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Summary

 

The point spread function (PSF) is of  central importance in the
image restoration of  three-dimensional image sets acquired by
an epifluorescent microscope. Even though it is well known
that an experimental PSF is typically more accurate than a
theoretical one, the noise content of  the experimental PSF is
often an obstacle to its use in deconvolution algorithms. In this
paper we apply a recently introduced noise suppression method
to achieve an effective noise reduction in experimental PSFs.
We show with both simulated and experimental three-
dimensional image sets that a PSF that is smoothed with this
method leads to a significant improvement in the performance
of  deconvolution algorithms, such as the regularized least-
squares algorithm and the accelerated Richardson–Lucy
algorithm.

 

1. Introduction

 

Deconvolution of  three-dimensional (3D) microscopy image
sets is important for removing undesired blurring due to
out-of-focus fluorescence, which can obscure details of  the
in-focus image. The point spread function (PSF) is of  central
importance in any deconvolution algorithm. In blind decon-
volution algorithms the PSF is estimated as part of  the algo-
rithm whereas in non-blind deconvolution algorithms the PSF
is assumed to be known. In non-blind algorithms either an
experimentally acquired PSF or a theoretically calculated PSF
is used. It is well known that a theoretical PSF is often an
imprecise model for the actual PSF (Gibson & Lanni, 1991;
McNally 

 

et al.

 

, 1994). Because it is known that an inaccurate

PSF can affect the performance of  deconvolution algorithms
(Preza 

 

et al.

 

, 1992) the experimental PSF would appear to be
the preferred choice of  a PSF model for a deconvolution algo-
rithm. However, experimental PSFs typically exhibit strong
randomness due to the Poisson nature of  the photon counting
process and other noise sources in the acquisition electronics
(Castleman, 1996; Inoue & Spring, 1997). These effects are
serious obstacles to the use of  experimental PSFs in deconvolu-
tion algorithms, because it is known that a noisy PSF can com-
promise the results of  deconvolution algorithms.

It therefore appears that a promising approach is to sup-
press noise or random components in an experimental PSF
and to use a smoothed PSF in deconvolution. As a standard
method, a Gaussian filter is often used to smooth 3D image
sets, including PSFs (Chen 

 

et al.

 

, 1995; van Kempen & van
Vliet, 1997). Because the approach is based on a weighted
average of  neighboring pixels it typically results in the loss of
sharp details in the PSF. Another approach to suppress noise is
to average the acquired data from 20–30 beads and then to
average the resulting PSF cylindrically about the optical axis
(Shaw & Rawlins, 1991; Shaw, 1993). The problems of  this
approach include that it is time consuming, that the align-
ment of  the different PSFs for averaging is not without prob-
lems and that the radial averaging removes any potential
asymmetry in the PSF.

In Ober 

 

et al.

 

 (2005) we have introduced an algorithm that
is capable of  effectively suppressing noise in 3D microscopy
image sets. Here we apply this algorithm to smooth PSFs and
compare it with the use of  a Gaussian filter. The smoothed
PSFs are then used in deconvolution algorithms: the regular-
ized least-squares algorithm (see e.g. Jain, 1989), and the
accelerated Richardson–Lucy algorithm (Biggs & Andrews,
1997). The performance of  the deconvolution algorithms
using noisy PSFs and smoothed PSFs is compared. We observe
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that the recovered object is significantly enhanced by using a
smoothed PSF.

The rest of  the paper is organized as follows. In Section 2 we
discuss materials and methods. Noise suppression of  experi-
mental PSFs and PSFs with simulated random components is
investigated in Section 3. The influence of  noise suppression
on the deconvolution algorithms is discussed in Section 4. We
draw conclusions in Section 5.

 

2. Materials and methods

 

2.1. Microscope system, image acquisition and image processing

 

Sample specimens were analysed using a Zeiss Axiovert 200M
inverted microscope, equipped with a Mercury (Hg) arc lamp
and a Plan-Aprochromat 100

 

×

 

 oil objective (NA 

 

=

 

 1.4). Images
were acquired at 100-nm increments using the inbuilt 

 

z

 

-focus
system. The following filter sets were used, exciter: HQ470/40,
emitter: HQ525/50, beam splitter: Q495IP (Chroma Technology
Corp. Brattleboro, VT, U.S.A.).

The acquisition system was a high-resolution Hamamatsu
Orca-100 cooled 12-bit CCD camera, (Hamamatsu Photonics
K.K., Japan) whose pixel size is 6.7 

 

µ

 

m 

 

×

 

 6.7 

 

µ

 

m. Based on the
manufacturer’s specification, the conversion factor of  the CCD
camera is 3.2 electrons per analog to 12-bit digital unit (

 

ADU

 

)
for a 12-bit scale. Images were processed in double precision
with customized software written in the Matlab programming
language. The displays of  all images are on a 16-bit scale.
Therefore, data from the 12-bit camera are multiplied by 16
for display purposes. Based on the camera specifications this
implies that one increment in the display units corresponds to
0.2 (

 

=

 

 3.2/16) photons.

 

2.2. Experimental PSFs

 

PSFs were acquired by imaging (yellow:green) 50-nm-
diameter fluorescent microspheres (Fluoresbrite YG Micro-
spheres, Polysciences, Inc. Warrington, PA, U.S.A.) and 20-nm
diameter (yellow:green) fluorescent microspheres (Molecular
Probes, Eugene, OR, U.S.A.). A drop of  the diluted liquid of
microspheres was placed in the middle of  an air-cleaned cover-
slip (No. 1.5) pretreated with poly-

 

l

 

-lysine (Sigma Chemical
Co., St. Louis, MO, U.S.A.). After drying, the cover-slip was
mounted in the middle of  a slide with a small drop of  Prolong
(P7481, Molecular Probes). Both cropped image sets 

 

P

 

exp

 

 and

 

P

 

exp

 

200

 

 of  the 50- and 200-nm-diameter beads, respectively,
consist of  43 images acquired at 100-nm increments with
each image being a 128 

 

×

 

 128-pixel array.

 

2.3. Description of  the algorithm and notation

 

We give here a brief  description of  the algorithm that will be
used to reduce the noise level of  PSFs (see Appendix and Ober

 

et al.

 

, 2005, for details). The algorithm consists of  two parts. In

the first part a 3D discrete image set 
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 1, 2, 3, is decomposed into three 1D sequences 

 

P

 

i

 

(

 

k

 

i

 

), 

 

k

 

i

 

 

 

=

 

 1,
2, ... , 

 

N

 

i

 

, 

 

i

 

 

 

=

 

 1, 2, 3, i.e.

 

P

 

(

 

k

 

1

 

, 

 

k

 

2

 

, 

 

k

 

3

 

) 

 

=

 

 

 

P

 

1

 

(

 

k

 

1

 

)

 

P

 

2

 

(

 

k

 

2

 

)

 

P

 

3

 

(

 

k

 

3

 

),

 

k

 

i

 

 

 

=

 

 1, 2, 3, … , 

 

i

 

 

 

=

 

 1, 2, 3,

where 

 

P

 

i

 

, 

 

i

 

 

 

=

 

 1, 2, 3, are vector/matrix-valued sequences such
that  for some integer
values 

 

m

 

1

 

, 

 

m

 

2

 

 that are determined as part of  the algorithm. Note
that we use discrete parameters to denote the fact that we are
dealing with a pixelated image. In the second part a parameter
set (

 

A

 

i

 

, 

 

B

 

i

 

, 

 

C

 

i

 

) is obtained for each sequence 

 

P

 

i

 

 such that

Therefore, the 3D image set 

 

P

 

 can be represented as

 . The integer values

 

n

 

1

 

, 

 

n

 

2

 

 and 

 

n

 

3

 

 are again determined as part of  the algorithm. Note
that the identification of  the middle index of  the pixel array
with the optical axis has proved to be numerically favourable
in our algorithm (Ober 

 

et al.

 

, 2005). Therefore, in all the data
presented in this paper the middle index 

 

k

 

2

 

 of  an image set is
assumed to correspond to the optical axis, i.e. the 

 

z

 

 axis.
The key methods used in the algorithm to suppress noise are

approximations that are based on the singular value decom-
position. Two singular value decompositions (one in step 3, one
in step 5) are used to decompose the 3D image set into three
1D sequences while another three singular value decomposi-
tions (in step 6) are used to calculate the parameter sets for the
three 1D sequences.

In each singular value decomposition, we will obtain a series
of  singular values. The corresponding approximation is essen-
tially based on splitting the set of  singular values in two subsets.
One, typically the larger values, that will be ‘retained’ and two,
typically the smaller values, that will be ‘discarded’ to provide
the approximation. The number of  retained singular values in
the algorithm determines the accuracy of  the approximation.
As the larger a singular value is the more important it is for the
approximation and vice versa, only the large, i.e. dominant,
singular values are important for obtaining an accurate
approximation. In addition, due to the presence of  noise in the
3D image set, small singular values are corrupted by noise. By
excluding those singular values, we effectively suppress noise
and obtain a smoothed approximation of  the noisy image set.

Let 

 

r

 

1

 

, 

 

r

 

2

 

 denote the numbers of  the dropped singular values
in the first two singular value decompositions used to decom-
pose the image set 

 

P

 

 and let 

 

s

 

1

 

, 

 

s

 

2

 

, 

 

s

 

3

 

 be the numbers of  the
discarded singular values in the other three singular value
decompositions used to calculate the parameter sets. The
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smoothed estimate of  the 3D image set 

 

P

 

 obtained is then
denoted as 

 

P

 

rs
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}. Note that 
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 and 

 

s

 

3

 

are typically experimentally determined values (see Section
3.1 for more details).

This algorithm was applied to the experimentally acquired
PSF 

 

P

 

exp

 

 and 

 

P

 

exp

 

200

 

 to obtain the smoothed PSFs  and ,
respectively.

 

2.4. PSFs with simulated random components

 

To assess the effectiveness of  our algorithm to suppress
random and noise components we simulated PSFs as samples
of  spatial Poisson processes, whose intensities were given by
known deterministic PSFs. The noise suppression algorithm
was then applied to these simulated PSFs and the resulting
smoothed estimates were compared with the deterministic
PSFs. This was done for two different deterministic PSFs. In
the first case we used the smoothed PSF  (Section 2.3) that
was obtained by smoothing the experimental PSF 

 

P

 

exp

 

. In the
second case we used a theoretical PSF, which was generated as
described below.

In fact for the first case several different experimental PSFs
were simulated to model different levels of  randomness. The
image set  of  the simulated PSF was obtained by first defining

where the conversion factor 

 

c

 

 was set to be 

 

c

 

 

 

=

 

 0.2 (Section 2.1).
The factor 

 

λ

 

 was varied to control the level of  the randomness
(Section 3.2), with 

 

λ = 1, 3, 6, 9. The offset boffset for the simula-
tion was set to be boffset = 3050, which is the offset measured for
our camera system. The photon count number (k1, k2, k3) of
the (k1, k2, k3) pixel was simulated as a Poisson random varia-
ble with mean (k1, k2, k3). Finally, the image set for the PSF
with simulated random components was obtained as (k1, k2,
k3) = CP(k1, k2, k3)/(cλ) + boffset, k1 = 1, ... , 128, k2 = 1, ... , 43, k3 =
1, ... , 128. Hence, we consider  as the
deterministic version of  the PSF . Note that for all λ we
have that . By offset we mean the signal level that is
acquired by the CCD camera with closed shutter and negligi-
ble exposure time. This is in contrast to the background of  an
image that also includes scattered photons, autofluorescence
from the sample, etc. The background level bP for the experi-
mental PSF is bP = 3350.

In the second case, the PSF Pdt based on Li and Wolf ’s model
(Li & Wolf, 1984) was generated. All photons falling in the
area of  one pixel were summed together to mimic the integra-
tion over a CCD well. The randomness was introduced in the
same way as discussed above for the parameter λ = 1 to yield
the simulated PSF Pnt with the simulated random compo-
nents. The simulated PSF was scaled so that in the focal plane
the integral matched that of  the experimental PSF, adjusted
for the background level.

The smoothing algorithm (Section 2.3) was applied to
the simulated PSF  and Pnt to obtain the smoothed PSFs

, respectively.

2.5. Biological samples

Jurkat cells transfected with an FcRn–green fluorescent pro-
tein (GFP) plasmid have been described previously (Ober et al.,
2001). Cells were grown in complete RPM1 medium contain-
ing 1 mg mL−1 geneticin. For microscopy, cells were washed
twice by centrifugation for 5 min (5 °C and 1500 rpm)
with cold Dulbeco’s phosphate-buffered saline (DPBS) (Bio-
Whittaker, Walkersville, MD, U.S.A.). Cells were fixed for 15
min with 3% paraformaldehyde (PFA) (Electron Microscopy
Sciences, Fort Washington, PA, U.S.A.). The cells were washed
twice with DPBS and allowed to settle on polylysine-treated
cover-slips (No. 1.5) (Fisher Scientific, Allentown, PA, U.S.A.).
Cells were mounted on slides using Prolong (P7481, Molecular
Probes).

2.6. Simulated image sets

A simulated object Os consisting of  four balls (one of  300 nm
radius and three of  200 nm radius) was generated using an
analytical description of  the ball in the frequency domain
(van Vliet, 1993):

w1, w2, w3 ∈ �, where R is the radius of  the ball. To avoid
Gibbs effects the data array of  the object was convolved with a
3D Gaussian filter with standard deviation of  1. The image set
of  the simulated object consists of  80 2D frames (images) each
being a 148 × 148-pixel array. The sampling distances of  the
simulated data in the object space were assumed to be 67 nm
along the lateral axes and 100 nm along the optical axis.
Following the convention described in Section 2.3 the second
index k2 of  Os corresponds to the optical axis, i.e. the z axis.
Therefore, the data array Os has 148 × 80 × 148 data points.

In the noise-free case the ideal image set Imid was obtained as
the sum of  the background bIm of  3350 and the result of  the con-
volution between the data array Os and the PSF Pid, i.e. Imid = Os * Pid

+ bIm, where * denotes the convolution and the PSF Pid was obtained
as 

, k1 = 1, ... , 128, k2 = 1, ... , 43, k3 = 1, ... , 128 with bP =
3350. A simulated image set was obtained by first defining
µIm(k1, k2, k3) = c(Imid(k1, k2, k3) − boffset), k1 = 1, ... , 148, k2 = 1, ... ,
80, k3 = 1, ... , 148, where the offset boffset was set to be 3050
counts. Then the photon count number CIm(k1, k2, k3) of  the (k1,
k2, k3) pixel was simulated as a Poisson random variable with
mean µIm(k1, k2, k3). Finally, the simulated image set was
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obtained as Imn(k1, k2, k3) = CIm(k1, k2, k3)/c + boffset, k1 = 1, ... ,
148, k2 = 1, ... , 80, k3 = 1, ... , 148.

2.7. Image restoration algorithms

Two image deconvolution algorithms were used: the accelerated
Richardson–Lucy algorithm and the regularized least-squares
algorithm. To use both algorithms estimated background
levels were subtracted from the PSFs. For the accelerated
Richardson–Lucy algorithm, negative pixel values in the
resulting PSFs were replaced by zeros. The PSFs were then
normalized such that the sum of  all data points in each result-
ing PSF is one. For the accelerated Richardson–Lucy algorithm

initial estimates in the iteration were taken as the image sets
with background estimate subtracted.

3. Noise suppression of  PSFs

In this section we apply the smoothing algorithm (Section 2.3
and Appendix) to reduce noise and randomness levels in
experimental and simulated PSFs.

3.1. Smoothing of  an experimental point spread function

To demonstrate the use of  the proposed algorithm the acquired
PSF Pexp (see Section 2.2) was smoothed. Figure 1 shows

Fig. 1. Comparison of  the experimental PSF Pexp (A1, B1) and its smoothed estimate , rs1 = {120, 120; 49, 72, 49} (A2, B2) calculated via the noise
suppression algorithm (Appendix). A1, A2 and A3 show cross-sections in the x–y plane at the focal level, the 22nd frame (Pexp(k1, 22, k3), k1, k3 = 1, ... , 128)
of  the experimental PSF, the 22nd frame ( (k1, 22, k3), k1, k3 = 1, ... , 128) of  the estimate and their difference, respectively. B1, B2 and B3 show cross-
sections in the x–z plane, the cross-section Pexp(64, k2, k3), k2 = 1, ... , 43, k3 = 1, ... , 128, the cross-section (64, k2, k3), k2 = 1, ... , 43, k3 = 1, ... , 128, and
their difference, respectively. The coordinate system shown in the plots is such that the y-axis (x-axis, z-axis/optical axis) coincides with the first (third,
second) component of  the PSFs Pexp and , respectively.

Pexp
rs1

Pexp
rs1

Pexp
rs1

Pexp
rs1
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cross-sections of  the acquired PSF Pexp. As described in Section
2.3, we smooth the PSF Pexp by excluding small singular
values of  the five singular value decompositions used in the
algorithm. The key question is how to determine the number
of  the retained singular values in each singular value decom-
position in order to generate an estimate of  the experimental
PSF that is smooth enough for its use in, for example, deconvo-
lution algorithms, but still exhibits the important features of
the PSF.

As an example we will show how to determine the number
of  the retained singular values in the first singular value
decomposition in detail (see Step 3 in the Algorithm). The
same approach can be used to determine the numbers of  the
retained singular values of  the other singular value decompo-
sitions. Figure 2.A1 shows the singular values of  the first
singular value decomposition used in the algorithm. We
observe that the sizes of  the singular values vary significantly.
Only a few singular values are of  significant size, while the
remaining singular values are relatively small. To evaluate the
importance of  each singular value in the first singular value
decomposition in the approximation, we generate smoothed
estimates of  Pexp for different numbers of  the retained singular
values in the first singular value decomposition. The numbers
of  the retained singular values in the other singular value
decompositions are kept to a maximum. To reduce the compu-
tational complexity it is also possible to use relatively large
numbers of  singular values in these singular value decomposi-
tions, if  these numbers are large enough to guarantee that no
significant approximation takes place.

Then we calculate the root-mean-square errors between
the corresponding smoothed estimates and Pexp and plot
them in Fig. 2.B1. For two 3D sequences P(k1, k2, k3), P(k1, k2, k3)
∈ �, ki = 1, 2, ... , Ni, i = 1, 2, 3, the root-mean-square error is
defined by

As the number of  the retained singular values decreases, the
root-mean-square error increases gradually because more
noise components are suppressed. When the number of  the
retained singular values is six or less, the root-mean-square
error increases rapidly. That implies the main features of  the
experimental PSF are severely distorted in the approximation
due to the loss of  dominant singular values. There is no precise
criterion for how many singular values should be retained as
this is essentially a trade-off  between smoothing on the one
hand and accuracy on the other hand. In this particular case
we found that retaining the first eight singular values appears
to be a good compromise.

Figure 2.A2, A3, A4 and A5 show the singular values of
the other singular value decompositions used in the algo-
rithm, when eight singular values are retained in the first and
second singular value decompositions. We observe that the

singular values of  the last three singular value decompositions
change much more slowly than the singular values of  the first
two singular value decompositions, because the noise compo-
nents in the experimental PSF have already been largely
suppressed in the first two singular value decompositions.
Therefore, more singular values are expected to be retained in
the last three singular value decompositions. By following the
analogous procedure to that above we decided to retain 8, 80,
280 and 80 singular values of  the second, third, fourth and
fifth singular value decompositions, respectively.

In this case, the total numbers of  singular values for each
singular value decomposition were 128, 128, 129, 352 and
129 and we discarded 120, 120, 49, 72 and 49 singular val-
ues in these five singular value decompositions. Following the
notation introduced in Section 2.3 the smoothed PSF is
denoted as , where the superscript rs1 denotes the num-
bers of  discarded singular values in the five singular value
decompositions, i.e. rs1 = {120, 120; 49, 72, 49}.

Figure 1 shows cross-sections of  the smoothed PSF . The
cross-sections appear to be fairly smooth and the difference
between the smoothed PSF  and the experimental PSF Pexp

appears as random noise. It seems that the random components
and noise in the experimental PSF are suppressed effectively.
Based on the relative uniformity of  the difference between the
experimental PSF and its smoothed version it appears that no
significant artefacts were introduced during the smoothing
procedure.

However, in the smoothed PSF ripples of  very low amplitude
can be seen in the cross-sections (Fig. 1.A2 and B2) extending
from the main peak of  the PSF to the boundaries of  the cropped
images parallel to the image axes. The level of  these ripples is
well below the level of  the noise and the random components
in the experimental PSF, with a maximum of  about 80 in the
16-bit display units. This corresponds to a maximum error of
about 16 photons, based on the manufacturer’s specifications
for our camera.

The experimental PSF Pexp has a relatively low signal level.
We chose such an experimental PSF to illustrate that the algo-
rithm can perform well in the presence of  high variance of  the
random components in the data. To evaluate the algorithm for
an experimental PSF with higher signal level we imaged a
200-nm bead and acquired the experimental PSF Pexp200 (see
Section 2.2 and Fig. 3.A1 and B1).

Using the same approach as above we obtained a smoothed
estimate  whose cross-sections are shown in Fig. 3.A2,
B2. We retained 14, 16, 85, 450 and 85 singular values for
the five singular value decompositions. The total numbers of
singular values for each singular value decomposition were
128, 128, 129, 616 and 129 in this case. As part of  the
approximation step we discarded 114, 112, 44, 166 and 44
singular values in the five singular value decompositions, i.e.
rs2 = {114, 112; 44, 166, 44}. In this case, more singular val-
ues are retained in the first two singular value decompositions
because fewer singular values are corrupted due to the low
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Fig. 2. The singular values of  the five singular value decompositions and their importance in the approximation. A1, A2, A3, A4 and A5 show the
singular values of  the first, section, third, fourth and fifth singular value decompositions, respectively, when eight singular values are retained in the first
and second singular value decompositions. B1, B2, B3, B4 and B5 show the root-mean-square errors between the experimental PSF Pexp (Fig. 1) and the
smoothed PSFs obtained by varying the numbers of  the retained singular values in the first, second, third, fourth or fifth singular value decomposition,
respectively, while keeping the same numbers of  the retained singular values in the other singular value decompositions (see Section 3.1 for details).
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noise level in contrast to the PSF Pexp that has much lower
signal level. As in the earlier analysis the difference between
the experimental PSF and its smoothed version indicates that
the smoothing did not introduce significant distortions. The
ripples that could be seen for the low signal are hardly visible
in the smoothed version for this PSF (Fig. 3). Zooming into the
plots (data not shown) they are, however, revealed at an aver-
age level of  90 counts in the 16-bit display units. This shows
that the ripples do not completely disappear with the higher
signal level but their sizes become much lower is comparison
with the signal level.

3.2. Smoothing of  PSFs with simulated random components

In the previous section we applied the algorithm to the experi-
mental PSF Pexp and obtained a smoothed estimate . The

plots of  the differences between the experimental PSF and its
smoothed version show no appreciable distortions. To be able
to assess more precisely the performance of  the smoothing
algorithm we also investigated its behaviour for simulated
data, because then we have the possibility to compare the
results of  the smoothing process with the deterministic PSFs
that we used to generate the simulated PSFs.

We re-introduced randomness to the smoothed estimate
 to obtain a simulated PSF  by simulating a Poisson

distribution for each pixel (see Section 2.4). This simulated
PSF was then processed again with our smoothing algorithm
to investigate its effectiveness by comparing the resulting PSF

 with the PSF .
It is instructive to see the effects of  the randomness intro-

duced to  on the singular values of  the five singular value
decompositions that are at the core of  the algorithm when it is

Fig. 3. Comparison of  the experimental PSF Pexp200 (A1, B1) and its smoothed estimate , rs2 = {114, 112; 44, 166, 44} (A2, B2) calculated via the
noise suppression algorithm (Appendix). A1, A2 and A3 show cross-sections in the x–y plane at the focal level, the 22nd frame (Pexp200(k1, 22, k3), k1, k3 = 1,
... , 128), of  the experimental PSF, the 22nd frame ( (k1, 22, k3), k1, k3 = 1, ... , 128) of  the estimate and their difference, respectively, B1, B2 and B3
show cross-sections in the x–z plane, the cross-section Pexp200(64, k2, k3), k2 = 1, ... , 43, k3 = 1, ... , 128, the cross-section (64, k2, k3), k2 = 1, ... , 43,
k3 = 1, ... , 128, and their difference, respectively. The coordinate system is defined as in Fig. 1.
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applied to the randomized version of  , i.e.  with λ = 1
(Fig. 4.A1 and A3). From Fig. 5.A1 and A2 we observe that
the singular values of  the first two singular value decomposi-
tions for the PSF  are different from those for the data array

, especially for the small singular values, because the small
singular values are corrupted by the randomness introduced
in the PSF function . From Fig. 5.A3, A4 and A5 the differ-
ence between the singular values of  the last three singular
value decompositions is not as significant as that shown in Fig.
5.A1 and A2 because the randomness in  is partially sup-
pressed by the approximations that take place in the first and
second singular value decompositions.

Using the same approach as that described in Section 3.1,
we decided to retain 9, 9, 100, 300 and 100 singular values in
the first, second, third, fourth and fifth singular value decom-
positions, respectively. In this case, the total numbers of  singu-
lar values of  each singular value decomposition were 128,
128, 129, 396 and 129. Therefore, we discarded 119, 119,
29, 96 and 29 singular values in the five singular value
decompositions to obtain the smoothed PSF  with trunca-
tion parameter rse = {119, 119; 29, 96, 29}.

Cross-sections of  the estimate are shown in Fig. 4.B1
and B3. It appears that the randomness in the PSF  is effec-
tively suppressed. Difference plots (Fig. 4.B2 and B4) between
the deterministic PSF of  the simulation, i.e. , and the
smoothed PSF  show that the smoothing algorithm can
recover the starting PSF quite well. The only potential problem
is the small ripples that were seen earlier. Based on the scales
used here, the ripples have sizes that correspond to a maxi-
mum of  about 12 photons per pixel, which is low in compari-
son with the noise level.

We also smoothed the PSF  via a standard method by
applying a Gaussian filter with standard deviation one (Chen
et al., 1995; van Kempen & van Vliet, 1997). Comparing 
(Fig. 4.B1, B2, B3, B4) with the result  of  the application of
the Gaussian filter (Fig. 4.C1, C2, C3, C4), it becomes clear
that using the Gaussian filter results in much larger errors
than using the new smoothing algorithm. This is especially
the case at the peak of  the PSF along the optical axis. For
example, the maximum error of  the smoothed PSF  is
1330, which is about eight times the maximum error of  168
introduced by the new smoothing algorithm. In addition, the
root-mean-square error (11) introduced by the use of  the
Gaussian filter is more than twice the root-mean-square error
(4.5) introduced by the new smoothing algorithm.

It is instructive to examine whether the proposed smooth-
ing algorithm can also be applied to smooth the randomness of
a simulated PSF whose intensity is given by a theoretical PSF.
To this end a theoretical 3D PSF was simulated using Li &
Wolf ’s (1984) model, shown in Fig. 6.A1 and A2. The simu-
lated acquired PSF Pnt was then simulated by simulating a spa-
tial Poisson process whose intensity is given by the theoretical
PSF (see Section 2.4 and Fig. 6.B1 and B2). The smoothed PSF

 was obtained with the reduction parameter rst= {121,

120; 29, 18, 29} and its cross-sections are shown in Fig. 6.C1
and C2. Figure 6 shows that the smoothing process is rela-
tively effective, as can be seen by examining the residuals. It
appears that the algorithm performs equally well on experi-
mental PSFs as on theoretical ones.

To study the behaviour of  the smoothing algorithm for dif-
ferent levels of  ‘randomness’ in the experimental PSFs, we also
simulated PSFs based on  with different values for the vari-
ance of  the Poisson statistics. This was done by varying the
parameter λ that linearly scales the intensity of  the Poisson
random variables (Section 2.4). The analysis was carried out
analogously to the simulation that was discussed above.

We introduce a randomness factor α to measure quantita-
tively the randomness of  the simulated PSFs as

Note that the randomness factor α is calculated in the same
way as the signal-to-noise ratio used in van Kempen (1998).
We prefer to use the term randomness factor instead of  signal-
to-noise ratio because we want to distinguish the randomness of
the data resulting from a Poisson statistics of  the photon emission
process from noise that is extraneously added to the data through,
for example, the measurement process in the CCD chip.

The smoothing algorithm is applied to each simulated PSF
. When the smoothed estimates of   are calculated, the

numbers of  the retained singular values for each smoothed
estimate are determined separately, as discussed in Section
3.1. The root-mean-square error (RMSE1) between the PSFs

 and , and the root-mean-square error (RMSE2) between
the smoothed estimates and  are calculated and summa-
rized in Table 1. It is observed from Table 1 that the randomness
(indicated by RMSE1) increases as the randomness factor α
decreases as λ gets smaller. When the randomness increases,
more singular values are corrupted and fewer singular values
are retained to calculate the smoothed PSF. As a result, only
the rough features of   can be recovered and we obtain a
corresponding increase in RMSE2. However, the ratio of  RMSE2
over RMSE1 is small and decreases as the level of  randomness
increases. This suggests that the algorithm suppresses ran-
domness effectively, even when the pixels of  simulated PSF
have large variances.
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Table 1. The effectiveness of  the algorithm to smooth PSFs with different 
levels of  simulated random components. RMSE1 is the root-mean-square 
error between  and the data array . RMSE2 is the root-mean-
square error between the smoothed PSFs and the data array .
 

λ 1 3 6 9
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Fig. 4. Comparison of  the smoothed estimates , rs = {119, 119; 29, 96, 29} (B1, B2, B3, B4) and (C1, C2, C3, C4) of  the PSF (A1, A2, A3, A4),
discussed in Section 3.2. The estimate  is obtained using a Gaussian filter with standard deviation one while the estimate  is calculated via the noise
suppression algorithm (Appendix). A1 and A2 show cross-sections in the x–y plane at the focal level, the 22nd frame ( (k1, 22, k3), k1, k3 = 1, ... , 128) of
the simulated PSF and the difference between this frame and the 22nd frame of   (see Section 2.4 and Fig. 1). A3 and A4 show cross-sections in the
x–z plane, the cross-section (64, k2, k3), k2 = 1, ... , 43, k3 = 1, ... , 128 and the difference between it and the cross-section (64, k2, k3), k2 = 1, ... , 43,
k3 = 1, ... , 128, respectively. B1 and B2 show frames in the x–y plane at the focal level, the 22nd frame ( (k1, 22, k3), k1, k3 = 1, ... , 128) of  the smoothed
estimate and its error, respectively. B3 and B4 show the cross-sections in the x–z plane (64, k2, k3), k2 = 1, ... , 43, k3 = 1, ... , 128, and its error,
respectively. C1 and C2 show frames in the x–y plane at the focal level, the 22nd frame ( (k1, 22, k3), k1, k3 = 1, ... , 128) of  the smoothed estimate and its
error, respectively. C3 and C4 show the cross-sections in the x–z plane (64, k2, k3), k2 = 1, ... , 43, k3 = 1, ... , 128, and its error, respectively. The coordinate
system is defined as in Fig. 1.
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Fig. 5. Comparison of  the singular values of  the five singular value decompositions (A1, A2, A3, A4, A5) used in the noise suppression algorithm
(Appendix), when the algorithm is applied to the noisy simulated PSF  and its deterministic version, the data array . The crosses (×) correspond to
the PSF , while the circles (O) correspond to the data array .
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4. Enhanced performance of  deconvolution algorithms

In this section we investigate the influence of  the smoothing of
the PSF on the performance of  the accelerated Richardson–
Lucy algorithm and the regularized least-squares algorithm.

4.1. Simulated data

A 3D image set of  four balls was simulated as discussed in
Section 2.6. This image set, shown in Fig. 7, was then decon-
volved using the accelerated Richardson–Lucy algorithm and
the regularized least-squares algorithm with both the noisy
PSF  and its smoothed version .

Figure 8 shows the root-mean-square errors between the
original object and the recovered objects for different numbers
of  iterations in the accelerated Richardson–Lucy algorithm.
When the PSF  is used the best recovered object in terms of
the root-mean-square error is obtained after 155 iterations.
The corresponding root-mean-square error is 1306, which is
about three times the error of  578 for the recovered object
after 320 iterations, when the smoothed PSF  (Section
3.2) is used. From Fig. 8 we also observe that as the number of
iterations increases the recovered object diverges away from
the original object in both cases, but the pace of  divergence is
much slower when the smoothed PSF is used. For example, the
root-mean-square error between the recovered object using
the smoothed PSF after 1200 iterations and the original object
is 667, which is about one-half  of  1306 for the best recovered
object using the non-smoothed PSF .

This analysis shows that the performance of  the accelerated
Richardson–Lucy algorithm is very sensitive to the amount of
randomness in the PSF. Moreover, the recovered objects are
improved significantly by using the smoothed PSF, as shown in
Fig. 9.A1, A2, B1 and B2.

Figure 9.C1 and C2 show cross-sections of  the recovered
object when the PSF  is used in the regularized least-
squares algorithm with the regularization term γ = 5 × 10−6.
The recovered object appears very noisy, especially at the
background area. To suppress this noisy reconstruction a larger
regularization term is often used at the cost of  losing more
details of  the recovered object. If  we replace the PSF  by its
smoothed estimate  in the regularized least-squares algo-
rithm and keep the regularization parameter γ unchanged,
the noisy appearance of  the background area of  the recovered
object (Fig. 9.D1 and D2) is significantly reduced and the
recovered balls become smoother. The root-mean-square
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noise suppression algorithm. A1, B1 and C1 show cross-sections in
the x–y plane at the focal level, the 22nd frame (Pdt(k1, 22, k3), k1, k3 = 1, ... ,
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error between the recovered object and the simulated object is
4505, which is significantly smaller than that of  6367 for the
recovered object using the non-smoothed PSF .

Therefore as for the accelerated Richardson–Lucy algo-
rithm the use of  a smoothed PSF significantly improves the
performance of  the regularized least-squares algorithm.

Noise suppression in deconvolution algorithms has been
discussed in the literature in some detail (e.g. Verveer et al.,
1999). It is, however, important to note that this literature
typically addresses the problem of  noise suppression that origi-
nates from noisy images rather than from non-smooth PSFs.

4.2. Experimental data

In this section, we deconvolve the image set Imc (Fig. 10.A1
and A2) of  a Jurkat cell transfected with FcRn-GFP. The MHC
Class I related receptor, FcRn, plays a role in the transfer of
gammaglobulin (IgG) from mother to young and also regu-
lates the serum levels of  IgG (reviewed in Ghetie & Ward,
2000). We compare the recovered objects calculated using the
experimental PSF Pexp (Fig. 1) and the smoothed PSF  (Fig.
1) in the accelerated Richardson–Lucy algorithm and the
regularized least-squares algorithm.

Fig. 7. Cross-sections of  the simulated object Os (A1,
A2) and the simulated image set Imn (B1, B2),
discussed in Section 2.6. A1 and B1 show cross-
sections in the x–y plane, the 40th frame (Os(k1, 40,
k3), k1, k3 = 1, ... , 148) of  the simulated object and the
40th frame (Imn(k1, 40, k3), k1, k3 = 1, ... , 148) of  the
simulated image set, respectively. A2 and B2 show
cross-sections in the x–z plane, the cross-section
Os(82, k2, k3), k2 = 1, ... , 80, k3 = 1, ... , 148 and the
cross-section Imn(82, k2, k3), k2 = 1, ... , 80, k3 = 1, ... ,
148, respectively. The coordinate system is defined as
in Fig. 1.

Fig. 8. Root-mean-square errors of  the recovered
objects calculated from the simulated image set Imn

(Fig. 7) via the accelerated Richardson–Lucy algorithm
for different numbers of  iterations. (A) Triangles (�)
represent the root-mean-square errors between the
recovered objects using the PSF  (Fig. 4.A1, A3) and
the original object Os (Fig. 7). (B) Circles (�) represent
the root-mean-square errors between the recovered
objects using the smoothed PSF  (Fig. 4.B1, B3)
and the original object.
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Figure 10.B1, B2, C1 and C2 show cross-sections of  the
recovered objects using the experimental and smoothed PSF
Pexp and , respectively, in the accelerated Richardson–Lucy
algorithm after 200 iterations. We observe that the recovered
objects differ significantly. More details can be seen in the
recovered object using the smoothed PSF.

Figure 10.D1 and D2 show cross-sections of  the recovered
object calculated using the experimental PSF Pexp in the regu-
larized least-squares algorithm, when the regularization term
γ equals 5 × 10−5. The recovered object has a very noisy
appearance. When the smoothed PSF  is used with the
same regularization term γ the noisy appearance is much
reduced, although it is still present in the deconvolved image
set (Fig. 10.E1 and E2).

5. Conclusions

In this paper we proposed to apply a novel algorithm to the
smoothing of  experimental PSFs. The analysis of  both simulated
data and experimental data has shown that this algorithm is
capable of  effectively suppressing randomness and noise in
experimental PSFs. The algorithm performs favourably in
comparison with the use of  a Gaussian filter because it does
not lead to the large errors at the peak of  the PSF that are
characteristic of  algorithms that are based on averaging of
neighbouring pixels.

We have also used the smoothed PSFs in the accelerated
Richardson–Lucy algorithm and the regularized least-squares
algorithm with both simulated data and experimental data.
For the analysis of  the simulated data, we used the root-mean-
square error criterion to compare the results of  the deconvolu-
tion. The recovered objects using the smoothed PSF have
much smaller root-mean-square errors for both algorithms.
In addition, for the accelerated Richardson–Lucy algorithm, if
the smoothed PSF is used the recovered object diverges very
slowly as the number of  the iterations increases. For the
regularized least-squares algorithm the recovered object has a
less noisy appearance if  the smoothed PSF is used.

For experimental data the use of  the smoothed PSF reveals
more details than the use of  the non-smoothed PSF in the
accelerated Richardson–Lucy algorithm. For the regularized
least-squares algorithm the recovered object has much less
background noise when the smoothed PSF is used.
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Fig. 9. Cross-sections of  the recovered objects calculated from the
simulated image set Imn (Fig. 7) using the accelerated Richardson–Lucy
algorithm (A1, A2, B1, B2) and the regularized least-squares algorithm
(C1, C2, D1, D2). A1 and A2 show the 40th frame of  the recovered object
in the x–y plane and the cross-section of  the recovered object in the x–z
plane, corresponding to the cross-section Imn(82, k2, k3), k2 = 1, ... , 80, k3

= 1, ... , 148, respectively, when the PSF  (Fig. 4.A1, A3) is used and
155 iterations are performed. B1 and B2 show the corresponding frames,
when the smoothed PSF  (Fig. 4.B1, B3) is used and 320 iterations
are performed. C1 and C2 show the corresponding frames, when the PSF

 is used and the regularization term is set to γ = 5 × 10−6. D1 and D2
show the corresponding frames, when the smoothed PSF  and the
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Fig. 10. Comparison of  the recovered objects calculated from
the image set Imc (A1, A2) of  a Jurkat cell transfected with
FcRn-GFP (Section 4.2) via the accelerated Richardson–Lucy
algorithm (B1, B2, C1, C2) and the regularized least-squares
algorithm (D1, D2, E1, E2). The 3D image set Imc consists of  58
images each being a 280 × 280-pixel array. A1 and A2 show
the 18th frame (Imc(k1, 18, k3), k1 = 1, ... , 280, k3 = 1, ... , 280) of
the image set in the x–y plane and the cross-section Imc(140,
k2, k3), k2 = 1, ... , 58, k3 = 1, ... , 280 in the x–z plane. B1 and B2
show the corresponding cross-sections, when the PSF Pexp

(Fig. 1.A1, B1) is used and 200 iterations are performed. C1
and C2 show the corresponding cross-sections, when the
smoothed PSF  (Fig. 1.A2, B2) is used and 200 iterations
are carried out. D1 and D2 show the corresponding cross-
sections, when Pexp is used and the regularization term is set to
γ = 5 × 10−5. E1 and E2 show the corresponding cross-sections,
when  and the same regularization term are used. Three-
dimensional plots are used in D1, D2, E1 and E2 to show the
background noise. The coordinate system is defined as in Fig. 1.
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Appendix

Algorithm

Let P(k1, k2, k3), ki = 1, 2, ... , Ni, i = 1, 2, 3, represent a 3D data array.
1. Subtract an estimated background level b (e.g. the mean of  the

data points near the boundary of  the data array P) from data
array P, and define Φ(k1, k2, k3) := P(k1, k2, k3) − b, ki = 1, 2, ... ,
N i, i  = 1, 2, 3 (if  no approximation is carried out, take b = 0).

2. Arrange the entries of  the resulting data array Φ to form a
matrix Q3 as

3. (Approximation step 1) Decompose Q3 via the singular value
decomposition* as Q3 = U1Σ1V1. Partition Σ1 = diag($1, %1),
U1 = [U1, U1], and

conformally, where . Define 
, i = 1, ... , N1, such that

(for a diagonal matrix D = diag(d1, d2, ... , dn), di ≥ 0, i = 1,
2, ... , n, we define ) and define

, i = 1, ... , N2N3, such that 
. Note that r1 denotes the number of  discarded sin-

gular values in this step. *A singular value decomposition
of  a 2D M × L matrix Q is defined by the factorization Q =
UΣV, where U, V are matrices of  sizes M-by-K and K-by-L,
respectively, such that U*U = I and VV* = I, in which I
denotes an identity matrix, and

with singular values σi > 0, i = 1, ... , K.
4. Arrange  to form Q2 as

Q3
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where .
5. (Approximation step 2) Decompose Q2 via the singular

value decomposition as Q2 = U2Σ2V2. Partition Σ2 = diag($2,
%2), U2 = [U2, U2], and

conformally, where  and . Define 
, i = 1, ... , N2, such that

and define , i = 1, ... , N3, such that 
. Note that r2 denotes the

number of  discarded singular values in this step.
6. (Approximation steps 3–5) Calculate the realizations

 of
, respectively, via the realization step (see

below) for some s1, s2, s3 ≥ 0, where , i = 1, ... ,
N1, , i = 1, ... , N2, and , i = 1, ... ,
N3, from step 3 and step 5. Note that s1, s2 and s3 are the
numbers of  singular values discarded in the corresponding
realization step.

7. Calculate the estimate  as

(1)

8. Add the estimated background level b to the estimation
 such that

(2)

Realization step

Let P(i) ∈ �p×m, i = 1, 2, ... , N, be a finite 1D sequence.
1. Construct the (N + 1)p × (N + 1)m Hankel matrix

where 0 denotes a block of  zeros of  size p × m.
2. Let H = UΣV be a singular value decomposition.
3. Partition Σ = diag(Σ1, Σ2), Σ1 ∈ �n×n, Σ2 ∈ �s×s, U = [U1, U2],

U1 ∈ �(N+1)p×n, U2 ∈ �(N+1)p×s, and

V1 ∈ �n×(N+1)m, V2 ∈ �s×(N+1)m, conformally. We also allow for
the trivial partition in which the second components are
empty, i.e. s = 0.

4. Let Cs ∈ �p×n be the first p rows of  .
5. Let Bs ∈ �n×m be the first m columns of  .
6. Let

where  for all t1 = 1, ... , N + 1, and define

Then let .
Note that the symbols r1, r2, s1, s2 and s3 denote the num-

bers of  dropped singular values in each singular value decom-
position. When r1 = r2 = s1 = s2 = s3 = 0 we have P = P0,0;0,0,0, i.e. a
perfect reconstruction (Ober et al., 2005). A detailed discus-
sion of  the algorithm is available in Ober et al. (2005). For the
sake of  simplifying the notation, we write , with
rs := {r1, r2; s1, s2, s3}.
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