positive system, i.e. all entries of A, b, c and d
are non-negative, then pk � 0, k = 0, 1, 2, . . .

(2) Assume that (A, b, c, d) is minimal. We have that
∑∞

k=0 |pk| < ∞ if and only if
(A, b, c, d) is asymptotically stable, i.e. if and only if all eigenvalues of A are
strictly less than 1.

(3) Assume that (A, b, c, d) is asymptotically stable and that pk � 0, k = 0, 1, 2, . . .

Then (pk)k�0 is in D if and only if c(I − A)−1b + d = 1.
(4) Assume that (A, b, c, d) is asymptotically stable, that pk � 0, k = 0, 1, 2, . . . ,

and that c(I − A)−1b + d > 0. Then the system (A, b, c̃, d̃) with

c̃ := 1

c(I − A)−1b + d
c,

d̃ := 1

c(I − A)−1b + d
d

is such that (p̃k)k�0 is in D, where

p̃0 := d̃, p̃k := c̃Ak−1b, k = 1, 2, 3, . . .

Proof. (1) This is elementary.
(2) This is a restatement of a fundamental stability result for finite dimensional

discrete time systems (see, e.g. [1, p. 208]).
(3) This follows since c(I − A)−1b + d = ∑∞

k=0 pk , if the system is asymptoti-
cally stable.

(4) The system (A, b, c̃, d̃) is the result of a simple rescaling. Hence the result
follows from (3). �

An important consequence of our results above is that the defined state space
operations preserve internal positivity of the systems involved.

We will not discuss the inherently difficult question to characterize all systems
whose impulse response, i.e. in our case whose associated probability density, is
positive. We refer the interested reader to the literature (see, e.g. [3] and the refer-
ences therein). While this is unquestionably an important theoretical issue, it is not
crucial to apply the results presented here. Our results only require that a realization
exists and that it can be calculated. These results are classical and are discussed e.g.
in [5] or [1].

3.6. Applications

We are now going to briefly discuss how the above presented formulae can be
used in practical examples. The emphasis here is not to discuss implementation is-
sues in great detail but rather to illustrate the above presented techniques. To this end
we consider the following example.
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Example. Suppose an observation Y = hX + V is made of a random variable X, the
signal, scaled with a positive integer factor h, with some additive measurement noise
V. Assume that X and V are independent random variables both with probability den-
sity in the class D. The task is to a find an expression for the conditional probability
for X given a measured value y of Y, i.e. ρX|Y (X = x|Y = y).

Let (AX, bX, cX, dX) denote a realization of the probability density ρX of X and
(AV , bV , cV , dV ) a realization of the probability density ρV of V. Let SY = {y ∈
{0, 1, 2, . . .} | Pr(Y = y) > 0} denote the support of Y.

The probability density for X given Y is given by the Bayesian formula [2]

ρX|Y (X = x|Y = y) = N−1
X|Y ρY |X(Y = y|X = x)ρ(X = x),

where NX|Y is the scaling factor designed to guarantee that the right-hand side de-
fines a probability density in x. Its precise form is not relevant here. If X = x is
given then observing Y = y ∈ SY is equivalent to observing V = y − hx. Therefore
the first factor on the right-hand side of the Bayesian formula is equal to

ρY |X(Y = y|X = x) = ρV (V = y − hx)

=
{

cV A
y−hx−1
V bV if y − hx > 0,

dV if y − hx = 0.

Consider the sequence of non-negative numbers

p(x) :=



cV A
y−hx−1
V bV for x = 0, 1, 2, 3, . . . , n(y) − 1,

r for x = n(y),

0 for x = n(y) + 1, . . .

with

r :=
{

cV A
y−hx−1
V bV if n(y) < y/h,

dV if n(y) = y/h,

where n(y) = [y/h] is the largest integer less than or equal to y/h. All elements
of p := (p(x))x�0 are non-negative. Since by assumption Pr(Y = y) > 0, standard
arguments show that not all elements of p can be zero. Hence there exists a constant
K > 0 such that p̃ := (1/K)p is a probability density of finite support and hence in
D. It therefore has a realization (A, b, c̃, d̃) given by

A =




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...

0 0 · · · 1 0


 , b =




1
0
...

0


 ,

c = (
p(1) p(2) · · · p(n − 1) p(n)

)
, d = p(0),

and c̃ = (1/K)c, d̃ = (1/K)d .
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Using the above realization, the desired state space realization (AX|Y , bX|Y , cX|Y ,

dX|Y ) of the probability density ρX|Y (X = x|Y = y) can be obtained by applying
the formula for the realization of the product of two probability densities from D. It
is given by

AX|Y = A ⊗ AX,

bX|Y = b ⊗ bX,

cX|Y = N−1c ⊗ cX,

dX|Y = N−1ddX,

where N = (c ⊗ cX)(I − A ⊗ AX)−1(b ⊗ bX) + ddX. (Note that the previous nor-
malization constants are all absorbed in the present normalization constant N.)

It is worthwhile pointing out that a filtering problem can also be easily treated
using our framework. Consider the following linear dynamical model with a scalar
state space:

Xt+1 = ftXt + Wt,

Yt = htXt + Vt , t = 0, 1, 2, . . . ,

where Xt, Yt , Vt , Wt , t = 0, 1, 2, . . . , are random variables, ft , t = 0, 1, 2, . . . , and
ht , t = 0, 1, 2, . . . , are sequences of non-negative integers, X0 and Vt , Wt , t =0, 1, 2,

. . . , stochastically independent with probability densities in D. It follows from our
results on scaling and addition of random variables that Xt , t = 1, 2, . . . , and Yt ,
t = 0, 1, 2, . . . , also have probability densities in D. The filtering problem is to find
for each value of t = 0, 1, 2, . . . the conditional probability density ρXt |Y0,...,Yt (Xt =
x|Y0, . . . , Yt ) and the corresponding conditional mean of Xt given the observations
y0, y1, . . . , yt . The solution to this problem is given by a recursive set of equations,
describing the calculations to be performed at each time step. For brevity we present
here only an outline of the steps to be taken. This will show that all conditional
probability densities are in our class D and that they can be calculated using the
operations presented above. The fact that all conditional densities occurring in the
filtering problem are in the class D of probability density functions considered is
an important advantage of this class, not shared by many other such classes. For
linear filtering problems two other such classes are the class of Gaussian probability
density functions (the corresponding filter is the well-known Kalman filter) and the
class of rational probability density functions (cf. [4]).

Suppose now that the conditional probability density of Xt0 given Y0 = y0, . . . ,

Yt0 = yt0 has been calculated for some non-negative integer t0 and that it has an
associated realization (At0|t0 , bt0|t0 , ct0|t0 , dt0|t0). The filtering equations are given by
a prediction step and update step.
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The prediction step consists of calculating the probability density function

p(x) = ρXt0+1|Y0,...,Yt0
(Xt0+1 = x|Y0 = y0, . . . , Yt0 = yt0)

of Xt0+1 = ft0Xt0 + Wt0 , from the probability density function q(x) = ρXt0 |Y0,...,Yt0
(Xt0 = x|Y0 = y0, . . . , Yt0 = yt0), the scalar factor ft0 and the probability density
function r(w) = ρWt0

(Wt0 = w), where q, r ∈ D. Because q ∈ D and ft0 is a sca-
lar constant the probability density function s(x) = ρft0 Xt0 |Y0,...,Yt0

(ft0Xt0 = x|Y0 =
y0, . . . , Yt0 = yt0) is again in D and its state space realization can be calculated from
the state space realization of q using the formulas for the scaling operation given
in Proposition 3.2, part (2). The probability density function p(x) can be found by
using the fact that Xt0+1 is the sum of ft0Xt0 and Wt0 , which are stochastically
independent. Because s, r ∈ D, their convolution p = s ∗ r is also in D and its state
space realization can be calculated from the state space realizations of s and r, using
the formulas for the convolution operation given in Proposition 3.1.

The update step consists of calculating the probability density function

u(x) = ρXt0+1|Y0,...,Yt0+1(Xt0+1 = x|Y0 = y0, . . . , Yt0+1 = yt0+1)

from the probability density function p(x) of Xt0+1 given Y0 = y0, . . . , Yt0 = yt0 ,

and the number yt0+1. How one can obtain u from p and yt0+1 was described in
detail in the previous example, with Y = Yt0+1, y = yt0+1, h = ht0+1, X = Xt0+1,

V = Vt0+1. It follows that u ∈ D and a state space realization of u is obtained from
the state space realization of p and the number yt0+1.

4. Concluding remarks

The class of probability density functions on {0, 1, 2, . . .} for which the generating
function is a rational function has been investigated. It is shown that using a state
space representation of such probability density functions, the moments can be calcu-
lated and elementary operations on probability density functions can be performed,
using only linear algebra techniques. It is shown as an application that this allows
us to solve a linear filtering problem in which the disturbances have distributions
of the type investigated. This study should be regarded as a first step in applying
state space formulas for probabilistic calculations involving this class of densities.
We have not addressed numerical issues here. It should be pointed out, however, that
in other areas of applications, computations based on state space realizations have
often proved to be numerically better than those based on other approaches. This is
due to the fact that the inherent non-uniqueness of a state space realization allows
the user to pick a realization that has good numerical properties. The formulae show
that the state space dimensions of the systems that realize the probability densities
can be expected to be rather large in specific cases, and that the realizations may
be non-minimal. That last issue can be resolved by applying a standard minimal
realization algorithm to the state space realization (see, e.g. [5]). A further step in
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this direction to avoid very large state space dimensions would be to apply model
reduction techniques to produce a lower order system that approximates the original
with sufficient accuracy.
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