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ABSTRACT 

An algorithm is presented to calculate a stale space realiza- 
tion of a 3D iinage set. It is baed on interpreting the iinage 
set as the iinpulse responsc ola3D separable systcm. As an 
application ii is shown how the approximation steps, includ- 
ing balanced model reduction methods, in the algorithm can 
he used to suppress noisc in 3D image set.. The approach 
was motivated by a practical problem in the analysis of 3D 
fluorescent microscopy hnage data offluorescently labelled 
cells. 

1. INTRODUCTION 

Noise suppression is an important aspect in the analysis of 
3D fluorescent microscopy image sets. The signal levels of 
fluorescent microscopy images are typically very low even 
when highly sensitive detectors are used 111. In addition, the 
signal, i.e. thc photons emitted by the fluorescent tags, is it- 
self a random process. There are also various noise sources 
in the system ranging from scattered photons to readout 
noise in the CCD camera [l]. This means that the images 
have low signal to noise ratios. As a result, noise becomes a 
serious obstacle to the use of such acquired images in many 
image processing algorithm, i.e. deconvolution algorithms 
(see e.g. 121). As a standard method, a Gaussian filter is 
often used to smooth 3D image sets [3]. However, since the 
Gaussian filtering approach is based on a weighted average 
of neighboring pixels, it typically results in the loss of sharp 
details in 3D image sets. It is therefore desirable to develop 
altemative methods for noise reduction of 3D fluorescent 
microscopy images. 

Many advanced signal processing techniques call for the 
use of state space models. The question arises whether it 
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is possible to also obtain a state space representation for a 
3D iinage set and address the noisc reduction problem at 
the same time. An aftinnative answer is provided in this 
paper. State space realizations have been used for multidi- 
tncnsional filler design (see [4] and the refcrcnces therein). 
One of the most suitable bunny of realizations is balanced 
state space rcalization, since it can he easily used in bal- 
anced model reduction, which has several desirable proper- 
ties such as an error hound and preservation of the stability 
of the original system (see e.g. [SI). In addition, state space 
realizations were also used together with singular value de- 
composition to design a 2D separable-denominator digital 
filter (see e.g. 161). 

In this paper we present a new algorithm to calculate a 
State space realization of a 3D image set by considering the 
image set as the impulse response of a 3D separable sys- 
tem. When noise is presented in 3D image sets, the algo- 
rithm is capable of reducing noise components and obtain- 
ing smoothed estimates of image sets. 

2. METHODS 

Our algorithm can he separated into two parts. In the first 
part of the algorithm (Algorithm 1) a non-iterativemethod is 
introduced to decompose a 3D image set to three cascaded 
1D components via singular value decompositions. Though 
singular value decompositions were used in the low-rank 
approximation of a 3D array 171. The algorithm given in 171 
is an iterative algorithm and computationally very intense. 
In the second part of the algorithm (Algorithm 2) the bal- 
anced realizations of the one-dimensional components ille 
calculated via the modified Kung's algorithm [SI. 
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.~ 2.1. Decomposition of a three-dimensional image set 

Algorithm 1 Let P ( k l ,  k y !  k3),  k< = I ,  2 , .  . . , A\, i = 1, 2,3, 
represenr a three-dimensional image set. 

6. Parfition Cr = d i q ( & ,  E?), U? = [4, 021, and 

k2 E V? = [ ? ] conforinallv. where k2 E v, 

P;' := 

In this algorithm an approxiinate decomposition of the 
iinage data points was ohtaincd 

P( k ,  , k?, k 3 )  %z P".'2( k:], k?,  k 3 )  := c';l ( k I ) q ?  ( k ? ) c y ( k a ) :  

ki = 1 ,2 , .  . . ,A:, i = 1,2,3.  If no approximation is car- 
ried out, i.e. if T ,  = )'? = 0, we have the exact factorization 

P ( L l r k 2 , k 3 )  = POJ) (kI ,k? ,k3 )  = Pp(kt)P;(k?)P:(k3), 

- - Pj(l) PJ2) _ ' '  P,(N- 1) P j ( N )  0 
K ' ( 2 )  Pj(2) P,(3) ' . '  P , ( N )  0 0  

~ P;'iNi) - 0 0 . . .  ... 0 0  

pl"(3) := L y ,  where Pp(kl , )  E H = [  j i 
P j (N) 0 . . .  . . .  0 0  

k ; = 1 , 2  , . . . ,  N,, i = 1 , 2 , 3  
R'LX'L , 0, E j p " x l , ,  8, E R N , x r , ,  PI E ] w h x N z N - ?  

and 6, E ~n X N ~ N ~ ,  ~ ; t  := fi, g;/2, and q := 

[R2(1), . ~. , R?(N2N3)]  := C, VI, where R y ( i )  E 
Q? := 

L:'R;1 is an approxiinate factorization, where rl de- 

2.2. Balanced stalespace realizations of finite one-dimensional 
112 . sequences 

i = l , ? ,  . .  .,N2N3. Then Q, Algorithm2 L e f P , ( i )  E R p Y m ,  i = 1,2, ..., N a n d j i s  
an inregel; be aJinite one-dimensional seqirence. 

2. Let H = UCV be a singular vahre decomposifion 4. Rearrange the elements of R;' to form Q? as 
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Ibr microscopy unage data it is often advisable that the mid- 
dle index b2 corresponds 10 the optical axis, if [ewer data 
points are available in this direction than in the others. 

Then (/I;, i?;> (2;) is called a state space realization of 
P3, i.c. P ( i )  N C:;(~l;)~.-lb';, i = l , ? ,  . .  . , N .  If no 
singnlar values are dropped, i.e. s = 0, we ohtain an exact 
realization. For inore derails and properties ol the above 
state space realization, see [91. 

2.3. State space realizalions nf a 3D image set 

Let P ( k l ,  L2 ,  b:3), b ,  = 1,2 , .  . . , N, ,  i = 1:2, i3, be a 3D 
image set. We decompose the hnage set and ohtain three 1D 
sequences P:', 4 2  and F'T via Algorithm 1 with some pa- 
rameters r1 > 0 and ~2 > 0. For each 1D component with 
appropriately chosen reduction parameters sl, ~ 2 ,  and s3 
approximate realizations (A;',"', B;""', Cy'i3'), (A;2is2, 
p s 2 *  CT;s.) and ( p a 3 ,  Byis3, CF;s3) are derived us- 
ing Algorithm 2. Note that '1, r2 denote the numbers of the 
dropped singular values in the two singular value decom- 
positions used to decompose the image set P in Algorithm 
1 and SI. sa, S Q  are the numbers of the discarded singular 
values in the other three singular value decompositions used 
to calculate the realizations in Algorithm 2. The smoothed 
estimate of the 3D image set P obtained is then denoted as 
p T I , r Z i ~ I , * z &  and we have 

P(kl,k2,k3) Y Pr',r*;r'16*193(kl,k*,bS) 

:= c ; ! ; s l ( ~ ; , ; a , ) k ~ - l  rlisl 

:= P{'iS'(kl) x P . ; " ' ( k z )  x f y 3 ( k 3 )  

. ~ ; ~ Z ( , ; , ; ~ , ) k , - 1 , ; 2 ; s 2  

XCy;S'(A~;93)kl-1BlliSJ 

Bl 

3 3  

where k; = 1,2 , .  . . , N;, i = 1,2,3. If in neither of the 
two algorithm approximations are carried out we have an 
exact realization of the image set given by P(k1, k2 ,  k3)  = 

Note that the actual performance of the approximation 
algorithm is in general not independent of the particular as- 
signment of which spatial dimension corresponds to which 
index in the image array P, in part due to the different sizes 
of the three 1D components. We have found, for example, 

po,o;o,o,o (klrk?,k3).  

3. STATE SPACE REALIZATIONS OF 
KIOMEDICAL IMAGES ANI) NOISE REDUCTION 

We apply our algorithm to a 3D fluorescent microscopy im- 
age set P of a mouse 7' cell. Thc T cell receptor has been 
lahclcd with fluorescent tags and is thcrcfore visible hy flu- 
orescent microscopy. All images of this 3D image se1 and 
two sample cross sections are shown in Figure 1. 

We lirst apply our algorithm to the 31) image set wirh- 
out carrying out approxunations. Based on the notation 
introduced in Mctliods section, the estiinated iinagc set is 
denoted as Po,n:'l~n,o. Figure 2.al show a cross scction of 
P",n,o,o.o. The root-mean-square error IRMSE) hetween the 
cstiinated unnsge set and the original image set is 7.4 x 
for the scale used for displays. This shows that up to in- 
significant numerical errors an exact state space realization 
was ohtaincd. It is interesting to note that the significant 
background intensity level has also been accurately matched 
by the realization algorithm. 

l o  suppress noise of the iinage set P we use our algo- 
rithm to obtain a realization of the image set with approx- 
imations. As discussed in Methods section, the approxi- 
mation is essentially based on splitting the set ol singular 
values of each singular value decomposition in two subsets. 
One, typically the larger ones, that will he 'retained' and 
two, typically the smaller ones, that will be 'discarded' to 
provide the approximation. Due to the presence of noise in 
the image set, small singular values are corrupted by noise. 
By excluding those singular values, we effectively suppress 
noise and obtain a smoothed approximation of the noisy im- 
age set. 

In this caqe, we choose to retain 15 and 30 singular val- 
ues in the tint two singular values decompositions used to 
decompose the image set P and keep 60,300 and 100 singu- 
lar values in the other three singular value decompositions 
when calculating the realizations. Due to die limitation of 
space, we do not explain how to obtain these numbers here, 
which can be found in a related paper on noise suppression 
of point spread functions [lo]. The total number of non-zero 
singular values for the five singular value decomposition is 
99,110,DD. 315 and 110. Therefore, we dropped 84,80,39, 
15 and 10 singular values respectively. From the notations 
introduced in Methods section, the smoothed estimate of the 
image set P is denoted as P84,8@39,15,10. Figure 2.d show 
the cross section of the image set P84,80;3Q,15,10. The dif- 
ference between the smoothed image frame and the original 
image frame, shown in Figure 2.a5 appears as random noise 
and no significant error is introduced. For comparison, we 
also applied a Gaussian filter of size 3*3*3 with standard 
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deviation of one in al l  directions to the 3D image set. The 
resulmt image for the corresponding image frame is shown 
in 2.a3 and the difference between the smoothed image set 
and the original unagc set is shown in Figure 236. As can 
be seen, the error by the Gaussian filter method is bigger 
than that using our method. 

I 

x Id 

(a) (h) 

Fig. 1.  (a) All two-dimensional iinages of a thrcc- 
dimensional Iluoresccnt microscopy image set of a T cell. 
The image series was acquired on a Zciss inverted micro- 
scope with a lOOx Plan-Aprochroinat NA 1.4 objective us- 
ing a high scnsitivity Hmamatsu Orca 100 Peltier c d e d  
12 hit CCD camera. The image sct consists of ‘21 im- 
ages each being a 99 x 110 pixel m y .  The images are 
assumed to be 300nni apart. Each pixel is assluned to 
be G7,mi x Gi’?irn in size. Therclore, Each frame has a 
size of 6.633p7n x 7.3ipm. The panel is arranged such 
that the frames are displayed sequentially lmm left to right 
and top to bottom. (b) is the cross section f(60, k ~ ,  !a), 
k2 = 1,.  . . ,21, l ; ~  = 1,.  . . ,110 of the image set. 
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