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Abstract

The Cramer Rao lower bound (CRLB) gives a lower bound on the achievable accuracy of parameter

estimates resulting from an unbiased estimation procedurebased on a given set of observed noisy data.

Calculation of the CRLB, which is the inverse of the Fisher information matrix, for output data sets of a

general nonlinear system is a challenging problem and is considered in this paper. It is shown that the Fisher

information matrix for a data set generated by a nonlinear system with additive Gaussian measurement noise

can be expressed in terms of the outputs of its derivative system that is also a nonlinear system. An example

is considered arising from surface plasmon resonance experiments to determine the dynamic parameters of

molecular interactions.
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I. I NTRODUCTION

A typical approach to studying complicated biomedical phenomenon is to investigate mathematical models

that describe the underlying phenomena. Unknown parameters of an underlying model are estimated from

experimental data. For example, surface plasmon resonancebiosensors are used to estimate the kinetic

constants of protein-protein interactions [2], [3]. The accuracy with which the parameters can be determined

depends on a variety of factors, measurement noise level, sampling rate, number of repeat experiments, etc.

The production of the reagents for such experiments can oftenbe very costly. Therefore an efficient setup of

the experimental conditions is of great importance to avoidunnecessary costs in executing the experiments.

A classical tool for experiment design is the Fisher information matrix (see e.g. [4]). The inverse of the

Fisher information matrix gives a lower bound (the Cramer Raolower bound (CRLB)) on the covariance

matrix of any unbiased estimator of the parameters [5], [6].It is widely used as a benchmark to evaluate

the performance of an estimation algorithm and can provide guidance to improve the experimental design.

The acquired data in biophysical experiments can often be modeled as the output of a linear or nonlinear

system, with the sampled output being corrupted by white noise (see e.g. [7] for nuclear magnetic resonance

data, [8] for biosensor data). A crucial aspect is that the data arising in biophysical experiments is typically

non-stationary, which means that existing results on the CRLB for nonlinear filtering that deal with stationary

time series (see, e.g., [9]) cannot be applied to the problemat hand. To date no effective approach appears

to be available to compute the CRLB for parameter estimation for the case of nonstationary deterministic

nonlinear systems corrupted by measurement noise.

Recently, a systematic approach has been proposed for calculating the CRLB for output data sets of

one-dimensional non-stationary linear dynamic systems with deterministic input and Gaussian measurement

noise [10]. The approach has been extended to data sets generated by multidimensional linear separable-

denominator systems [11]. The above approach is based on the concept of a derivative system associated

with the original dynamic system. Here we will show that the concept of derivative system can be further

generalized to a nonlinear dynamic system and that the derivative system is again a nonlinear system of the

same structure as the original system. The Fisher informationmatrix can then be calculated by determining

the outputs of the derivative system at the time points at which the experimental data is obtained.
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II. F ISHER INFORMATION MATRIX AND CRLB

We consider a nonlinear systemΦ with m inputs andp outputs, described in the state-space form as (see

[12])

ẋθ(t) = fθ(xθ) +
m∑

k=1

gθ,k(xθ)uk(t), xθ(t0) = x0, (1)

yθ(t) = hθ(xθ), t ≥ t0, (2)

whereθ :=
[

θ1 . . . θK

]T

is the unknown parameter vector to be estimated, the statexθ is assumed

to be an element ofRn, the inputsu1, . . ., um are real-valued functions oft that are not dependent on

θ, yθ ∈ R
p is the system output, the mappingsfθ, gθ,1, . . ., gθ,m are R

n-valued functions ofxθ and θ,

and the output functionhθ is an R
p-valued function ofxθ and θ. Throughout the paper we useyθ,i(t)

and hθ,i(xθ) to represent theith element ofyθ(t) and hθ(xθ), i = 1, . . . , p, respectively, i.e.yθ(t) =
[

yθ,1(t) . . . yθ,p(t)
]T

and hθ(xθ) =
[

hθ,1(xθ) . . . hθ,p(xθ)
]T

. Similarly, we usexθ,l(t), fθ,l(xθ)

and gθ,k,l(xθ) (k = 1, . . . , m) to represent thelth element ofxθ(t), fθ(xθ) and gθ,k(xθ), l = 1, . . . , n,

respectively. Throughout the paper, we assume:

Assumption 2.1:1.) The nonlinear systemΦ is represented by (1)-(2) wherefθ, gθ,1, . . ., gθ,m and hθ

are smoothfunctions ofxθ and θ, i.e. all entries offθ, gθ,1, . . ., gθ,m and hθ are real-valued functions of

xθ and θ with continuous partial derivatives of any order. The input functionsu1, . . ., um are assumed to

be piecewise continuousin t and independent of the parameter vectorθ;

2.) The acquired noise corrupted data samplessθ,i(j), are the measured output of the nonlinear systemΦ, i.e.,

sθ,i(j) = yθ,i(tj) + wi(tj), whereyθ,i(tj) is the ith noise free output element at the sampling instanttj and

wi(tj) is the measurement noise component,t0 ≤ t1 < t2 < . . . < tJ ; the measurement noise components

have independent Gaussian distributions with zero mean andvarianceσ2
i,j , i = 1, . . . , p, j = 1, . . . , J .

The parameter spaceΘ, i.e. the set of all possible values for the parameter vectorθ, is assumed to be

an open subset of the Euclidean spaceR
K . The probability density functionp(S; θ) for the acquired data

setS := {sθ,i(j), i = 1, . . . , p, j = 1, . . . , J} is assumed to satisfy the standard regularity conditions (see

e.g. [13]). The Fisher information matrixI(θ) is then given by[I(θ)]sr = E
{(

∂ ln p(S;θ)
∂θs

) (
∂ ln p(S;θ)

∂θr

)}

,

1 ≤ s, r ≤ K, whereE{·} is the expected value with respect to the underlying probability measure. IfI(θ)

is positive definite for allθ ∈ Θ, by the CRLB any unbiased estimatorθ̂ of θ has a variance such that

var(θ̂) ≥ I−1(θ).
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In the following theorem we first show that the derivative system (with respect to the given parameter

vectorθ) of a general nonlinear dynamic system given by (1)-(2) can also be expressed as a nonlinear system

of the same form. In the second part of the theorem this fact isused to show that the Fisher information

matrix for the sampled output data of a nonlinear system withwhite Gaussian measurement noise can be

expressed using the output samples of its derivative system.

Theorem 2.1:Consider the nonlinear systemΦ represented by (1)-(2) and assume that Assumption 2.1 is

satisfied. LetYθ(t) :=
[

YT
θ,1(t) . . .YT

θ,p(t)
]T

, with Yθ,i(t) :=
[

∂yθ,i(t)
∂θ1

. . .
∂yθ,i(t)

∂θK

]T

, i = 1, . . . , p, t ≥ t0.

Then,

1.) Yθ(t), t ≥ t0, is equal to the output of the derivative systemΦ′ represented by

Ẋθ(t) = Fθ(Xθ) +
m∑

k=1

Gθ,k(Xθ)Uk(t), Xθ(t0) = X0, (3)

Yθ(t) = Hθ(Xθ), t ≥ t0, (4)

whereX0 :=
[

xT
0

∂xT
0

∂θ1

. . .
∂xT

0

∂θK

]T

and for t ≥ t0

Xθ(t) :=

[

xT
θ (t)

∂xT
θ (t)

∂θ1
. . .

∂xT
θ (t)

∂θK

]T

;

Uk(t) := uk(t), k = 1, . . . , m;

Fθ(Xθ) :=











fθ(xθ)

∂fθ(xθ)
∂θ1

+ Jxθ
[fθ(xθ)]

∂xθ(t)
∂θ1

...
∂fθ(xθ)

∂θK
+ Jxθ

[fθ(xθ)]
∂xθ(t)
∂θK











; (5)

Gθ,k(Xθ) :=











gθ,k(xθ)

∂gθ,k(xθ)
∂θ1

+ Jxθ
[gθ,k(xθ)]

∂xθ(t)
∂θ1

...
∂gθ,k(xθ)

∂θK
+ Jxθ

[gθ,k(xθ)]
∂xθ(t)
∂θK











,

k = 1, . . . , m;

Hθ(Xθ) :=
[
HT

θ,1(Xθ) . . .HT
θ,p(Xθ)

]T
, (6)
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with Hθ,i(Xθ) :=








∂hθ,i(xθ)
∂θ1

+ Jxθ
[hθ,i(xθ)]

∂xθ(t)
∂θ1

...
∂hθ,i(xθ)

∂θK
+ Jxθ

[hθ,i(xθ)]
∂xθ(t)
∂θK








, i = 1, . . . , p. HereJxθ
[fθ(xθ)], Jxθ

[gθ,k(xθ)] and

Jxθ
[hθ,i(xθ)] are the Jacobian matrices offθ(xθ), gθ,k(xθ) andhθ,i(xθ) with respect toxθ, respectively.

2.) The Fisher information matrix is given by

I(θ) =

p
∑

i=1

J∑

j=1

1

σ2
i,j

PiYθ(tj)Y
T
θ (tj)P

T
i .

HerePi ∈ R
K×pK , i = 1, . . . , p, is defined as

Pi := [ 0 . . . 0
︸ ︷︷ ︸

(i−1) 0s

IK 0 . . . 0
︸ ︷︷ ︸

(p−i) 0s

] , (7)

where0 denotes theK × K zero matrix andIK the K × K identity matrix.

Proof: 1.) It follows from Assumption 2.1 thatxθ(t) is continuous with respect tot and θ, piecewise

partially differentiable with respect tot, and partially differentiable with respect toθs for all θ ∈ Θ and

t ≥ t0 (Assumes = 1, . . . , K and t ≥ t0 throughout the proof). Then with the possible exception of

the discrete discontinuities ofuk, k = 1, . . . , m, we have (see page 359 in [15])∂
2xθ(t)
∂t∂θs

= ∂2xθ(t)
∂θs∂t

=

∂ẋθ(t)
∂θs

. Taking the partial derivative of (1) with respect toθs gives ∂ẋθ(t)
∂θs

= ∂fθ(xθ)
∂θs

+ Jxθ
[fθ(xθ)]

∂xθ(t)
∂θs

+
∑m

k=1 Jxθ
[gθ,k(xθ)]

∂xθ(t)
∂θs

uk(t). The partial derivative ofyθ,i(t), i = 1, . . . , p, with respect toθs is given

by ∂yθ,i(t)
∂θs

= ∂hθ,i(xθ)
∂θs

+ Jxθ
[hθ,i(xθ)]

∂xθ(t)
∂θs

. Since Xθ(t) =
[

xT
θ (t)

∂xT
θ (t)

∂θ1

. . .
∂xT

θ (t)
∂θK

]T

and Yθ,i(t) =
[

∂yθ,i(t)
∂θ1

. . .
∂yθ,i(t)

∂θK

]T

, i = 1, . . . , p, stacking the corresponding equations produces

Ẋθ(t) =

[(
∂xθ(t)

∂t

)T (
∂2xθ(t)

∂t∂θ1

)T

. . .

(
∂2xθ(t)

∂t∂θK

)T
]T

=

[

ẋT
θ (t)

∂ẋT
θ (t)

∂θ1
. . .

∂ẋT
θ (t)

∂θK

]T

= Fθ(Xθ) +
m∑

k=1

Gθ,k(Xθ)Uk(t)

and Yθ,i(t) =
[

∂yθ,i(t)
∂θ1

. . .
∂yθ,i(t)

∂θK

]T

= Hθ,i(Xθ), i = 1, . . . , p. SinceYθ(t) =
[

YT
θ,1(t) . . .YT

θ,p(t)
]T

, the

derivative systemΦ′ is then obtained by stacking the corresponding equations asYθ(t) = Hθ(Xθ), t ≥ t0.

The initial condition ofΦ′ is given byXθ(t)|t=t0
= X0.
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2.) From a classic result on the Fisher information matrix (seee.g. [5]),

I(θ) =





p
∑

i=1

J∑

j=1

1

σ2
i,j

∂yθ,i(tj)

∂θs

∂yθ,i(tj)

∂θr





1≤s,r≤K

(8)

=

p
∑

i=1

J∑

j=1

1

σ2
i,j

Yθ,i(tj)Y
T
θ,i(tj)

=

p
∑

i=1

J∑

j=1

1

σ2
i,j

PiYθ(tj)Y
T
θ (tj)P

T
i .

The above theorem shows that the Fisher information matrix arising from the estimation of unknown

parameters using the output data set of a nonlinear system represented by (1)-(2) can be conveniently

expressed in terms of its associated derivative system which has a similar representation. Although in

general there does not exist an analytical solution for a general nonlinear system, there are a number of

good numerical methods for solving nonlinear systems numerically. It follows that the Fisher information

matrix and the CRLB can be computed using one of these numerical methods.

The parameter vectorθ is said to belocally identifiableif there exists an open neighborhood ofθ containing

no other parameter vector that is observably equivalent toθ [16]. As a corollary we can obtain a criterion

for the local identifiability in our context that draws an interesting connection between identifiability and

the output reachability of the derivative system.

Corollary 2.1: Given the assumptions of Theorem 2.1, the parameter vectorθ is locally identifiable if

and only if

rank{[P1Yθ(t1) . . . P1Yθ(tJ) P2Yθ(t1) . . . P2Yθ(tJ)

. . . PpYθ(t1) . . . PpYθ(tJ)]} = K.

Proof: It follows from [17] that the parameter vector is locally identifiable if and only if the Fisher

information matrixI(θ) is invertible. By Theorem 2.1 part 2.)I(θ) is invertible if and only if the above

rank condition is satisfied.

III. E XAMPLE

Biosensors such as instruments by the BIAcore company allowfor the monitoring of protein-protein

interactions in real time using an optical detection principle based on surface plasmon resonance (SPR)

technology (see, e.g. [2], [3]). In the experiments one of the proteins (ligand) is coupled to a sensor chip

and the second protein (analyte) is flowed across the surface coupled ligand using a micro-fluidic device.

The SPR response reflects a change in mass concentration at the detector surface as molecules bind or
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Fθ(Xθ) :=





























(−kaRmax − kT )xθ,1(t) + kdxθ,2(t) + kaxθ,1(t)xθ,2(t)

kaRmaxxθ,1(t) − kdxθ,2(t) − kaxθ,1(t)xθ,2(t)

−Rmaxxθ,1(t) + xθ,1(t)xθ,2(t) + (−kaRmax − kT + kaxθ,2(t))
∂xθ,1(t)

∂ka
+ (kd + kaxθ,1(t))

∂xθ,2(t)
∂ka

Rmaxxθ,1(t) − xθ,1(t)xθ,2(t) + (kaRmax − kaxθ,2(t))
∂xθ,1(t)

∂ka
+ (−kd − kaxθ,1(t))

∂xθ,2(t)
∂ka

xθ,2(t) + (−kaRmax − kT + kaxθ,2(t))
∂xθ,1(t)

∂kd
+ (kd + kaxθ,1(t))

∂xθ,2(t)
∂kd

−xθ,2(t) + (kaRmax − kaxθ,2(t))
∂xθ,1(t)

∂kd
+ (−kd − kaxθ,1(t))

∂xθ,2(t)
∂kd

−xθ,1(t) + (−kaRmax − kT + kaxθ,2(t))
∂xθ,1(t)

∂kT
+ (kd + kaxθ,1(t))

∂xθ,2(t)
∂kT

(kaRmax − kaxθ,2(t))
∂xθ,1(t)

∂kT
+ (−kd − kaxθ,1(t))

∂xθ,2(t)
∂kT

−kaxθ,1(t) + (−kaRmax − kT + kaxθ,2(t))
∂xθ,1(t)
∂Rmax

+ (kd + kaxθ,1(t))
∂xθ,2(t)
∂Rmax

kaxθ,1(t) + (kaRmax − kaxθ,2(t))
∂xθ,1(t)
∂Rmax

+ (−kd − kaxθ,1(t)) ·
∂xθ,2(t)
∂Rmax





























.

dissociate from the sensor chip. The resulting acquired datacan be used to estimate the kinetic constants of

protein-protein interactions.

A notorious problem in conducting such experiments is the presence of mass-transport (see e.g. [18]).

The following compartmental model, written in standard formΦ has been suggested (see e.g. [18], [19]) to

estimate the kinetic parameters of an interaction in the presence of mass transport,

ẋθ(t) = fθ(xθ) + gθ,1(xθ)u1(t), xθ(t0) = x0, (9)

yθ(t) = hθ(xθ), t ≥ t0, (10)

where

xθ(t) :=




xθ,1(t)

xθ,2(t)



 :=




CS(t)

R(t)



 , x0 :=




0

0



 ,

gθ,1(xθ) :=




kT

0



 , u1(t) := CA(t), hθ(xθ) := xθ,2(t),

fθ(xθ) :=











(−kaRmax − kT )xθ,1(t) + kdxθ,2(t)

+kaxθ,1(t)xθ,2(t)

kaRmaxxθ,1(t) − kdxθ,2(t)

−kaxθ,1(t)xθ,2(t)











.
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Here CS(t) is the concentration of analyte on the sensor surface,R(t) is the measured SPR response in

resonance units (RU) that are proportional to the mass accumulated on the surface,ka andkd are the kinetic

association and dissociation constants of the interaction, respectively,kT is a parameter that indicates the

influence of mass transport on the kinetics,Rmax is the maximum analyte binding capacity in RU,CA(t) is

the concentration value of analyte in the flow cell which can becontrolled as an input in the experiments,

and the initial SPR response is assumed to be zero. The unknown parameter vector to be estimated in the

experiments isθ :=
[

ka kd kT Rmax

]T

.

The first step of the proposed method is the calculation of the derivative system by Theorem 2.1. The

derivative systemΦ′ of the systemΦ is represented by

Ẋθ(t) = Fθ(Xθ) + Gθ,1(Xθ)U1(t), Xθ(t0) = X0, (11)

Yθ(t) = Hθ(Xθ), t ≥ t0. (12)

where

Xθ(t) :=

[

xT
θ (t)

∂xT
θ (t)

∂θ1
. . .

∂xT
θ (t)

∂θ4

]T

=

[

xT
θ (t)

∂xT
θ (t)

∂ka

∂xT
θ (t)

∂kd

∂xT
θ (t)

∂kT

∂xT
θ (t)

∂Rmax

]T

;

Xθ(t0) :=

[

xT
θ (t0)

∂xT
θ (t0)

∂θ1
. . .

∂xT
θ (t0)

∂θ4

]T

= [0 0 | 0 0 | 0 0 | 0 0 | 0 0]T ;

Gθ,1(Xθ) := [kT 0 | 0 0 | 0 0 | 1 0 | 0 0]T ;

Hθ(Xθ) :=

[
∂xθ,2(t)

∂ka

∂xθ,2(t)

∂kd

∂xθ,2(t)

∂kT

∂xθ,2(t)

∂Rmax

]T

,

U1(t) := u1(t) = CA(t), t ≥ t0 andFθ(Xθ) (see next page).

We simulate the SPR experiments with the parameterska = 10−3, kd = 0.01, Rmax = 700. The input of

the system is assumed to be

CA(t) =







1000, for t ∈ [300, 1000],

0, otherwise,

and the starting time ist0 = 0. As we mentioned earlier,kT is a parameter whose value indicates the

influence of mass transport on the kinetic interaction. In ourstudy, the range ofkT is from 10−5 to 105,

where a small (large) value indicates a large (small) influence of mass transport on the data.
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Fig. 1. Normalized standard deviations (STDs) ofka, kd, kT andRmax as functions of the parameterkT .

Using a numerical algorithm provided by Matlab [20], we obtain the outputs of the derivative systemΦ′

represented by (11)-(12). We then calculate the Fisher information matrix for the data sets generated by the

nonlinear systemΦ represented by (9)-(10) with white Gaussian measurement noise. We assume that the

output of the experiment is uniformly sampled attj = 300+(j−1)T , whereT is the sampling interval and

j = 1, . . . , J . Let the noise variance beσi,j = 1 for i = 1, . . . , p, j = 1, . . . , J . In the following discussion,

we fix T = 1, J = 1400.

Fig. 1 plots the best achievable normalized standard deviations (STDs), (i.e. the square roots of the

corresponding entries of the inverse of the Fisher information matrix) ofka, kd, kT andRmax (STD(ka)/ka

etc.) as functions of the parameterkT in log scale. It can be seen that the best achievable normalized standard

deviations of all the four parameters are large whenkT is very small (near10−5). This confirms that the

kinetic parameters are difficult to estimate in the presence of significant mass transport effects, if the other

experimental conditions remain unchanged. On the other hand, whenkT is very large (near105), i.e. the

mass transport effect is small, the best achievable normalized standard deviations ofka, kd, andRmax are

reasonably small, while the best achievable normalized standard deviation ofkT becomes very large.
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