
Ram, S.; Ward, E.S.; Ober, R.J., "How accurately can a single molecule be localized 

when imaged through an optical microscope?," in Biomedical Imaging: Nano to 

Macro, 2004. IEEE International Symposium on , vol., no., pp.1087-1090 Vol. 2, 15-

18 April 2004 

doi: 10.1109/ISBI.2004.1398731 

keywords: {bio-optics;biological techniques;molecular biophysics;optical 

microscopy;optical noise;analytical expression;image detection system;noise 

sources;optical microscope;optical properties;photophysical 

properties;pixelation;single molecule localization;Biomedical imaging;Biomedical 

optical imaging;Detectors;Immune system;Least squares 

approximation;Lenses;Object detection;Optical microscopy;Optical noise;Stochastic 

processes}, 

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1398731&isnumber

=30417 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1398731&isnumber=30417
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1398731&isnumber=30417


HOW ACCURATELY CAN A SINGLE MOLECULE BE LOCALIZED WHEN IMAGED
THROUGH AN OPTICAL MICROSCOPE?

Sripad Ram
��� �

, E. Sally Ward
��� �

and Raimund J. Ober
��� ���

�
Center for Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX,�
Joint Biomedical Engineering Graduate Program, University of Texas at Arlington, Arlington, TX

and University of Texas Southwestern Medical Center at Dallas, Dallas, TX,�
Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX,�

Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX.

ABSTRACT

We present a simple analytical expression for the fundamen-
tal limit to the accuracy with which the location of a single
molecule can be determined that is imaged through an op-
tical microscope. This expression depends on the optical
properties of the microscope and the photophysical prop-
erties of the single molecule. We also show how the fun-
damental limit is deteriorated by factors like pixelation of
the detector and noise sources in the detection system. The
present results gives an experimenter insight into what is
achievable in an optical microscope and provide guidelines
for experimental design.

1. INTRODUCTION

One of the most important questions that is central to single
molecule detection concerns the accuracy with which the lo-
cation of a single molecule can be determined. Quantifying
the localization accuracy of a single molecule is important,
since it not only provides insight into the type of studies that
can be carried out, but it is also of relevance in the analysis
of single molecule data. For example, it has been recently
shown [1] that the accuracy of the location estimates has to
be taken into account when analyzing the diffusion behav-
ior of single molecules, since noisy measurement of single
molecule locations could lead to the erroneous interpreta-
tion that subdiffusional behavior is present when it is not
the case.

Earlier approaches to quantifying the localization accu-
racy have mainly relied on the least squares criterion [2, 3,
4], which is problematic when applied to data that arise
from non-Gaussian probability distributions. Aside from
this, other approximations have been made that are often
difficult to verify in the case of single molecule data. More-
over, the image of a single molecule predicted by standard
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diffraction theory [5] is often replaced by a Gaussian pro-
file. Importantly, our results do not rely on any of the above
approximations and assumptions.

Our present approach is based on statistical estimation
theory. Due to the random nature of photon detection, the
data acquisition process is modeled as a stochastic data gen-
eration process. A general expression for the Fisher infor-
mation matrix corresponding to the above stochastic process
is derived and the Cramer-Rao lower bound (CRLB) [6] is
computed. Since the CRLB is a minimum variance bound
for any unbiased estimator [6, 7], we define the limit of the
localization accuracy as the square root of the CRLB.

2. FUNDAMENTAL LIMIT

We consider a basic optical setup in which a single molecule
in the object plane is placed at the focus of an objective
lens and the image of the single molecule is captured by a
detector. The position of the single molecule in the object
plane is


�� ����������������
and in the detector plane is � 
�����

, where  "!#�$!&% denotes the magnification of the
lens.

The stochastic data generation process comprises of a
temporal and a spatial component. The temporal part de-
scribes the time points of emission of photons from the sin-
gle molecule and is modeled by a counting process ')( ��*���+*-,.*0/21

. The spatial part describes the coordinates of the
point of detection of each photon (emitted by the single
molecule) on the detector and is modeled as independent
and identically distributed random variables 3�4 �6587:9 �

,; �<=�?>���@�@�@��
with density function
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where E denotes an image function and
5

denotes the sam-
ple space. An image function describes the image of a sin-
gle molecule that is located at the center of the coordinate



system and is imaged through a lens with unit magnifica-
tion. We assume that

A=B
satisfies the regularity conditions

[6]. Due to the finite transmission efficiencies of the optical
components, some of the photons are randomly deleted with
probability

<
G�� , where � denotes the overall efficiency of

the detection system.
We assume that the temporal component does not de-

pend on



and is mutually independent of the spatial com-
ponent. Let

*
denote the acquisition time, � denote the total

number of detected photons and � �  '���� ��@�@�@ � ��� 1 denote
the observed data, where �24 �  ��* 4 ��C 4 � , *0/ ! * �
	�����	* ��	 * denote the arrival times of the photons on the detec-
tor and

C 4 � .��� 4 ��� 4 � � ��� denotes the spatial coordinate
of the

;����
detected photon on the detector,

; �<=��@�@�@ � � .
The log likelihood function for the observed data is de-

noted by � ��
�� � � and the general expression for the Fisher
information matrix is given by [6, 7]� ��
D� ����! #" � ��
�� � �" 
 $  #" � ��
�� � �" 
 $&%(' (2)

 � �
) ( ��*��+*-, �/. <
E ��� ���6� �10�243 5-6 7980:50�243 5-6 7980:7 ' �;0�243 5-6 7980:50�243 5-6 7980:7 ' %=< � < �

(3)
where

�
) *
denotes the expectation operation and the above

expression was derived by taking conditional expectation.
By inverting the above matrix and taking the square root of
the leading diagonal elements we obtain a general expres-
sion for the limit of the localization accuracy for a single
molecule.

If we assume that the image function E is rotationally
symmetric, then the off-diagonal terms of the Fisher infor-
mation matrix given in eq. 3 are zero, since the integrand is
a product of an odd and an even function. Thus the general
expression for the limit of the localization accuracy for the�

coordinate of the single molecule with a symmetric image
function is given by (the expression for the

�
coordinate is

analogous)>?
@� � �
) ( ��*��+*-, � . <
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According to diffraction theory [5] the image of a point
source is described by the classical point spread function
given by

E ��� ���6�  <FHG �� ��IKJ � �KL � � �� �ML � � ����� ���6� � � � �
(5)

where G � denotes the first order Bessel function of the first
kind,

I � &> FONQPSR-T�UWV , NQP denotes the numerical aperture
of the objective lens, T(UWV denotes the wavelength of the

photons emitted by the single molecule and the constant< R�F is a normalization constant.

We can easily verify that the above expression of E is
symmetric. For simplicity, we assume that the counting pro-
cess ( ��*�� is a homogeneous Poisson process with intensityX

,  ! X !#% . Hence we have
�
) ( ��*��+*  X *

. Substi-
tuting for E in eq. 4 we obtain the fundamental limit to the
localization accuracy of the

�
(
�
) coordinate of the single

molecule, which is given by>-Y ?�Z?
 T�UWV> FONQP-[ � X * @ (6)

In deriving the above result, the partial derivative of the im-
age function E with respect to

�
was calculated by using

the recurrence relations for Bessel functions [8, pg. 18] and
the resulting integral expression was evaluated by using an
integral identity for Bessel functions [8, pg .405].

The above expression is referred as ‘fundamental’, since
the underlying model does not take into account any deteri-
orating effects such as pixelation of the detector and noise
sources that are present in the experimental data (in the next
section we show how these factors deteriorate the funda-
mental limit). From eq. 6 we see that the limit of the lo-
calization accuracy depends on the optical properties of the
microscope (i.e. numerical aperture of the objective lens
and optical efficiency of the detection system) and the pho-
tophysical properties of the single molecule (i.e. emission
wavelength and photon emission rate of the single molecule).
The fundamental limit exhibits an inverse square root de-
pendence on the expected number of detected photons ( � X * ),which is in agreement with previously published results [3,
4] (see Fig. 1).

To improve the limit of the localization accuracy by a
factor of two (i.e halve the value of

> Y ?�Z?
), we either need

to double the numerical aperture of the objective lens, or in-
crease the photon emission rate / the optical efficiency by
a factor of four, or halve the emission wavelength of the
single molecule. This means that the location of a single
molecule emitting blue light can be more accurately deter-
mined than one that is emitting red light, provided all other
factors remain the same. Note that the fundamental limit is
independent of the magnification � of the optical system.

It is important to determine whether an estimator exists
whose performance comes close to the fundamental limit.
Here we consider the maximum likelihood estimator and
show that (see Fig. 1) under typical experimental condi-
tions as the expected number of detected photons increases
the standard deviation of the maximum likelihood estimator
comes close to the fundamental result.
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Fig. 1. Fundamental limit to the localization accuracy of a
GFP single molecule under typical experimental conditions
(—), (i.e.

X 8>�� <  � photons/s, N P �<=@ � , T�UWV ��=>  nm,�   @  ���� and
* �   @  < G

<
s). ( L ) denotes the standard

deviation of the maximum likelihood estimator.

3. INFLUENCE OF PIXELATION AND NOISE

We next consider the effect of pixelation and the presence
of noise sources and show how the fundamental limit is af-
fected by these factors. In deriving the fundamental limit
it was assumed that the time points of photon detection and
the precise coordinates of the detected photons were known.
Current imaging detectors have (finite sized) pixels and pro-
vide the coordinates of the detected photons only upto a
pixel. Moreover, the time points of detected photons are
generally not available. Hence the number of detected pho-
tons (that come from the single molecule) at each pixel is
modeled as a Poisson random variable � B 6 4 with mean 	 B2� ; � � � X *�
���IA2B2��C2� < C , where

A2B
is given in eq. 1, ��4 denotes the;����

pixel for
; �<=��@�@�@ ���

and
�

denotes the total number
of pixels on the detector. We assume no specific shape, size
or orientation for these pixels and that no two pixels on the
detector share a common region.

In addition, we consider additive Poisson and Gaussian
noise sources that are commonly encountered in experimen-
tal data. Poisson noise is used to model the effects of aut-
ofluorescence, background and dark current and Gaussian
noise is used to model the effect of measurement noise that
arise in the detector [10]. Thus at each pixel the observed
photon count � 4 is given by� 4  � B 6 4 L�� 4 L�� 4 � ; �<=��@�@�@ ��� �
where � 4 is a Poisson random variable with mean � � ; � that
denotes the Poisson noise component at the

; ���
pixel and� 4 is a Gaussian random variable with mean ��4 and vari-

ance � �4 that denotes the Gaussian noise component at the;����
pixel,

;  <=��@�@�@ ���
. We assume that � B 6 4 , � 4 and � 4

are mutually independent of each other and ��4 , �F4 and � � ; �
are independent of



for
; �<=��@�@�@ ���

.

We consider two different scenarios and derive the limit
of the localization accuracy in each case. For all the cases,
we assume the image function to be the classical point spread
function given in eq. 5 and the derivation is analogous to
that of the fundamental limit.

First we consider the case where only the Poisson noise
component is present, i.e. � 4   , ;  <=��@�@�@ ���

and
we set � � ; � � �� 4 * , where

� 4 denotes the rate of the Pois-
son noise component. Using the fact that the sum of two
independent Poisson random variables is also Poisson dis-
tributed, the Fisher information matrix can be easily derived
and the limit of the localization accuracy for the

�
coordi-

nate of the single molecule (the expression for the
�

coordi-
nate is analogous) is given by>-Y ?�Z? � <
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where
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is given in eq. 6, # 5 � ; � , # 7 � ; � are given by
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G
C�/!� � � < C �G � denotes the second order Bessel function of the first kind,>�:> FONQP-R � T�UWV � � and

% B2� ; � @
���IA2B2��C2� < C for
; 

<=��@�@�@����
. Note that setting

� 4   in eq. 7 gives an expres-
sion for the limit of the localization accuracy for a pixelated
finite sized detector in the absence of any noise sources.

Next we consider the case where both Poisson and Gaus-
sian noise sources are present. The Fisher information ma-
trix is given by) � ��
D�+*BA C  � 

4"! � " 	 B2� ; �" 
*A " 	 B2� ; �" 
DCFE � ; ���
where G �IHJ�<=�?> , E � ; ��� �J � ; �

G
<

and
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is given by
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with X B2� ; � �  � X * % B2� ; � L � 4 * , ; �<=��@�@�@ ��� and the limit
of the localization accuracy for

�
coordinate of the single

molecule is given by
> Y ?�Z? � <

> [ � X *ZY � 4"! � # �5 � ; � E � ; � G + � 4"! � # 5 � ; � # 7 � ; � E � ; � $ �+ � 4"! � # �7 � ; � E � ; � [ BED. < @ (8)



From eqs. 7 and 8 we see that the presence of pixelation
and noise sources introduces a correction term to the fun-
damental limit that is given in parentheses. Note that the
correction term introduces the dependence of the limit of
the localization accuracy on various factors like magnifica-
tion, pixel size, pixel shape, detector size and the relative
position of the single molecule with respect to the center of
the detector.

We now illustrate the above results by showing how
noise levels deteriorate the limit of the localization accu-
racy. Fig. 2 shows the limit of the localization accuracy
for a GFP single molecule that is imaged under typical ex-
perimental conditions. Fig. 2a shows the results for low
noise levels ( �D4   , � 4 ����  photons/pixel/s, � 4 �� e B(rms)) and Fig. 2b shows the results for high noise levels
( �D4   , � 4 ����  = photons/pixel/s, � 4  ���

e B (rms)).
In both the figures the noise statistics for all the pixels is set
to be the same. From Fig. 2 we see that in the presence of
high noise levels the limit of the localization accuracy can
be an order of magnitude higher than that of the noise free
case especially for small photon count numbers. However,
by increasing the number of detected photons it is possi-
ble to come close to the fundamental limit. Although not
shown here, it can be verified that the standard deviation of
the maximum likelihood estimator comes reasonably close
to the limit of the localization accuracy for a pixelated de-
tector for the different noise levels considered here.
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Fig. 2. Limit of the localization accuracy for a GFP single
molecule for different noise levels. Fig. 2a shows results
for low noise levels ( � ) and Fig. 2b shows results for high
noise levels ( � ). In both figures, the limit of the localization
accuracy in the noise free case ( 	 ) and the fundamental limit
(—) are also shown for reference. For all the plots, the pixel
array size is fixed to be

� ���
and the pixel dimension is

fixed to be
�6@ 
8���6@ 
 	� .

The present results provide a framework to evaluate an
experimental setting in the context of single molecule detec-
tion. Moreover, they can be used as a benchmark to com-
pare the performance of different algorithms that are used to
calculate the location of a single molecule from experimen-
tal data. In conclusion we note that our present formulation

can be extended to calculate the limit of the localization ac-
curacy of any object with a known image function that is
imaged by an optical microscope.
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