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ABSTRACT

Single molecule fluorescence microscopy is a relatively novel technique that is used, for example, to study the
behavior of individual biomolecules in cells. Since a single molecule can move in all three dimensions in a
cellular environment, the three dimensional tracking of single molecules can provide valuable insights into cellular
processes. It is therefore of importance to know the accuracy with which the location of a single molecule can
be determined with a fluorescence microscope. We study this performance limit of a fluorescence microscope
from a statistical point of view by deriving the Fisher information matrix for the estimation problem of the
location of the single molecule. In this way we obtain a lower bound on the standard deviation of any reasonable
(unbiased) estimation method of the location parameters. This lower bound provides a fundamental limit on the
accuracy with which a single molecule can be localized using a fluorescence microscope and is given in terms of
such quantities as the photon detection rate of the single molecule, the acquisition time, the numerical aperture
of the objective lens etc. We also present results that show how factors such as noise sources, detector size
and pixelation deteriorate the fundamental limit of the localization accuracy. The present results can be used
to evaluate and optimize experimental setups in order to carry out three dimensional single molecule tracking
experiments and provide guidelines for experimental design.

Keywords: Single molecule microscopy, parameter estimation theory, Fisher information matrix, 3D single
molecule tracking, point spread function

1. INTRODUCTION

Single molecule microscopy is a technique that can be used to study the behavior of individual biomolecules
in biological specimen such as cells. This technique provides information that is seldom available through bulk
studies due to averaging effects.1, 2 Hence it holds the promise to provide new insights into biological processes.
One of the fundamental issues in single molecule data analysis concerns the accuracy with which the location
of a single molecule can be determined. This not only gives the level of accuracy that can be obtained in an
experimental setup, but it also helps in determining the nature and type of studies that can be carried out. Since
the movement of a single molecule can be imaged in all three dimensions, for example, in a cellular environment,3

it is therefore important to determine the three dimensional localization accuracy of a single molecule that can
be attained in a given experimental setup.

In this paper, we use the tools of statistical estimation theory4, 5 to derive an analytical expression for the
fundamental limit to the three dimensional localization accuracy of a single molecule. We also derive expressions
that show how experimental factors such as pixelation and noise sources affect the fundamental limit. The novel
aspect of this apporach is that the limit of the localization accuracy for a given experimental condition cannot
be surpassed by any unbiased estimation technique that is used to determine the single molecule location from
the acquired data. In the past, there have been reports that have addressed the three dimensional localization

This research was supported in part by the National Institutes of Health (R01 AI50747).
Send correspondence to Raimund J. Ober; E-mail: ober@utdallas.edu.

Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III,
D. V. Nicolau, J. Enderlein, R. C. Leif, D. L. Farkas, R. Raghavachari, eds., Proc. of SPIE Vol. 5699

(SPIE, Bellingham, WA, 2005) · 1605-7422/05/$15 · doi: 10.1117/12.587878

426



accuracy problem of a single molecule by analyzing the performance of a specific estimation procedure.6–8 Hence
the scope of these reports is limited to the particular estimation technique used. In constrast, our approach
provides a performance limit to determining the location of a single molecule. Recently, a limit to the localization
accuracy of the z coordinate of a point source was reported9 in the context of axial tracking of a fluorescent
nano-particle. This report assumed that the x and y coordinates of the point source are known. Further, the
report considered a pixelated detector and evaluated the limit of the localization accuracy for different values
of signal to noise ratio, which was assumed to be the same for all values of defocus distance. In the present
work, we assume that all the three coordinates of the single molecule are unknown, and consider a pixelated
and a non-pixelated detector. We note that the results for the non-pixelated detector provide insight into how
pixelation affects the limit of the localization accuracy. Moreover, we consider a detailed noise model for the
acquired data by taking into account measurement and scattering noise, which, for example, arise due to the
readout process in a CCD camera10 and autofluorescence from the sample, respectively. We note that the
present results are extensions of our recently published results11 that address the problem of the two dimensional
localization accuracy of a single molecule.

2. FUNDAMENTAL LIMIT TO THE LOCALIZATION ACCURACY

We consider a basic optical setup in which a single molecule located in the specimen space is imaged by the
microscope lens system, and the image of the single molecule is captured by a detector that is located in the
image space (see Fig. 1). Here, the detector collects photons from the single molecule during a fixed time interval
[t0, t]. Since the photon emission process is inherently a random phenomenon,12 the acquired image is stochastic
in nature. By using a specific estimation technique the 3D location of the single molecule can be determined from
the acquired image. In an estimation problem it is important to know whether the estimation technique used to
determine the unknown parameter comes close to a performance limit. This can be determined by calculating
the Fisher information matrix4, 5 for the underlying stochastic process that describes the acquired data. The
Fisher information matrix plays a crucial role in evaluating the performance of estimation algorithms. A classical
result of estimation theory, namely the Cramer-Rao inequality,4, 5 states that the (co)variance (matrix) of any
unbiased estimator θ̂ of an unknown (vector) parameter θ is bounded from below by the inverse of the Fisher
information matrix I(θ), i.e.,

Cov(θ̂) ≥ I−1(θ).

Since the accuracy of an estimator is typically given in terms of the standard deviation of its estimates, the
square root of the inverse Fisher information matrix provides a lower bound to the best possible accuracy. In the
present context this implies that for any unbiased estimator of the single molecule location, the square root of the
inverse Fisher information matrix provides a limit to the accuracy with which the location of a single molecule
can be determined. We note that the Fisher information matrix is independent of estimation techniques used to
determine the unknown parameter and only depends on the statistical nature of the acquired data.

Due to its stochastic nature, the acquired data is modeled as a space-time random process.13 The temporal
part describes the time points of the detected photons and is modeled as a temporal Poisson process with intensity
function Λθ. The spatial part describes the spatial coordinates of the arrival location of the detected photons
and is modeled as a family of independent and identically distributed random variables with probability density
given by

fθ(r) :=
1

M2
qz0

( x

M
− x0,

y

M
− y0

)
, r = (x, y) ∈ R

2, θ ∈ Θ, (1)

where Θ denotes the parameter space, M denotes the lateral magnification of the microscope lens system,
(x0, y0, z0) denotes the 3D location of the single molecule in the object space and qz0 denotes the image function
of a single molecule. The image function qz0 describes the image of a single molecule on the detector plane at
unit lateral magnification when the single molecule is located on the z axis in the object space (see Fig. 1). We
assume that the probability density function fθ satisfies certain regularity conditions4 that are necessary for the
calculation of the Fisher information matrix.
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According to scalar diffraction theory, the image of a single molecule that is located at (0, 0, z0) in the object
space and imaged by a fluorescence microscope can be modeled as14–17

Iz0(x, y, zd) =

∣∣∣∣∣
C

zd

∫ 1

0

J0

(
kaρ

√
x2 + y2

zd

)
exp(jWz0(ρ))ρdρ

∣∣∣∣∣
2

, (2)

where (x, y) ∈ R
2 denotes an arbitrary point on the detector plane, zd denotes the axial distance of the detector

from the back focal plane of the microscope lens system, C is a constant with complex amplitude, k = 2π/λ, λ
denotes the wavelength of the detected photons, a denotes the radius of the limiting aperture of the microscope
projected onto the back focal plane of the lens system, J0 denotes the zeroth order Bessel function of the first
kind and Wz0(ρ) denotes the phase aberration term. We note that eq. 2 provides a general expression for several
3D point spread function models,14 which describe the image of a point-source/single-molecule and are based
on scalar diffraction theory.

Rewriting eq. 2 as an image function, the image of a single molecule is given by

qz0(x, y) =
1

Cz0

(
U2

z0
(x, y) + V 2

z0
(x, y)

)
, (x, y) ∈ R

2, z0 ∈ R, (3)

where

Uz0(x, y) :=
∫ 1

0

J0

(
kaρ

√
x2 + y2

zd

)
cos(Wz0(ρ))ρdρ, (x, y) ∈ R

2, z0 ∈ R,

Vz0(x, y) :=
∫ 1

0

J0

(
kaρ

√
x2 + y2

zd

)
sin(Wz0(ρ))ρdρ, (x, y) ∈ R

2, z0 ∈ R,

Cz0 =
∫

R
2
(U2

z0
(x, y) + V 2

z0
(x, y))dxdy, z0 ∈ R. (4)

The term Cz0 is the normalization constant, and the 1/Cz0 scaling in eq. 3 ensures that
∫
R

2 fθ(r)dr =
(1/M2)

∫
R

2 qz0

(
x
M − x0,

y
M − y0

)
dxdy = 1, θ ∈ Θ.

From eq. 3 we see that the image function qz0 is laterally symmetric for every z0 ∈ R, i.e., qz0(x, y) =
qz0(−x, y) = qz0(x,−y), (x, y) ∈ R

2, z0 ∈ R. By definition ∂fθ(r)/∂Λ0 = 0, r ∈ R
2, θ ∈ Θ and it can be easily

shown that ∂fθ(r)/∂x0 = ∂fθ(r)/∂x, ∂fθ(r)/∂y0 = ∂fθ(r)/∂y for r = (x, y) ∈ R
2, θ ∈ Θ. Here we assume that

∂Λθ(τ)/∂ζ0 = 0 for τ ≥ t0 and ζ0 ∈ {x0, y0, z0}. Further, we also assume that the partial derivative ∂qz0/∂z0

is laterally symmetric, i.e., ∂qz0(x.y)/∂z0 = ∂qz0(−x, y)/∂z0 = ∂qz0(x,−y)/∂z0, (x, y) ∈ R
2 and z0 ∈ R. This

assumption is typically satisfied for most 3D point spread function models14 that are based on scalar diffraction
theory. For the above conditions, the Fisher information matrix for the space-time random process that describes
the acquired image captured during the time interval [t0, t] is given by

I(θ) =




φθ(t)
∫
R

2
1

qz0 (x,y)

(
∂qz0 (x,y)

∂x

)2

dxdy 0 0 0

0 φθ(t)
∫
R

2
1

qz0 (x,y)

(
∂qz0 (x,y)

∂y

)2

dxdy 0 0

0 0 φθ(t)
∫
R

2
1

qz0 (x,y)

(
∂qz0 (x,y)

∂z0

)2

dxdy 0

0 0 0
∫ t

t0

1
Λθ(τ)

(
∂Λθ(τ)

∂Λ0

)2
dτ




, (5)

where

φθ(t) :=
∫ t

t0

Λθ(τ)dτ, τ ≥ t0, θ ∈ Θ. (6)

The detailed derivation of the above result has been omitted due to space limitations, but can be found in a
forthcoming publication.18 In deriving eq. 5, we have assumed that the unknown parameter vector is given by
θ = (x0, y0, z0,Λ0). Here, Λ0 denotes a scalar parameter that parameterizes the intensity function Λθ, which, for
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example, could be the photon detection rate of the single molecule. For the image function given in eq. 3, the
partial derivatives of qz0(x, y) with respect to x, y and z0 are given by

∂qz0(x, y)
∂ζ

=
2

Cz0

(
Uz0(x, y)

∂Uz0(x, y)
∂ζ

+ Vz0(x, y)
∂Vz0(x, y)

∂ζ

)
, (x, y) ∈ R

2, z0 ∈ R, ζ ∈ {x, y},

∂qz0(x, y)
∂z0

= −U2
z0

(x, y) + V 2
z0

(x, y)
C2

z0

∂Cz0

∂z0
+

2
Cz0

(
Uz0(x, y)

∂Uz0(x, y)
∂z0

+ Vz0(x, y)
∂Vz0(x, y)

∂z0

)
, (x, y) ∈ R

2, z0 ∈ R,

(7)
where

∂Uz0(x, y)
∂ζ

= − kaζ

zd

√
x2 + y2

∫ 1

0

J1

(
kaρ

√
x2 + y2

zd

)
cos(Wz0(ρ))ρ2dρ, (x, y) ∈ R

2, z0 ∈ R, ζ ∈ {x, y},

∂Vz0(x, y)
∂ζ

= − kaζ

zd

√
x2 + y2

∫ 1

0

J1

(
kaρ

√
x2 + y2

zd

)
sin(Wz0(ρ))ρ2dρ, (x, y) ∈ R

2, z0 ∈ R, ζ ∈ {x, y},

∂Uz0(x, y)
∂z0

= −
∫ 1

0

J0

(
kaρ

√
x2 + y2

zd

)
sin(Wz0(ρ))

∂Wz0(ρ)
∂z0

ρdρ, (x, y) ∈ R
2, z0 ∈ R,

∂Vz0(x, y)
∂z0

=
∫ 1

0

J0

(
kaρ

√
x2 + y2

zd

)
cos(Wz0(ρ))

∂Wz0(ρ)
∂z0

ρdρ, (x, y) ∈ R
2, z0 ∈ R,

∂Cz0

∂z0
= 2

∫

R
2

(
Uz0(x, y)

∂Uz0(x, y)
∂z0

+ Vz0(x, y)
∂Vz0(x, y)

∂z0

)
dxdy, z0 ∈ R.

Inverting the Fisher information matrix given in eq. 5 and taking the square root of the leading diagonal
elements, the fundamental limit to the 3D localization accuracy of the location coordinates (x0, y0, z0) of the
single molecule are given by

δ3d
x0

= δ3d
y0

=
1√

φθ(t)

[∫

R
2

1
qz0(x, y)

(
∂qz0(x, y)

∂x

)2

dxdy

]− 1
2

, (8)

δ3d
z0

=
1√

φθ(t)

[∫

R
2

1
qz0(x, y)

(
∂qz0(x, y)

∂z0

)2

dxdy

]− 1
2

, (9)

and the fundamental limit to the accuracy of Λ0 is given by

δ3d
Λ0

=

[∫ t

t0

1
Λθ(τ)

(
∂Λθ(τ)
∂Λ0

)2

dτ

]− 1
2

.

We refer to the above results as fundamental, since the model that is used to derive the above expressions does
not take into account deteriorating factors such as pixelation and noise sources. Moreover, the model is such
that all photons originating from the single molecule that reach the detector plane are detected by the detector.
Note that the expressions for the fundamental limit to the 3D localization accuracy that are given in eqs. 8 and
9 depend on the z coordinate of the single molecule z0, which we refer to as the defocus distance. As a special
case, consider the in-focus scenario where z0 is known and is equal to 0 (i.e., the plane containing the single
molecule coincides with the design focal plane; see Fig. 1). For this case, the image function given in eq. 3
reduces to the classical Airy profile that is given by q(x, y) := (J2

1 (α
√

x2 + y2)/(π(x2 + y2)), (x, y) ∈ R
2, where

α := (2πNA/λ) and NA denotes the numerical aperture of the objective lens. Substituting this in eq. 8, we
obtain the fundamental limit to the 2D localization accuracy of the single molecule that is given by

δ2d
x0

= δ2d
y0

=
1

α
√

φθ(t)
=

λ

2πNA
√

φθ(t)
, (10)
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which was reported elsewhere.11

We now illustrate the results derived in this section by considering the phase aberration term Wz0 to be

Wz0(ρ) :=
π(NA)2z0

noilλ
ρ2, ρ ∈ (0, 1), z0 ∈ R, (11)

where NA denotes the numerical aperture of the objective lens, and noil denotes the refractive index of the
immersion oil. The above expression for Wz0 describes the phase aberration that arises when the point source
is ‘out of focus’ with respect to the detector, and corresponds to the classical ‘Born and Wolf’ 3D point spread
function model.17 When analyzing data from single molecule experiments, the intensity function Λθ is typically
assumed to be a constant. Hence in the present context, the intensity function is given by Λθ(τ) := Λ0, τ ≥ t0,
where Λ0 denotes the photon detection rate of the single molecule.

Figure 2A shows the behavior of the fundamental limit of the 3D localization accuracy δ3d
x0

(δ3d
y0

) of the x0

(y0) coordinate as a function of the defocus distance z0. From the figure we see that at z0 = 0, δ3d
x0

coincides with
the 2D fundamental limit δ2d

x0
that is given by eq. 10. This is expected, since at zero defocus distance the image

of the single molecule that is given by eq. 2 reduces to the Airy profile. As the value of z0 increases (decreases),
the 3D fundamental limit δ3d

x0
deteriorates monotonically up to z0 = ±1000 nm. For defocus distances greater

(smaller) than 1000 nm (-1000 nm), δ3d
x0

deteriorates with an oscillatory behavior. Note that the behavior of δ3d
x0

is symmetric about z0 = 0. This is expected, since the image function qz0 corresponding to the phase aberration
term Wz0 given in eq. 11 is symmetric with respect to z0 = 0.

Figure 3A shows the behavior of the fundamental limit of the 3D localization accuracy δ3d
z0

of the z0 coordinate
as a function of z0. Unlike δ3d

x0
, the 3D fundamental limit δ3d

z0
becomes infinitely large as z0 approaches zero. From

eq. 9, we see that the term (∂qz0(x, y)/∂z0) appears in the denominator of the expression for the fundamental
limit δ3d

z0
. Further, for the phase aberration term Wz0 given in eq. 11, it can be shown that as z0 approaches 0,

(∂qz0(x, y)/∂z0) tends to 0 for every (x, y) ∈ R
2 (see eq. 7), thereby explaining the observed behavior of δ3d

z0
at

z0 = 0. As z0 increases (decreases), δ3d
z0

first decreases but then increases monotonically up to z0 = ±1000 nm.
For z0 values greater (smaller) than 1000 nm (-1000 nm), δ3d

z0
deteriorates with an oscillatory behavior, which is

analogous to the behavior of the 3D fundamental limit of the x0 coordinate. Note that here also the behavior of
δ3d
z0

is symmetric about z0 = 0.

3. EFFECTS OF PIXELATION AND NOISE SOURCES

In deriving the fundamental limit of the localization accuracy, we assumed that the acquired data consists of
the time points and the spatial coordinates of the detected photons. However, current imaging detectors contain
(finite sized) pixels and the acquired data consists of the number of detected photons at each pixel. For a
pixelated detector {C1, . . . , CNp

}, the number of detected photons (from the single molecule) at the kth pixel
Ck can be shown18 to be independently Poisson distributed with mean µθ(k, t) =

∫ t

t0

∫
Ck

Λθ(τ)fθ(r)dτdr, θ ∈ Θ,
k = 1, . . . , Np. Here we make no assumptions about the specific shape, size or orientation of the pixels. We only
assume that the pixels do not overlap. We consider two additive noise sources, namely Poisson and Gaussian
noise sources, which are commonly encountered in experimental data. Poisson noise is used to model the effect
of scattered photons, which, for example, arise due to cellular autofluorescence and scattering. Gaussian noise
is used to model the effect of measurement noise, which, for example, arises during the readout process in the
detector. Therefore the acquired data in a pixelated detector can be modeled as a sequence {Iθ,1, . . . , Iθ,Np

} of
random variables given by

Iθ,k = Sθ,k + Bk + Wk, k = 1, . . . , Np, θ ∈ Θ,

where Sθ,k (Bk) is an independent Poisson random variable with mean µθ(k, t) (β(k, t)) and Wk is an independent
Gaussian random variable with mean ηk and variance σ2

w,k, k = 1, . . . , Np. We assume that {Sθ,1, . . . , Sθ,Np
},

{B1, . . . , BNp
} and {W1, . . . ,WNp

} are mutually independent, and that β(k, t), ηk and σw,k are independent of
θ, k = 1, . . . , Np.
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In the absence of noise sources, the Fisher information matrix for the data acquired in a pixelated detector
during the fixed time interval [t0, t] is given by18

I(θ) =
Np∑
k=1

(
∂µθ(k, t)

∂θ

)T
∂µθ(k, t)

∂θ
, θ ∈ Θ,

where µθ is defined above,

∂µθ(k, t)
∂θ

:=




∫ t

t0

∫
Ck

Λθ(τ)∂fθ(r)
∂x drdτ∫ t

t0

∫
Ck

Λθ(τ)∂fθ(r)
∂y drdτ∫ t

t0

∫
Ck

Λθ(τ)∂fθ(r)
∂z0

drdτ∫ t

t0

∫
Ck

∂Λθ(τ)
∂Λ0

fθ(r)drdτ




T

, k = 1, . . . , Np, θ = (x0, y0, z0,Λ0) ∈ Θ, (12)

and fθ is given in eq. 1 with qz0 given by eq. 3. Here also we assume that the phase aberration term is given by
eq. 11. In the presence of both Poisson and Gaussian noise, the Fisher information matrix for the data acquired
in a pixelated detector during the fixed time interval [t0, t] is given by18

I(θ) =
Np∑
k=1

(
∂µθ(k, t)

∂θ

)T
∂µθ(k, t)

∂θ




∫

R


∑∞

l=1
[νθ(k,t)]l−1e−νθ(k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

(
z−l−ηk

σw,k

)2



2

pθ,k(z)
dz − 1




, θ ∈ Θ,

where ∂µθ(k, t)/∂θ is given by eq. 12, νθ(k, t) := µθ(k, t) + β(k, t), k = 1, . . . , Np and

pθ,k(z) :=
1√

2πσw,k

∞∑
l=0

[νθ(k, t)]le−νθ(k,t)

l!
e
− 1

2

(
z−l−ηk

σw,k

)2

, z ∈ R, k = 1, . . . , Np.

To calculate the limit of the 3D localization accuracy in the presence/absence of noise for a pixelated finite
detector, we invert the corresponding Fisher information matrix I(θ) and take the square root of the appropriate
term in the main diagonal.

Fig. 2B (Fig. 3B) shows the behavior of the limit of the 3D localization accuracy of the x0/y0 (z0) coordinate
for a pixelated finite detector in the absence of noise sources. From the figure we see that the limit of the 3D
localization accuracy of x0 (z0) exhibits a behavior that is analogous to the fundamental limit δ3d

x0
(δ3d

z0
). Note

that the limit of the 3D localization accuracy of x0 (z0) for the pixelated finite detector is greater than the
fundamental limit δ3d

x0
(δ3d

z0
) for all values of the defocus distance. This can be explained by noting that in a

pixelated finite detector, due to its finite size, not all the photons that reach the detector plane are detected
(see Fig. 1), and that the spatial coordinates of the detected photons are known only up to a pixel. Note that
for large defocus distances, the oscillatory behavior of the limit of the 3D localization accuracy for a pixelated
detector becomes prominent when compared to the fundamental limit.

Fig. 2C (Fig. 3C) shows the dramatic effect of noise on the behavior of the limit of the 3D localization
accuracy of the x0/y0 (z0) coordinate for a pixelated finite detector. We see that the limit of the 3D localization
accuracy in the presence of noise shows significant deterioration when compared to the noise free case, especially
for defocus distances greater (smaller) than 1 µm (−1 µ m). Note that in the presence of noise, the oscillatory
behavior of the limit of the 3D localization accuracy also becomes more pronounced, when compared to the noise
free case.

The results presented in this paper provide insight into the extent to which single molecules can be accurately
tracked in three dimensions. Since these results provide a limit to the localization accuracy, they can be used as
a benchmark to compare the performance of different algorithms that are used to estimate the 3D location of a
single molecule from experimental data. The present results can be used in several ways in the context of single
molecule microscopy, such as in the design of an experimental setup for tracking single molecules.
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Figure 1. The schematic shows the main components of a fluorescence microscope imaging setup. Here, a single molecule
is located at (x0, y0, z0) in the object space and the image of the single molecule is captured by a detector that is located
in the image space.
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Figure 2. The figure shows the behavior of the limit of the localization accuracy of the x0 (y0) coordinate of a single-
molecule/point-source as a function of defocus distance. Panel A shows the fundamental limit of the 3D localization
accuracy δ3d

x0 that is given in eq. 8 (•). The fundamental limit of the 2D localization accuracy δ2d
x0 that is given in eq.

10 is also shown for reference (—). Panel B shows the limit of the 3D localization accuracy for x0 (y0) for a pixelated
detector in the absence of noise sources (◦), and panel C shows the same in the presence of noise sources (�). Panels B
and C also show the 3D fundamental limit δ3d

x0 (•) and the limit of the 3D localization accuracy of z0 in the absence of
noise sources (◦), respectively for reference. In all the plots the photon detection rate is set to be Λ0 = 5000 photons/s,
the acquisition time is set to be t = 0.1 s (with t0 = 0), the numerical aperture is set to be NA = 1.3, the magnification
is set to be M = 100, the wavelength of the detected photons from the single molecule is set to be λ = 520 nm, the pixel
array size is set to be 5 × 5, the pixel size is set to be 13µm × 13µm, the mean of the Poisson noise component is set to
be β(k, t) = 25 photons/pixel, and the mean and the standard deviation of the Gaussian noise component are set to be
ηk = 0 and σw,k = 8e− rms, respectively. The noise statistics are assumed to be the same for all the pixels and the image
of the single molecule is assumed to be centered on the pixel array.
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Figure 3. The figure shows the behavior of the limit of the localization accuracy of the z0 coordinate of a single-
molecule/point-source as a function of defocus distance. Panel A shows the fundamental limit of the 3D localization
accuracy (•) δ3d

z0 that is given in eq. 9. Panel B shows the limit of the 3D localization accuracy for z0 for a pixelated
detector in the absence of noise sources (◦), and panel C shows the same in the presence of noise sources (�). Panels B and
C also show the 3D fundamental limit δ3d

z0 (•) and the limit of the 3D localization accuracy of z0 in the absence of noise
sources (◦), respectively for reference. Note that unlike the x0 coordinate (see Fig. 2), the limit of the 3D localization
accuracy for the z0 coordinate becomes infinitely large as the defocus distance approaches zero. The numerical values for
generating the above plots are identical to those used in Fig. 2.
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