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Abstract

The Cramer Rao lower bound (CRLB) gives a lower bound on théesable accuracy of parameter
estimates resulting from an unbiased estimation procebased on a given set of observed noisy data.
Calculation of the CRLB, which is the inverse of the Fishdoimation matrix, for output data sets of a
general nonlinear system is a challenging problem and isidered in this paper. It is shown that the Fisher
information matrix for a data set generated by a nonlinearesy with additive Gaussian measurement noise
can be expressed in terms of the outputs of its derivativeesythat is also a nonlinear system. An example
is considered arising from surface plasmon resonance iexpets to determine the dynamic parameters of

molecular interactions.
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. INTRODUCTION

A typical approach to studying complicated biomedical mhreanon is to investigate mathematical models
that describe the underlying phenomena. Unknown paramefean underlying model are estimated from
experimental data. For example, surface plasmon resonainsensors are used to estimate the kinetic
constants of protein-protein interactions [2], [3]. Thewecy with which the parameters can be determined
depends on a variety of factors, measurement noise levaplgay rate, number of repeat experiments, etc.
The production of the reagents for such experiments can bferery costly. Therefore an efficient setup of
the experimental conditions is of great importance to auridecessary costs in executing the experiments.
A classical tool for experiment design is the Fisher infoioratmatrix (see e.g. [4]). The inverse of the
Fisher information matrix gives a lower bound (the Cramer Raeer bound (CRLB)) on the covariance
matrix of any unbiased estimator of the parameters [5], I[f6ls widely used as a benchmark to evaluate
the performance of an estimation algorithm and can providdamce to improve the experimental design.

The acquired data in biophysical experiments can often bestaddas the output of a linear or nonlinear
system, with the sampled output being corrupted by whiteen(see e.g. [7] for nuclear magnetic resonance
data, [8] for biosensor data). A crucial aspect is that the daising in biophysical experiments is typically
non-stationary, which means that existing results on theECRr nonlinear filtering that deal with stationary
time series (see, e.g., [9]) cannot be applied to the prolaiehand. To date no effective approach appears
to be available to compute the CRLB for parameter estimatiorttfe case of nonstationary deterministic
nonlinear systems corrupted by measurement noise.

Recently, a systematic approach has been proposed forlatalguthe CRLB for output data sets of
one-dimensional non-stationary linear dynamic systentls deterministic input and Gaussian measurement
noise [10]. The approach has been extended to data sets gehbyamultidimensional linear separable-
denominator systems [11]. The above approach is based orotioemt of a derivative system associated
with the original dynamic system. Here we will show that tlmeept of derivative system can be further
generalized to a nonlinear dynamic system and that theat®vsystem is again a nonlinear system of the
same structure as the original system. The Fisher informatiatmix can then be calculated by determining

the outputs of the derivative system at the time points atlwiiie experimental data is obtained.
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Il. FISHERINFORMATION MATRIX AND CRLB

We consider a nonlinear systetnwith m inputs andp outputs, described in the state-space form as (see
[12])

m
to(t) = fo(zo) + Y gok(wo)ur(t), wo(to) = o, 1)
k=1
yo(t) = ho(ze), t > to, 2
T
wheref := | 9, ... 0k ] is the unknown parameter vector to be estimated, the stais assumed
to be an element oR", the inputsuy, ..., u,, are real-valued functions df that are not dependent on
0, yo € RP is the system output, the mappings, go,1, - .., go,m are R"-valued functions ofry and ¥,

and the output functiork, is an RP-valued function ofzy and 6. Throughout the paper we usg ;(t)
and hg ;(z) to represent the element ofyy(t) and hy(zg), i = 1,...,p, respectively, i.eyy(t) =

T T
L woa() oo wop(®) | andho(@e) = | hoa(es) ... hoyleo)
and g r.1(zg) (K = 1,...,m) to represent thé'" element ofzy(t), fo(xe) and gok(xg), L =1,...,n,

. Similarly, we usezg;(t), fo.(zg)

respectively. Throughout the paper, we assume:

Assumption 2.1:1.) The nonlinear syster® is represented by (1)-(2) wher®, go,1, - .., go,m and hg
are smoothfunctions ofzy andé, i.e. all entries offy, go1, ..., go,m @andhy are real-valued functions of
x¢ andf with continuous partial derivatives of any order. The inputdtionsu., ..., u,, are assumed to
be piecewise continuouis ¢ and independent of the parameter vedtpr
2.) The acquired noise corrupted data sampjes;), are the measured output of the nonlinear systerire.,
s0.i(7) = ya.i(t;) +wi(t;), whereyy ;(¢;) is theit” noise free output element at the sampling instarand
w;(t;) is the measurement noise components ¢ < t2 < ... < t;; the measurement noise components
have independent Gaussian distributions with zero mearvandnceoﬁj, i=1,....,p,5=1,...,J.
The parameter spad®, i.e. the set of all possible values for the parameter vegtds assumed to be

an open subset of the Euclidean sp@d&. The probability density functiop(S;6) for the acquired data

setS :={sp(j), i=1,...,p, j=1,...,J} is assumed to satisfy the standard regularity conditioas (s
e.g. [13]). The Fisher information matrik(9) is then given by[I(0)]s = E{<mn§){f;6)) (mnge(f;e))}’

1 <s,r < K, whereE{-} is the expected value with respect to the underlying prdibgaieasure. If/(6)
is positive definite for alld € ©, by the CRLB any unbiased estimatérof § has a variance such that
var(6) > I71(0).
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In the following theorem we first show that the derivative syst(with respect to the given parameter
vectorf) of a general nonlinear dynamic system given by (1)-(2) dan be expressed as a nonlinear system
of the same form. In the second part of the theorem this faosél to show that the Fisher information
matrix for the sampled output data of a nonlinear system witite Gaussian measurement noise can be
expressed using the output samples of its derivative system

Theorem 2.1:Consider the nonlinear systeinrepresented by (1)-(2) and assume that Assumption 2.1 is
satisfied. Let)y(t) := [yel( ). ..ygp(t)}T, with Yy () := [ayaséil(t) . ayae ]" L i=1,...,p, t > to.
Then,

1.) Vy(t), t > to, is equal to the output of the derivative syst@rhrepresented by

Xo(t) = Fo(Xo) + ) Gor(Xo)Un(t), Xolto) = Xo, ©)
k=1
Vo(t) = Ho(Xp), t > to, 4)

T T
oz} oz}

T
where Xy := |2f s ...89K] and fort > t,

oxl(t)  02T(6)]"
00, T 00k ’

Xy (t) = [acg (t)

Up(t) == ug(t), k=1,...,m;
i fo(zo)

8f9(x9) 8I9(t)
Hestod + 3o, [fo(xe)] S5
Fo(Xg):= | _ L (5)

| 2lz) 1 g, [fo(x)) 250

9o,k (x0)

99, k(xe) Oz (t)
o, T I [99 k(T0)] =55~
Go,k(Xp) := P

090 1 (T ox
L ga e + Ja, (90,6 (0)] dg(t)

Ho(Xg) = [HE1(Xo) ... HE ()], (6)
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Ooslro) 1 3y, hoi(x)] Zopt
with Hy ;(Xp) = : v i=1,...,p. HereJy, [fy(xp)], Ju, [g0.k(20)] and

Qﬁg;L;).+.Jm9[hgl(xe)]aggg)

J2, [ho,i(zg)] are the Jacobian matrices fif(zg), gor(x9) and hg;(zg) with respect tary, respectively.

2.) The Fisher information matrix is given by
L 1
10)=)_ > —Ps(t;)Vy ()P

Here P, ¢ REXPK ;=1 ... p, is defined as

Pi:=[0 ... 0 Ix 0 ... O] )
(i—1) 0s (p—i) Os
where0 denotes theK x K zero matrix andli the K x K identity matrix.
Proof: 1.) It follows from Assumption 2.1 thaty(t) is continuous with respect to and 6, piecewise
partially differentiable with respect t6, and partially differentiable with respect th for all # € © and
t >ty (Assumes = 1,..., K andt > ¢, throughout the proof). Then with the possible exception of

the discrete discontinuities af,, £ = 1,...,m, we have (see page 359 in [15?5%9@) = a;gféi) =
Ot (t)

g5 Taking the partial derivative of (1) with respect dg gives 8";;;( ) = 9 "(“) + Jz, [fo(xo)] 8%9?) +
S Jay (90,5 (0)] 8§g( Ly 1(t). The partial derivative ofjp;(t), i = 1,...,p, Wlth resp;:ct tad, is given
by 2l — Ohealwe) o 3. Ihg i (xe)] 2261, Since Xy(t) = [xfg(t) M...af?“)} and Yy, (t) =

00, 00k
[aye,xt) Ouo..(1) 1 i—1
L] 9.

.., p, stacking the corresponding equations produces

wo= [(%52)" () - ()|
- i 20, 2]
064 005

00, ' 00k

= Fo(Xp) + Z Go,i(Xo)Uk(t)
P

T T
and Vp(t) = |2 ...6%Béf>] = Hpi(Xp), i = 1,....p. SinceVy(t) = [ygl(t)...ygp(t) , the
derivative systen®’ is then obtained by stacking the corresponding equationg @3 = Hy(Xp), t > to.
The initial condition of®’ is given by Xy(t)|,_, = Xo.
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2.) From a classic result on the Fisher information matrix @ee [5]),

0= |23 - @

1<s,r<K

The above theorem shows that the Fisher information matrsingrifrom the estimation of unknown
parameters using the output data set of a nonlinear systpresented by (1)-(2) can be conveniently
expressed in terms of its associated derivative systemhwhias a similar representation. Although in
general there does not exist an analytical solution for aeg#gmonlinear system, there are a number of
good numerical methods for solving nonlinear systems nigaigy. It follows that the Fisher information
matrix and the CRLB can be computed using one of these nurheniethods.

The parameter vectdris said to bdocally identifiableif there exists an open neighborhoodatontaining
no other parameter vector that is observably equivalett [tt6]. As a corollary we can obtain a criterion
for the local identifiability in our context that draws an irdsting connection between identifiability and
the output reachability of the derivative system.

Corollary 2.1: Given the assumptions of Theorem 2.1, the parameter vécisrlocally identifiable if
and only if

rank{[P1)p(t1) ... Pido(ty) P2Yo(t1) ... PaYo(ty)

oo PYp(t) ... PYe(ty)]} = K.
Proof: It follows from [17] that the parameter vector is locally md#iable if and only if the Fisher
information matrixI(0) is invertible. By Theorem 2.1 part 21)(0) is invertible if and only if the above

rank condition is satisfied.

1. EXAMPLE

Biosensors such as instruments by the BIAcore company ddovwhe monitoring of protein-protein
interactions in real time using an optical detection ppieibased on surface plasmon resonance (SPR)
technology (see, e.g. [2], [3]). In the experiments one ef pinoteins (ligand) is coupled to a sensor chip
and the second protein (analyte) is flowed across the surfaggled ligand using a micro-fluidic device.

The SPR response reflects a change in mass concentration at ¢#etodsurface as molecules bind or
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(—kaRmaz — kr)To.1(t) + kawo 2(t) + kato1 (t)7g.2(1)
ko Rmazto1(t) — ka2 (t) — ka1 (t)ze2(t)
—Rimaz91(t) + zo1()z92(t) + (—kaRmaz — k1 + kaxo 2(t)) 3909 1(t) + (kg + kazgn (1) %ij@
Rinaa9,1 (1) — 20,1 (1)o2(t) + (haBmas — koo (1)) "5 + ( ka — ko (1)) 228

202(0) + (—haRmas — b1 + Ka02(0) 252 + (kg + g1 (1)) 22520

~x92(t) + (kaRmaz — kao2(t)) &ET(” + (—kg — kazg (1)) da:aik(t)
~201(t) + (—kaRmaz — k1 + koo 2(£)) 2 + (kg + Koz (t)) 2520
(ko Rimax — kao2(t)) %ﬁ“ + (—kq — ka1 (1)) azaeTQT(t)

—ha1(8) + (—halmas = b + kato2(1)) Gt + (ha + koo, () G212

: o1 (8) + (ha R — ao2(8)) Gt + (—ha = ka1 (1)) - G _

Fo(Xp) :=

dissociate from the sensor chip. The resulting acquired chtebe used to estimate the kinetic constants of
protein-protein interactions.

A notorious problem in conducting such experiments is thes@nce of mass-transport (see e.g. [18]).
The following compartmental model, written in standard fobnihas been suggested (see e.g. [18], [19]) to

estimate the kinetic parameters of an interaction in thegree of mass transport,

ty(t) = fo(wg) + go,1(ze)ur(t), wo(to) = o, ©)
yo(t) = he(zg), t > to, (10)
where
volt) = Z’g}l(t) _ Cs(t) 2o 0
29(t) R(t) 0l
kr
g 1(1‘9) : |: 0 ] , ul(t) = CA(t), hg(xg) = :ng(t),

(—koRmaz — kr)0.1(t) + kgze 2(t)
+koxo1(t)xg2(t)
ko RmazTo1(t) — kag2(t)
—kqxg1(t)x92(t)
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Here Cs(t) is the concentration of analyte on the sensor surféie) is the measured SPR response in
resonance units (RU) that are proportional to the mass adetied on the surfacé;,, andk, are the kinetic
association and dissociation constants of the interactiggpectively,kr is a parameter that indicates the
influence of mass transport on the kinetiés, .. is the maximum analyte binding capacity in RU4(t) is
the concentration value of analyte in the flow cell which carcbetrolled as an input in the experiments,
and the initial SPR response is assumed to be zero. The unknoamgizr vector to be estimated in the
experiments i9 := | k, k; kr Rmax !

The first step of the proposed method is the calculation of thiwvate system by Theorem 2.1. The

derivative systemd’ of the systemd is represented by
Xy(t) = Fo(Xo) + Gop (XU (1), Xp(to) = Xo, (11)
Vo(t) = Ho(Xp), t>to. (12)

where

wT I’T r
Xp(t) == [:EeT(t) 38%?) 88‘90£t)]

T
B Oy (t) Oxj(t) Oxf(t) oz ()]"
ok, Oky Okr  ORmaz]| '

o (o) axeT(to)]T

XG(tO) = [$g(t0) 801 tte 604

=0 0j00l00]0OO|O0 O;

Go1(Xp) :==[kr 00 0|0 0[1 0[0 0];

Oxgo(t) Oxga(t) Oxea(t) Oxea(t)]”
6]@@ 8kd akT 8Rmax ’

Ui (t) :==ui(t) = Calt), t >ty and Fp(Xp) (see next page).
We simulate the SPR experiments with the paraméiges 1073, kg = 0.01, Ry,q = 700. The input of

Ho(Xp) = [

the system is assumed to be

1000, for t € [300,1000],
Ca(t) =
0, otherwise,
and the starting time i$y = 0. As we mentioned earliesy is a parameter whose value indicates the
influence of mass transport on the kinetic interaction. In study, the range okr is from 10~ to 10°,

where a small (large) value indicates a large (small) infleemicmass transport on the data.
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Fig. 1. Normalized standard deviations (STDs)kef k4, kr and R,.... as functions of the parametér-.

Using a numerical algorithm provided by Matlab [20], we abtthe outputs of the derivative systedi
represented by (11)-(12). We then calculate the Fishernmdtion matrix for the data sets generated by the
nonlinear systemb represented by (9)-(10) with white Gaussian measuremeasen@/e assume that the
output of the experiment is uniformly sampledtat= 300+ (j — 1)7', whereT is the sampling interval and
j=1,...,J. Let the noise variance bg ; =1 for:=1,...,p, j =1,...,J. In the following discussion,
we fix T =1, J = 1400.

Fig. 1 plots the best achievable normalized standard dewmt{(STDs), (i.e. the square roots of the
corresponding entries of the inverse of the Fisher inforomathatrix) ofk,, k4, kr and Ry,a. (STD(k )k,
etc) as functions of the parametey in log scale. It can be seen that the best achievable nordadiandard
deviations of all the four parameters are large whenis very small (near0~>). This confirms that the
kinetic parameters are difficult to estimate in the presercg@gmificant mass transport effects, if the other
experimental conditions remain unchanged. On the othed,hahenkr is very large (neai0%), i.e. the
mass transport effect is small, the best achievable nazedhstandard deviations &f,, k4, and R, are

reasonably small, while the best achievable normalizendstal deviation ok becomes very large.
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