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The Fisher information matrix for linear systems
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Abstract

Estimation of parameters of linear systems is a problem often encountered in applications. The Cramer Rao lower bound
gives a lower bound on the variance of any unbiased parameter estimation method and therefore provides an important
tool in the assessment of a parameter estimation method and for experimental design. Here we study the calculation of
the Fisher information matrix, the inverse of the Cramer Rao lower bound, from a system theoretic point of view. A
number of results appear in the literature that deal with the case where the stationary data is given as the output of
a linear system driven by Gaussian noise. The non-stationary situation where the data is the output of a linear system
with Gaussian measurement noise is rarely considered despite its importance in applications. A general description will be
given for Fisher information for such data in terms of a derivative system. For a uniformly sampled data set of impulse
response type a closed form expression can be given for the Fisher information using the solution of a Lyapunov equation.
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1. Introduction

Estimation of parameters that determine dynamic
data is a frequently encountered problem in many ar-
eas of applications. The question therefore naturally
arises as to the accuracy with which these parame-
ters can be estimated. The Cramer Rao lower bound
[10,4,2,3] gives a lower bound for the co-variance
of the parameter estimates of an unbiased estimation
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procedure for a given data set. The Cramer Rao lower
bound is in fact typically calculated as the inverse of
a matrix called the Fisher information matrix. The rel-
evance of the Cramer Rao lower bound is not only
to evaluate a particular estimation procedure but it
can also give guidance for an appropriate design of
an experiment to collect data. In many experimen-
tal situations there is a limit on the number of data
points that can be acquired. For example, in clinical
trials of drugs, patients cannot be subjected to an ar-
bitrary number of blood tests. It is therefore important
to choose a sampling strategy that is likely to produce
good quality parameter estimates.
Expressions for the Fisher information matrix

in system theoretic terms have appeared in the
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literature before in the context of the modelling of sta-
tionary time series [11,5,9]. However, there appears
to be no systematic investigation of the Cramer Rao
lower bound or Fisher information matrix for the case
of non-stationary deterministic systems corrupted by
measurement noise. For exponentially decaying data,
expressions for the Fisher information matrix have
appeared in [6]. Similar expressions have, for exam-
ple, been used in [7] to explore the experimental de-
sign for surface plasmon resonance experiments. The
contribution of this paper is to systematically analyze
the determination of the Fisher information matrix for
data that is the output of a deterministic linear system.
Let (A�; b�; c�; d�) be a continuous time single-input

single-output system that depends on the parameter
vector �, i.e.

ẋ�(t) = A�x�(t) + b�u(t); x�(t0) = x�;0;
y�(t) = c�x�(t) + d�u(t); t¿ t0;

where A� is a n × n matrix, b� is a n × 1 vector,
c� is a 1 × n vector, d� is a scalar, the state vector
x� is n × 1 and the input u is a typically piecewise
continuous function for t¿ t0. The parameter space
� is assumed to be an open subset of Rn and the
parametrization is assumed to have the appropriate
smoothness properties. The output of the system is
then given by the standard convolution expression

y�(t) = c�e(t−t0)A�x�;0

+
∫ t

t0
c�e(t−)A�b�u() d+ d�u(t); t¿ t0:

We now assume that we have acquired noise cor-
rupted samples s(k); 16 k6N , of the measured
output at various time points tk ; 16 k6N , with
t06 t1¡t2¡ · · ·¡tk ¡ · · ·¡tN , i.e.

s�(k):=y�(tk) + w(k); 16 k6N;

where w(k); k = 1; : : : ; N , is a sequence of measure-
ment noise which is assumed to be independently nor-
mally distributed with mean zero and variance �2k ; k=
1; : : : ; N . By slight abuse of notation we also allow
N =∞ to indicate that k = 1; : : : ;∞.
By the Cramer Rao lower bound [10,4] any unbi-

ased estimator �̂ of � has a variance (provided certain
regularity conditions hold) such that

var(�̂)¿ I(�)−1:

Here I(�) is the Fisher information matrix that is given
by

[I(�)]st =−E
[
@2 ln(p(S; �))
@�s @�t

]
st
;

where � = (�1; �2; : : : ; �m)T; S is the data vector,
p(S; �) is the probability density function of the mea-
surements and E is the expected value with respect to
the underlying probability measure.
An important part of the calculation of the Fisher

information matrix for the data model discussed in
this paper involves the determination of the deriva-
tive the output of the system with respect to the pa-
rameters (see Section 2). If an analytical expression
is available for the output of a system it can there-
fore be possible to calculate the Fisher information
matrix for a particular system representation. In fact,
the results in [6,7] on data that is the linear combi-
nation of exponential functions, can be interpreted as
data that is given as the transient response of a linear
system given in modal form. If the parameterization
of the data is changed these tedious calculations typi-
cally have to be repeated. For example, if a new sys-
tem representation=parameterization is given for the
data it is not possible to determine the Fisher informa-
tion matrix unless possibly very extensive derivations
are performed. This raises the fundamental question
whether there is a system theoretic approach to deal-
ing with the calculation of the Fisher information ma-
trix that reduces these above-mentioned calculations
to more standard system theoretic operations.
In Section 2 we show that the calculation of the

Fisher information matrix for an arbitrary parameter-
ization of a linear system can be essentially reduced
to the calculation of an ‘2 type sum of the output of
a derivative system of the original system. In the spe-
cial case where the data is given as a measurement
noise corrupted transient response of a linear system
it is shown that the calculation of the Fisher informa-
tion matrix essentially reduces to the calculation of
the solution of a Lyapunov equation for the derivative
followed by pre- and post-multiplication of the solu-
tion by a matrix and its transpose. This means that the
calculation of the Fisher information matrix can be re-
duced to a sequence of well-de8ned system theoretic
operations for which both eMective numerical and an-
alytic methods exist (see e.g. [8] for a computer alge-
bra approach to the solution of Lyapunov equations).
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We denote by diag(M1; M2; : : : ; Mr) the block
diagonal matrix whose diagonal block entries are
M1; M2; : : : ; Mr . All other block entries are zero ma-
trices.

2. Fisher information matrix

In this section we are going to derive an expression
for the Fisher information matrix I(�) corresponding
to the problem that was introduced in the introductory
Section 1. If S = (s�(1); : : : ; s�(N )) is a data vector
note that the probability density function is given by

p(S; �) =
N∏
k=1

1√
2��2k

e−(1=2�2k )(s�(k)−y�(tk ))2 :

In the following lemma an immediate result is pre-
sented (see also e.g. [6]) and useful notation is
introduced.

Lemma 2.1. With the previous notation and assump-
tions

I(�) =
N∑
k=1

1
�2k
D�y(tk)D�yT(tk);

where for k = 1; 2; : : : ; N ;

D�y(tk):=




@y�
@�1

(tk)

@y�
@�2

(tk)

...
@y�
@�m

(tk)



:

Proof. Note that the derivatives of the log-likelihood
function with respect to the parameters �s and
�t 16 s; t6m; is given by

@2 ln(p(S; �))
@�s@�t

=
N∑
k=1

1
�2k

[(
@2y�(tk)
@�s @�t

)
(s(k)

−y�(tk))−
(
@y�(tk)
@�s

)(
@y�(tk)
@�t

)]
:

The result now follows immediately by taking expec-
tations and using the fact that the residuals s(k) −
y�(tk) have zero mean; k = 1; : : : ; N .

It is now clear that in order to calculate the Fisher
information I(�) it is necessary to calculate the deriva-
tive @y�(tk)=@� of the system output with respect to
the parameter vector �. To do this we quote a lemma
that is essentially the continuous time equivalent of
Lemmas 5.2–30 in [2], although we use an alternative
method of proof.

Lemma 2.2. Let (A�; b�; c�) be a realization of a
function h�(t); t¿ 0; i.e. h�(t) = c�etA�b�; t¿ 0;
where � is a parameter vector. Then for 16 s6m
and t¿ 0

@h�(t)
@�s

= @scet@sA@sb;

where

@sc:=
[
@c�
@�s

c�

]
; @sb:=


 b�@b�
@�s


 ; @sA:=


A� 0
@A�
@�s

A�


 :

Proof. We have for t¿ 0;

@h�(t)
@�s

=
@(c�etA�b�)

@�s
=
@c�
@�s

etA�b� + c�
@(etA�b�)
@�s

and

@etA�b�
@�s

=
@etA�

@�s
b� + etA�

@b�
@�s

:

Therefore for t¿ 0

@h�(t)
@�s

=
[
@c�
@�s

c�

] etA� 0
@etA�

@�s
etA�




 b�
@b�
@�s


 :

To complete the proof it remains to verify that
 etA� 0
@etA�

@�s
etA�


= e

t


 A� 0
@A�=@�s A�



:

To do this 8rst consider for t¿ 0

e
t


 A� 0
@A�=@�s A�



=
[
etA� 0
E(t) etA�

]
;

where the 2; 1 entry E(t) is given by

E(t) =
∞∑
r=0

(t)r

r!
Er;
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and the coeOcients are inductively seen to be
E0 = 0;

E1 =
@A�
�s
;

E2 =
@A�
�s

A� + A�
@A�
�s
;

E3 =
@A�
�s

A2� + A�
@A�
�s

A� + A2�
@A�
�s
;

E4 =
@A�
�s

A3� + A�
@A�
�s

A2� + A
2
�
@A�
�s

A� + A3�
@A�
�s
:

...

The 2; 1 entry of
 etA� 0
@etA�

@�s
etA�




is given by

@etA�

@�s
=
@
∑∞

r=0 t
r(A�)r=r!
@�s

=
∞∑
r=0

tr

r!
@Ar�
@�s

=
∞∑
r=1

tr

r!

(
@A�
@�s

Ar−1
� + A�

@A�
@�s

Ar−2
� + · · ·

+Ar−2
�

@A�
@�s

A� + A
r−1
�

@A�
@�s

)
:

Comparing coeOcients of the expansions of the 2; 1
entries it is veri8ed that
 etA� 0
@etA�

@�s
etA�


= e

t


 A� 0
@A�=@�s A�




as remained to be shown.

In the following theorem we summarize the results
and state the general expressions for the Fisher infor-
mation matrix.

Theorem 2.1. Consider the augmented derivative
system given by

D�A:=diag(@1A; @2A; : : : ; @mA);

D�c:=diag(@1c; @2c; : : : ; @mc);

D�b:=



@1b
@2b
...
@mb


 ; D�d:=



@1d
@2d
...
@md


 ; D�x0:=



@1x0
@2x0
...

@mx0




with

@sA:=


 A� 0
@A�
@�s

A�


 ; @sb:=


 b�
@b�
@�s


 ;

@sc:=
(
@c�
@�s

c�

)
; @sd:=

@d
@�s

;

@sx0:=


 x0; �
@x0; �
@�s


 :

Then

(1) for t¿ t0

D�y(t) :=




@y(t)
@�1
@y(t)
@�2
...

@y(t)
@�m




=D�ce(t−t0)D�AD�x0

+
∫ t

t0
D�ce(t−)D�AD�bu() d+D� du(t);

(2) the Fisher information matrix for the noise
model introduced in Section 1 and the sampling
points t1; : : : ; tN is then given by

I(�) =
N∑
k=1

1
�2k
D�y(tk)DT

� y(tk):

Proof. (1) The proof follows by diMerentiating the
convolution description of the output y(t) with re-
spect to the individual parameters. Use is made of
Lemma 2.2 and the fact that derivation and integration
can be exchanged since the integrand is bounded and
the integration is over a 8nite interval. The 8nal ex-
pression follows by stacking up the variables for the
system.
(2) is the content of Lemma 2.1.

In the following theorem we are going to con-
sider a special case that is of importance in many
applications.
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Theorem 2.2. Assume that the system and data are
such that

(1) an in@nite number of equidistant samples are
acquired; i.e.

tk = (k − 1)T; k = 1; 2; 3; : : :

where T ¿ 0 is the sampling interval;
(2) the input u is zero; i.e. u(t) = 0; for t¿ t0; i.e.

the deterministic part of the measured signal is
given by

y(tk) = ce(k−1)TAx0; k = 1; 2; 3; : : :

(3) all the eigenvalues of eTA are in the open unit
disk or equivalently the eigenvalues of A are in
the open left half plane.

Then the Fisher information matrix for the noise
model described in Section 1, with �2k= : �2; k¿ 1,
is given by

I(�) =
1
�2
(D�c)P(D�c)T;

where P is the unique solution to the Lyapunov equa-
tion

AdPATd − P =−(D�x0)(D�x0)T;
where Ad:=eTD�A.

Proof. Note that eTA is assumed that have all eigen-
values in the open unit disk. By the de8nition D�A is
a block lower triangular matrix with diagonal block
entries given by A. Therefore eTD�A is also block trian-
gular with block diagonal entries given by eTA. Hence
Ad:=eTD�A has all eigenvalues in the open unit disk.
With our assumptions the Fisher information matrix

is then given by

I(�) =
1
�2

∞∑
k=1

D�y(tk)DT
� y(tk):

Note that the series converges sinceD�y(tk) converges
exponentially to zero. We have that

I(�) =
1
�2

∞∑
k=0

D�y(kT )DT
� y(kT )

=
1
�2

∞∑
k=0

(D�ekTD�AD�x0)(D�ekTD�AD�x0)T

=
1
�2
D�c

( ∞∑
k=0

AkdD�x0D
T
� x0(A

T
d)
k

)
DT
� c

=
1
�2
D�cPDT

� c;

where P is the unique solution to the Lyapunov equa-
tion

AdPATd − P =−%�x0%T
� x0

since Ad has all its eigenvalues in the open unit disk
[1].

In the above we have discussed the calculation of
the Fisher information matrix for data that arises from
the output of a sampled continuous time system. If
uniform sampling is used, the data can be seen to be
the output of a discrete time system. In the following
we are going to briePy discuss the results that would
apply if the system is in fact discrete time. A discrete
time system is given by

x�(k + 1) = A�x�(k) + b�u(k); x�(0) = x�;0;

y�(k) = c�x�(k) + d�u(k); k¿ 0;

where u(k); k=0; : : : ; N−1, is the input sequence. As
before we also deal with in8nite data sets, i.e. N =∞,
is an included possibility. As before we assume that
the acquired data s�(k); 06 k6N − 1, is given by

s�(k):=y�(k) + w(k);

where w(k); k = 0; : : : ; N − 1, is a sequence of
zero mean Gaussian random variables with variance
�2k ; k = 0; : : : ; N − 1. The Fisher information matrix
I(�), for the m-dimensional parameter vector �, is
calculated analogously to the continuous time case
and is given by

I(�) =
N−1∑
k=0

1
�2k
D�y(k)D�yT(k):

With the analogous notation to the continuous-time
situation, we have that

D�y(k) =D�c(D�A)kD�x0

+
k∑
r=1

D�c(D�A)k−rD�bu(r−1)+D� du(k):

We now state the discrete time version of Theorem 2.2
in which it is shown that the Fisher information matrix
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can be calculated by solving a Lyapunov equation if
the data is given by the impulse response of a discrete
time system.

Theorem 2.3. Assume that the original discrete time
system is such that

(1) the input u is zero; i.e. u(k) = 0; for k¿ 0; i.e.
the deterministic part of the measured signal is
given by

y(k) = cAkx0; k = 0; 1; 2; 3; : : : ;

(2) all the eigenvalues of A are in the open unit disk.

The Fisher information matrix for the noise model
described above; with �2k= : �2; k¿ 0; is given by

I(�) =
1
�2
(D�c)P(D�c)T;

where P is the unique solution to the Lyapunov equa-
tion

(D�A)P(D�A)T − P =−(D�x0)(D�x0)T:

Proof. The proof is analogous to the proof of the con-
tinuous time version of Theorem 2.2.

As in the continuous time case the above theorem
shows that the calculation of the Fisher information for
the case of impulse response data essentially reduces
to the calculation of the derivative system, the solution
of a Lyapunov equation followed by a simple matrix
multiplication. The solution of the Lyapunov equation
can be obtained by standard techniques in numerical
linear algebra.

Remark 2.1. In [2] a detailed study was carried out
in which a Riemannian metric was de8ned on the
space of stable linear systems of 8xed dimension.
There is an interesting connection between the for-
mula presented above in Theorem 2.3 and those dis-
cussed in [2] for the Riemannian metric introduced
for the L2 case. This parallels the better understood

connections between the Fisher information for the
case of ARMA time series and the associated Rieman-
nian metric.
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