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Abstract The optical microscope is a powerful instrument for observing cellular events.
Recently, the increased use of microscopy in quantitative biological research, including sin-
gle molecule microscopy, has generated significant interest in determining the performance
limits of an optical microscope. Here, we formulate this problem in the context of a parame-
ter estimation approach in which the acquired imaging data is modeled as a spatio-temporal
stochastic process. We derive formulations of the Fisher information matrix for models that
allow both stationary and moving objects. The effects of background signal, detector size,
pixelation and noise sources are also considered. Further, formulations are given that allow
the study of defocused objects. Applications are discussed for the special case of the esti-
mation of the location of objects, especially single molecules. Specific emphasis is placed
on the derivation of conditions that guarantee block diagonal or diagonal Fisher information
matrices.
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Introduction

The optical microscope has been an invaluable tool in cell biological research (Michalet
et al., 2003). In the more recent past, advances in photodetector technology, high speed data
acquisition and fluorescent labeling techniques have significantly enhanced the capabilities
of this instrument. Presently, optical microscopes perform tasks ranging from long term
(hours time scale) three dimensional imaging of live cells to fast imaging (milliseconds time
scale) of molecular interactions within a cellular environment even at the single molecule
level (see e.g., Weiss, 1999; Moerner & Fromm, 2003; Ober, Martinez, Lai, Zhou & Ward,
2004).

In several biological applications such as single molecule studies, the data acquired
through an optical microscope requires extensive quantitative analysis (e.g., see Saxton &
Jacobson, 1997). In order to carry out such studies, it is important for an experimenter to
know the capabilities of the instrument. This not only provides insight into determining the
feasibility of a particular experiment, but it also helps in designing an optimal experimental
setup.

In this paper we present results to calculate performance limits that quantify the capabili-
ties of an optical microscope. Due to the random nature of the acquired data, we use the tools
of statistical estimation theory (see e.g., Kay, 1993) to determine the performance limits. We
also show how experimental factors such as background noise, detector size, detector shape
etc., affect the performance of an optical microscope. The present results are applicable to sev-
eral microscopic techniques such as fluorescence microscopy, brightfield/transmitted-light
microscopy, etc.

Parameter estimation problems play an important role in single molecule microscopy.
Examples relate to determining the location of single molecules (Ober, Ram, & Ward, 2004),
the determination of the photon detection rate, the estimation of the level of defocus etc
(Ram, Ward, & Ober, 2005). Common to all these problems is that it is helpful for the exper-
imenter to have an analytical method to assess with which accuracy the various parameters
can be estimated. The approach that we take is based on calculating the Fisher information
matrix/Cramer Rao lower bound for the corresponding estimation problems. In Ober, Ram
et al., (2004) we have analyzed the localization problem for in focus stationary single mole-
cules using the methodology that is used here. In the current paper we significantly expand
on the scope of the approach and address more general parameter estimation problems that
include the localization problem but are not limited to it. Importantly from the point of view
of applications we also consider time-varying problems, such as when the imaged object is
not stationary. We also investigate under which conditions the Fisher information matrix is
diagonal and determine in detail the influence of the detector size on the accuracy with which
a parameter can be estimated.

It should be pointed out that there have been several reports that addressed specific prob-
lems such as the localization accuracy of point sources for a particular estimation technique
(see e.g., Bobroff, 1986). In Winick (1986) the Cramer Rao lower bound was calculated for
a position estimation problem in the special case where the image of the object is given by a
Gaussian function and the detector is pixelated.

The organization of the paper is as follows. In the Section General stochastic framework
we present the statistical description of the acquired data. In the Section Performance limits
and Fisher information matrix we derive general expressions for the Fisher information
matrix relating to the parameter estimation problem. In the Section Image function we derive
expressions for the Fisher information matrix that are of relevance when the optical system is
spatially shift invariant and an image function can be assumed to exist. In the Section Effects
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of reduced detector size we show how the detector size affects the performance of an optical
microscope. Throughout the paper we provide examples to illustrate our results with specific
profiles that describe the image of a point source.

General stochastic framework

A basic optical microscope setup consists of an object located in the object space, a lens
system and a detector in the image space that captures the image of the object (see Fig. 1).
For example, the object could be an individual point source (e.g., a fluorescent single mol-
ecule or a fluorescent nano-particle), a collection of two or more point sources, or a flu-
orescently labelled cellular organelle. Here, we are primarily interested in experiments in
which the detector detects photons from the object of interest for a fixed acquisition time.
Since the photon detection process is inherently a random phenomenon (see e.g., Saleh, 1978),
the recorded image of the object is stochastic in nature.

We assume that the acquired data consists of the spatial coordinates of the arrival loca-
tion of the detected photons on the detector and the time points at which the photons are
detected. In a typical quantitative experiment, some attributes of the object such as the loca-
tion, distance of separation from other objects, orientation, size etc., are determined from the
acquired data by using a specific estimation procedure. The accuracy of the estimates can be
determined by calculating the standard deviation of the estimates of this attribute assuming
repeated experiments.

In any estimation problem, it is important to know whether the specific estimation tech-
nique used to estimate the desired attribute indeed comes close to the best possible accu-
racy. This can be determined by calculating the Fisher information matrix (Zacks, 1971;

Fig. 1 The schematic shows the main components of an optical microscope based imaging setup. Here, an
object located in the object space is imaged by an optical lens system and the image of the object is captured
by the detector that is located in the image space. The location of the object in the object space is denoted by
(x0, y0, z0)
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Kay, 1993) for the underlying random process that characterizes the acquired data. Accord-
ing to the Cramer-Rao inequality (Zacks, 1971; Kay, 1993), the (co)variance (matrix) of any
unbiased estimator θ̂ of an unknown vector parameter θ is bounded from below by the inverse
of the Fisher information matrix I(θ), i.e.,

Cov(θ̂) ≥ I−1(θ).

Since we have defined the accuracy of an estimator in terms of its standard deviation, the
square root of the inverse Fisher information matrix provides a lower bound to the best pos-
sible accuracy. It is important to note that the Fisher information matrix is independent of
the estimation procedure used to estimate the parameter θ and only depends on the statistical
nature of the acquired data. For instance, if the desired attribute is the location of an ob-
ject, then the above equation implies that for any (asymptotically) unbiased estimator of the
location, the accuracy of its location estimates can never be smaller than the square root of
the inverse Fisher information matrix. Therefore, the square root of the inverse Fisher infor-
mation matrix provides a limit to the accuracy with which the location of the object can be
determined. Generalizing this, in an optical microscope the performance limit in determining
a specific attribute of an object is defined as the square root of the inverse Fisher information
matrix calculated for that attribute.

Due to its stochastic nature, the acquired data is modeled as a space-time random process
(see e.g., Snyder & Miller, 1991) which we refer to as the image detection process G. The
temporal part of G describes the time points of the detected photons and is modeled as a
temporal Poisson process with intensity function Λθ . The spatial part of G describes the
spatial coordinates of the arrival location of the detected photons and is modeled as a fam-
ily of mutually independent random variables {Uτ }τ≥t0 with probability densities { fθ,τ }τ≥t0
defined on the detector C, where τ denotes the time point of a detected photon. The time
dependence of the random variables {Uτ }τ≥t0 denotes the fact that the spatial distribution
of the detected photons can change with time. For example, this is the case when photons
from a moving object are detected. In some applications the spatial part of G is indepen-
dent of τ and in that case the random variables are independent and identically distributed.
In all cases, we assume that the spatial and temporal parts of G are mutually independent
of each other. We note that the probability density fθ,τ satisfies certain regularity condi-
tions that are necessary for the calculation of the Fisher information matrix (see Zacks,
1971).

Definition 1 Let C denote a detector, i.e., an open subset of R
2 with non-zero Lebesgue

measure. Let Θ denote the parameter space that is an open subset of R
n and let t0 ∈ R.

For θ ∈ Θ , an image detection process G(Λθ , { fθ,τ }τ≥t0 , C) is defined as a spatio-temporal
process whose temporal part describes the time points of the photons detected on the detector
C and the spatial part describes the spatial coordinates of the arrival location of the photons
detected on the detector C.

The temporal part is modeled as a Poisson process {Z(τ ); τ ≥ t0} with intensity Λθ ,
called the photon detection rate, such that

(C1) Λθ(τ) is piecewise continuously differentiable with respect to θ for each τ ≥ t0.

(C2) Λθ(τ) is piecewise continuous with respect to τ for each θ ∈ Θ .
Let FΘ be the set of probability densities fθ on C parameterized by θ that satisfy the
following regularity conditions

(C3) ∂ fθ (r)/∂θi exists for r ∈ C, i = 1, . . . , n and θ ∈ Θ .
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(C4)
∫
C |∂ fθ (r)/∂θi |dr < ∞ for i = 1, . . . , n and θ ∈ Θ .

(C5) The integral
∫

C

1

fθ (r)

∂ fθ (r)

∂θi

∂ fθ (r)

∂θ j
dr exists and is finite for i, j = 1, . . . , n and

θ ∈ Θ .

The spatial part of the image detection process is modeled as a family of mutually indepen-
dent random variables {Uτ }τ≥t0 that is assumed to be independent of {Z(τ ); τ ≥ t0}. The
corresponding family of probability densities { fθ,τ }τ≥t0 ⊆ FΘ is called the photon distri-
bution profile, if Uτ with probability density fθ,τ describes the spatial distribution of the
location of the point of detection of a photon on the detector C that is detected at time τ ,
τ ≥ t0.

We next derive an expression for the Fisher information matrix of the image detection
process G.

Theorem 2 Let G(Λθ , { fθ,τ }τ≥t0 , C) be an image detection process. Then for θ ∈ Θ the
Fisher information matrix I(θ) of G corresponding to the time interval [t0, t] is given by

I(θ) =
∫ t

t0

1

Λθ(τ)

(
∂Λθ(τ)

∂θ

)T (
∂Λθ(τ)

∂θ

)

dτ

+
∫ t

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂ fθ,τ (r)

∂θ

)T (
∂ fθ,τ (r)

∂θ

)

drdτ

=
∫

C

∫ t

t0

1

Λθ(τ) fθ,τ (r)

(
∂[Λθ(τ) fθ,τ (r)]

∂θ

)T (
∂[Λθ(τ) fθ,τ (r)]

∂θ

)

drdτ.

Proof This result is a generalization of the Fisher information matrix for a spatio-temporal
random process whose temporal component is a Poisson process and the spatial component is
independent of the time points (see Snyder & Miller, 1991, p. 213). Due to space limitations
the proof of this generalization is omitted, but can be found in Ram (in preparation). �

In deriving the above result we made no specific assumptions about the geometry of the
imaging setup or the analytical expression for the photon distribution profile fθ . Hence the
above theorem provides a general result to calculate the Fisher information matrix for a wide
range of situations. Note that the two-term expression of I(θ) shows explicitly the dependence
of I(θ) on the temporal and spatial components of the image detection process.

We next consider the superposition of two image detection processes. In many concrete
situations the detected photons originate from different sources. For example, the detected
photons can result from a background component in addition to those detected from the
object of interest. In an incoherent imaging setup, such as in fluorescence microscopy, the
photon detection process that describes the collection of all the detected photons is then
the superposition of the object and the background image detection process.

Theorem 3 Let G1(Λ1
θ , { f 1

θ,τ }τ≥t0 , C) and G2(Λ2
θ , { f 2

θ,τ }τ≥t0 , C) be two independent
image detection processes. Then the superposition process is an image detection process
G(Λθ , { fθ,τ }τ≥t0 , C) whose photon detection rate Λθ is given by

Λθ(τ) = Λ1
θ (τ ) + Λ2

θ (τ ), τ ≥ t0, θ ∈ Θ, (1)

and the photon distribution profile { fθ,τ }τ≥t0 is given by

fθ,τ (r) = ε1
θ (τ ) f 1

θ,τ (r) + ε2
θ (τ ) f 2

θ,τ (r), r ∈ C, θ ∈ Θ, τ ≥ t0, (2)

where ε1
θ (τ ) = Λ1

θ (τ )/Λθ (τ), ε2
θ (τ ) = Λ2

θ (τ )/Λθ (τ), θ ∈ Θ , τ ≥ t0.
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Proof This result is analogous to the result of the superposition of Poisson processes (see
e.g., Snyder & Miller, 1991). For a detailed proof please see Ram (in preparation). �

Performance limits and Fisher information matrix

Using the results derived in the previous section, we next obtain expressions of the Fisher
information matrix for a parameter estimation problem in which the parameter vector θ :=
(θl , θa, θΛ) is decomposed into three components, where θl denotes the location component,
θa denotes an auxiliary component and θΛ denotes the rate component. The location com-
ponent θl typically consists of the x and y coordinates of the object location. The auxiliary
component θa , if present, may consist of other relevant parameters such as the z coordinate
of the object location. In single molecule microscopy it is often reasonable to assume that
the photon detection rate is a constant, i.e., Λθ(τ) = Λ0, τ ≥ t0 and that the intensity level
Λ0 needs to be estimated. In this case θΛ would consist of the parameter Λ0. For example, in
tracking problems for vesicles, due to photobleaching effects the photon detection rate can
often be modeled as Λθ(τ) = Λ0 exp(−(τ − t0)kb), τ ≥ t0. In this case θΛ would consist of
the parameters Λ0 and kb.

In the following theorem, we consider two independent image detection processes G1

and G2. The image detection process G1 is such that its photon detection rate Λ1
θ only

depends on the rate component θΛ, and its photon distribution profile f 1
θ,τ only depends on

the location component θl and the auxiliary component θa . The image detection process G2

is such that its photon detection rate Λ2 and photon distribution profile f 2
τ are independent

of θ . For example, G1 can model the detected photons from the object of interest, whereas
G2 might model a background component.

Theorem 4 Let G1(Λ1
θ , { f 1

θ,τ }τ≥t0 , C) and G2(Λ2, { f 2
τ }τ≥t0 , C) be two independent image

detection processes such that G2 is independent of θ , θ ∈ Θ . Let G be the superposition of
G1 and G2. Assume that

(A1) for θ = (θl , θa, θΛ) ∈ Θ and τ ≥ t0, ∂ f 1
θ,τ (r)/∂θΛ = 0, r ∈ C, ∂Λ1

θ (τ )/∂θl = 0,

∂Λ1
θ (τ )/∂θa = 0.

Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t]
is given by

I(θ) =
⎡

⎣
Il,l(θ) Il,a(θ) Il,Λ(θ)

IT
l,a(θ) Ia,a(θ) Ia,Λ(θ)

IT
l,Λ(θ) IT

a,Λ(θ) IΛ,Λ(θ)

⎤

⎦ , (3)

where, for θ ∈ Θ and α, β ∈ {	, a},

Iα,β(θ) :=
∫ t

t0

∫

C

[Λ1
θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

(
∂ f 1

θ,τ (r)

∂θα

)T (
∂ f 1

θ,τ (r)

∂θβ

)

dr dτ, (4)

Iα,Λ(θ) :=
∫ t

t0

∫

C

Λ1
θ (τ ) f 1

θ,τ (r)

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

(
∂ f 1

θ,τ (r)

∂θα

)T (
∂Λ1

θ (τ )

∂θΛ

)

dr dτ, (5)

IΛ,Λ(θ) :=
∫ t

t0

∫

C

( f 1
θ,τ (r))2

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

(
∂Λθ (τ)

∂θΛ

)T
(

∂Λ1
θ (τ )

∂θΛ

)

dr dτ. (6)



Multidim Syst Sig Process (2006) 17:27–57 33

Proof By Theorem 3, for the image detection process G(Λθ , { fθ,τ }τ≥t0 , C), Λθ(τ) :=
Λ1

θ (τ ) + Λ2(τ ) and fθ,τ (r) := ε1
θ (τ ) f 1

θ,τ (r) + ε2
θ (τ ) f 2

τ (r) for r ∈ C, θ ∈ Θ , τ ≥ t0,

where ε1
θ (τ ) := Λ1

θ (τ )/(Λ1
θ (τ ) + Λ2(τ )) and ε2

θ (τ ) := Λ2(τ )/(Λ1
θ (τ ) + Λ2(τ )), τ ≥ t0,

θ ∈ Θ . Thus we have Λθ(τ) fθ,τ (r) = (Λ1
θ (τ ) + Λ2(τ ))(ε1

θ (τ ) f 1
θ,τ (r) + ε2

θ (τ ) f 2
τ (r)) =

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r), r ∈ C, θ ∈ Θ , τ ≥ t0. Substituting this in Theorem 2, using

condition (A1) and the fact that Λ2 and f 2
τ are independent of θ , we get

I(θ) =
∫

C

∫ t

t0

1

Λθ(τ) fθ,τ (r)

(
∂[Λθ(τ) fθ,τ (r)]

∂θ

)T (
∂[Λθ(τ) fθ,τ (r)]

∂θ

)

dr dτ

=
∫ t

t0

∫

C

1

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Λ1
θ (τ )

(
∂ f 1

θ,τ (r)

∂θl

)T

Λ1
θ (τ )

(
∂ f 1

θ,τ (r)

∂θa

)T

f 1
θ,τ (r)

(
∂Λ1

θ (τ )

∂θΛ

)T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
Λ1

θ (τ )
∂ f 1

θ,τ (r)

∂θl
Λ1

θ (τ )
∂ f 1

θ,τ (r)

∂θa
f 1
θ,τ (r)

∂Λ1
θ (τ )

∂θΛ

]
dr dτ, θ ∈ Θ.

From the above equation the result immediately follows. �

In many practical situations it is important to know whether the Fisher information matrix
I(θ) is diagonal, as the diagonality of I(θ) has several implications. For example, it is well
known that under certain conditions the maximum likelihood estimator of a vector parameter
θ is asymptotically Gaussian distributed with asymptotic mean θ and covariance I−1(θ) (see
e.g., Zacks, 1971). Here, if I(θ) is diagonal, this implies that the components of the maximum
likelihood estimate of θ are asymptotically independent. Note that if an efficient estimator
of θ exists (i.e., an unbiased estimator whose covariance matrix is equal to I−1(θ), θ ∈ Θ),
then a diagonal I(θ) ensures that the estimates of θ are uncorrelated.

In general, for θ = (θ1, . . . , θn) ∈ Θ , if I(θ) is diagonal, then this implies that the limit
of the accuracy of the unbiased estimates of θi , i = 1, . . . , n, does not depend on the other
unknown parameters in θ . For an unbiased estimator of the object location, this means that
the limit of the localization accuracy of the x coordinate of the location is the same whether
or not the y and z coordinates of the location are known.

We next investigate the conditions under which the Fisher information matrix given in
Theorem 4 is block diagonal. As will be shown, for the parameter vector θ = (θl , θa, θΛ), it
turns out that I(θ) is block diagonal when the detector C and the photon distribution profiles
f 1
θ,τ and f 2

τ satisfy certain symmetry conditions. Furthermore, for some special cases of θ ,
I(θ) becomes fully diagonal (see Corollary 9). We next define a symmetric detector and a
symmetric function.

Definition 5
1. A detector C is said to be symmetric if there exists a point (cx , cy) ∈ R

2, known as
the center of C, such that for every (x, y) ∈ C, (2cx − x, y) ∈ C, (x, 2cy − y) ∈ C and
(2cx − x, 2cy − y) ∈ C.
2. Let C be a symmetric detector with center (cx , cy). A function f : C → R is said to
be symmetric (antisymmetric) along the x axis with respect to cx if for every (x, y) ∈ C,
f (x, y) = f (2cx − x, y) ( f (x, y) = − f (2cx − x, y)). If f is symmetric along both the
x and y axes with respect to cx and cy respectively, then f is said to be symmetric with respect
to the center of C.
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In the following theorem we assume the location component θl to be θl = (θ1, θ2).
Further, we assume that (∂ f 1

θ,τ (r)/∂θ1) = −ϑx (∂ f 1
θ,τ (r)/∂x) and (∂ f 1

θ,τ (r)/∂θ2) = −ϑy

(∂ f 1
θ,τ (r)/∂y), r = (x, y) ∈ C, θ ∈ Θ , τ ≥ t0, where ϑx and ϑy are constants that are

independent of (x, y) ∈ C. This assumption is satisfied if the photon distribution profile f 1
θ,τ

is a function of (x/ϑx − θ1, y/ϑy − θ2), where (x, y) ∈ C (see Section Image function).

Theorem 6 Let G1(Λ1
θ , { f 1

θ,τ }τ≥t0 , C), G2(Λ2, { f 2
τ }τ≥t0 , C) and G be image detection

processes as given in Theorem 4. Assume that

(A1) for θ = (θl , θa, θΛ) ∈ Θ, θl = (θ1, θ2), θa = (θ3, . . . , θk) and θΛ = (θk+1, . . . , θn),

∂ f 1
θ,τ (r)/∂θΛ = 0, r ∈ C, τ ≥ t0, ∂Λ1

θ (τ )/∂θl = 0, τ ≥ t0 and ∂Λ1
θ (τ )/∂θa = 0,

τ ≥ t0,
(A2) ∂ f 1

θ,τ (r)/∂θ1 = −ϑx (∂ f 1
θ,τ (r)/∂x), ∂ f 1

θ,τ (r)/∂θ2 = −ϑy(∂ f 1
θ,τ (r)/∂y), r = (x, y) ∈

C, θ ∈ Θ, τ ≥ t0, where ϑx and ϑy are constants that are independent of x and y,

(A3) the detector C is symmetric, and
(A4) f 1

θ,τ and f 2
τ are symmetric with respect to the center of the detector C for θ ∈ Θ and

τ ≥ t0.

1. Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval
[t0, t] is given by

I(θ) =
⎡

⎣
Il,l(θ) Il,a(θ) 0
IT
l,a(θ) Ia,a(θ) Ia,Λ(θ)

0 IT
a,Λ(θ) IΛ,Λ(θ)

⎤

⎦ ,

where for θ ∈ Θ , Il,a(θ) and Ia,a(θ) are given by Eq. 4, Ia,Λ(θ) is given by
Eq. 5, IΛ,Λ(θ) is given by Eq. 6 and

Il,l(θ) := Diag

[

ϑ2
x

∫ t

t0

∫

C

[Λ1
θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

(
∂ f 1

θ,τ (r)

∂x

)2

,

ϑ2
y

∫ t

t0

∫

C

[Λ1
θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

(
∂ f 1

θ,τ (r)

∂y

)2

drdτ

]

, (7)

where Diag denotes the diagonal matrix.

2. In addition to conditions (A1–A4), assume that

(A5) all the elements of the vector ∂ f 1
θ,τ (r)/∂θa, r ∈ C, are symmetric with respect to the

center of the detector C for θ ∈ Θ and τ ≥ t0.

Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t]
is given by

I(θ) =
⎡

⎣
Il,l(θ) 0 0

0 Ia,a(θ) Ia,Λ(θ)

0 IT
a,Λ(θ) IΛ,Λ(θ)

⎤

⎦ ,

where all the non-zero entries of I(θ) are given in result 1.
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3. In addition to conditions (A1–A5), assume that

(A6) the photon detection rate of G2 is zero, i.e., Λ2(τ ) = 0, τ ≥ t0.

Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval [t0, t]
is given by

I(θ) =
⎡

⎣
Il,l(θ) 0 0

0 Ia,a(θ) 0
0 0 IΛ,Λ(θ)

⎤

⎦ , (8)

where for θ ∈ Θ,

Il,l(θ) :=

⎡

⎢
⎢
⎣

ϑ2
x

∫ t
t0

∫
C

Λ1
θ (τ )

f 1
θ,τ (r)

(
∂ f 1

θ,τ (r)

∂x

)2

dr dτ 0

0 ϑ2
y

∫ t
t0

∫
C

Λ1
θ (τ )

f 1
θ,τ (r)

(
∂ f 1

θ,τ (r)

∂y

)2

dr dτ

⎤

⎥
⎥
⎦ , (9)

Ia,a(θ) =
∫ t

t0

∫

C

Λ1
θ (τ )

f 1
θ,τ (r)

(
∂ f 1

θ,τ (r)

∂θa

)T
∂ f 1

θ,τ (r)

∂θa
dr dτ, (10)

IΛ,Λ(θ) =
∫ t

t0

1

Λ1
θ (τ )

(
∂Λ1

θ (τ )

∂θΛ

)T
∂Λ1

θ (τ )

∂θΛ

dτ. (11)

Proof
1. Using condition (A1) and the fact that Λ2 and f 2

τ are independent of θ , we can show that
the general expression for the Fisher information matrix is given by Theorem 4 (see Eq. 3).
Consider the matrix Il,l(θ) that is given by Eq. 4. Using condition (A2) we immediately
obtain the integral expressions of [Il,l(θ)]11 and [Il,l(θ)]22 that are given in Eq. 7. To obtain
the desired result, we need to show that the off-diagonal terms of Il,l(θ) (i.e., [Il,l(θ)]12 and
[Il,l(θ)]21) and all the terms of Il,Λ(θ) (i.e., [Il,Λ(θ)]i j , i = 1, 2, j = k + 1, . . . , n) are zero.

Let (cx , cy) denote the center of the detector C and define TX : C → R
2, (x, y) �→

(2cx − x, y). By condition (A4), f 1
θ,τ (x, y) = ( f 1

θ,τ ◦ TX )(x, y), (x, y) ∈ C, θ ∈ Θ and
τ ≥ t0. Using the chain rule of differentiation we get

∂ f 1
θ,τ (x, y)

∂x
= ∂[( f 1

θ,τ ◦ TX )(x, y)]
∂x

= ∂ f 1
θ,τ (2cx − x, y)

∂x

∂(2cx − x)

∂x

= −
(

∂ f 1
θ,τ

∂x
◦ TX

)

(x, y), (12)

where (x, y) ∈ C, θ ∈ Θ and τ ≥ t0. Similarly, by using condition (A4) we can show that
for θ ∈ Θ and τ ≥ t0,

∂ f 1
θ,τ (x, y)

∂y
= ∂[( f 1

θ,τ ◦ TX )(x, y)]
∂y

=
(

∂ f 1
θ,τ

∂y
◦ TX

)

(x, y), (x, y) ∈ C, (13)

Λ1
θ (τ ) f 1

θ,τ (x, y) + Λ2(τ ) f 2
τ (x, y) = ((Λ1

θ (τ ) f 1
θ,τ + Λ2(τ ) f 2

τ ) ◦ TX
)
(x, y), (x, y) ∈ C.

(14)
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Consider the term [I(θ)]12 that is given by Eq. 4. Hence using this result, condition (A2)
and Eqs. 12–14, we get for θ ∈ Θ ,

[Il,l(θ)]12 =
∫ t

t0

∫

C

[Λ1
θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ (r) + Λ2(τ ) f 2
τ (r)

∂ fθ,τ (r)

∂θ1

∂ fθ,τ (r)

∂θ2
dr dτ

= ϑxϑy

∫ t

t0

∫

C

[Λ1
θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ (x, y)+Λ2(τ ) f 2
τ (x, y)

∂ f 1
θ,τ (x, y)

∂x

∂ f 1
θ,τ (x, y)

∂y
dxdydτ

= −ϑxϑy

∫ t

t0

∫

C

((
[Λ1

θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ + Λ2(τ ) f 2
τ

∂ f 1
θ,τ

∂x

∂ f 1
θ,τ

∂y

)

◦ TX

)

(x, y) dx dy dτ

= −ϑxϑy

∫ t

t0

∫

C

[Λ1
θ (τ )]2

Λ1
θ (τ ) f 1

θ,τ (x, y) + Λ2(τ ) f 2
τ (x, y)

×

∂ f 1
θ,τ (x, y)

∂x

∂ f 1
θ,τ (x, y)

∂y
dx dy dτ = −[Il,l(θ)]12, (15)

where we have used the Theorem on change of variables (see Rudin, 1987, pp. 153–155) in
the final step. Similarly we can show that [Il,l(θ)]21 = −[Il,l(θ)]21, θ ∈ Θ . Thus we have
[Il,l(θ)]12 = [Il,l(θ)]21 = 0, θ ∈ Θ .

If TY : C → R
2, (x, y) �→ (x, 2cy − y), then similar to Eqs. 12 and 14, we can show that

for θ ∈ Θ and τ ≥ t0,

∂ f 1
θ,τ (x, y)

∂y
= ∂[( f 1

θ,τ ◦ TY )(x, y)]
∂y

= −
(

∂ f 1
θ,τ

∂y
◦ TY

)

(x, y), (x, y) ∈ C, τ ≥ t0, θ ∈ Θ, (16)

Λ1
θ (τ ) f 1

θ,τ (x, y) + Λ2(τ ) f 2
τ (x, y) = ((Λ1

θ (τ ) f 1
θ,τ + Λ2(τ ) f 2

τ ) ◦ TY
)
(x, y), (x, y) ∈ C.

(17)

Hence by using Eqs. 12, 14, 16 and 17 and condition (A2), we can show that [Il,Λ(θ)]i j =
−[Il,Λ(θ)]i j , for i = 1, 2, j = k + 1, . . . , n and θ ∈ Θ . Hence Il,Λ(θ) = 0, θ ∈ Θ . From
this the result follows.
2. By condition (A5), for ζ ∈ {X, Y }, ∂ f 1

θ,τ (x, y)/∂θa = ∂[( f 1
θ,τ ◦ Tζ )(x, y)]/∂θa =

(
(∂ f 1

θ,τ /∂θa) ◦ Tζ

)
(x, y), (x, y) ∈ C, θ ∈ Θ and τ ≥ t0, where TX and TY are defined

above. Hence using this result, Eqs. 12–14, Eqs. 16–17, condition (A2) and by taking an
approach similar to that of Eq. 15, we can show that [Il,a(θ)]i j = −[Il,a(θ)]i j , i = 1, 2,
j = 3, . . . , k, θ ∈ Θ . From this it follows that Il,a(θ) = 0, θ ∈ Θ . Substituting this in result
1 of this Theorem the result follows immediately.
3. Substituting for Λ2 in Eq. 7 we immediately obtain the expression for Il,l(θ) that is given
by Eq. 9. Consider the term Ia,Λ(θ) that is given by Eq. 5 (see Theorem 4). Since f 1

θ,τ is

a density function that satisfies conditions (C3–C5) of Definition 1,
∫
C(∂ f 1

θ,τ (r)/∂θ) = 0,

θ ∈ Θ and τ ≥ t0 (Zacks, 1971 pp. 182–183). Using this result and substituting for Λ2, we
get

Ia,Λ(θ) =
∫ t

t0

(∫

C

∂ f 1
θ,τ (r)

∂θa

)T

dr
∂Λθ (τ)

∂θΛ

dτ = 0, θ ∈ Θ.
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Finally, consider the term IΛ,Λ(θ) that is given by Eq. 6. Substituting for Λ2 and using the
fact that

∫
C f 1

θ,τ (r) dr = 1, τ ≥ t0, θ ∈ Θ , we obtain the desired expression that is given in
Eq. 11. �

Remark 7 Note that when condition (A6) is satisfied, the photon detection rate and the
photon distribution profile of G are equal to that of G1. In this case, the condition that
(see condition (A4)) f 2

τ is symmetric with respect to the center of the detector is no longer
required.

From the above theorem we see that the number of symmetry conditions imposed on the
partial derivatives of f 1

θ,τ (i.e., ∂ f 1
θ,τ (r)/∂θl and ∂ f 1

θ,τ (r)/∂θa) determines the number of
off-diagonal terms that are zero in the Fisher information matrix I(θ). Note that the photon
detection rate Λ2 also plays a crucial role in making I(θ) block diagonal. Consider a special
case, where the parameter vector θ = (θl , θΛ) only consists of the location θl and the rate θΛ

components. In this case the Fisher information matrix given in result 1 of the above theorem
is block diagonal, even when the photon detection rate Λ2(τ ) �= 0, τ ≥ t0. Finally, we note
that in result 3 of the above theorem if the auxiliary component θa and the rate component
θΛ are scalars, then I(θ) is diagonal.

Image function

In the previous sections we made no assumptions about the specific functional form of the
photon distribution profile. In an optical microscope, the image of an object can often be
considered to be invariant with respect to shifts in the object location (Goodman, 1996).
Hence the photon distribution profile f 1

θ,τ can be expressed as a scaled and shifted version

of the image of the object. For example, in the case of a moving object, f 1
θ,τ can be written

as f 1
θ,τ (x, y) = 1

M2 qθe

( x
M − x0,τ ,

y
M − y0,τ

)
, (x, y) ∈ R

2, θ ∈ Θ , τ ≥ t0, where qθe denotes
an image function, M > 0 denotes the lateral magnification and (x0,τ , y0,τ ) denotes the time
dependent x − y location of the object. An image function qθe describes the image of a fixed
object on the detector plane at unit lateral magnification when the object is located along
the z axis in the object space (see Fig. 1). Here, θe is a vector that parameterizes the image
function. For example, θe could be the z position of the object and/or the angles that specify
the 3D orientation of the object. In some applications the θe parameterization is not required
and in such cases the image function is denoted as q . Since f 1

θ,τ is a probability density

function that satisfies conditions (C3–C5) of Definition 1, to express f 1
θ,τ in terms of qθe we

impose appropriate conditions on the image function that are given below.

Definition 8 Let Θe ⊆ R
m be a parameter space. For θe = (θe,1, . . . , θe,m) ∈ Θe, we define

qθe : R
2 → [0,∞) to be an image function if the following properties are satisfied.

1.
∫

R2 qθe (x, y) dx dy = 1,

2. ∂qθe (x,y)

∂x , ∂qθe (x,y)

∂y and ∂qθe (x,y)

∂θe,i
exist for every (x, y) ∈ R

2,

3.
∫

R2

∣
∣
∣
∂qθe (x,y)

∂x

∣
∣
∣ dx dy < ∞,

∫
R2

∣
∣
∣
∂qθe (x,y)

∂y

∣
∣
∣ dx dy < ∞ and

∫
R2

∣
∣
∣
∂qθe (x,y)

∂θe,i

∣
∣
∣ dx dy < ∞,

and
4.
∫

R2
1

qθe (x,y)

∂qθe (x,y)

∂ζk

∂qθe (x,y)

∂ζl
dx dy,

∫
R2

1
qθe (x,y)

∂qθe (x,y)

∂ζk

∂qθe (x,y)

∂θe,i
dx dy and

∫
R2

1
qθe (x,y)

∂qθe (x,y)

∂θe,i

∂qθe (x,y)

∂θe, j
dx dy exist and are finite, where ζ1 = x , ζ2 = y, k, l = 1, 2 and

i, j = 1, . . . , m.
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The image function qθe and its derivative (∂qθe/∂θe,i ) are said to be symmetric if, for θe ∈ Θe,

qθe (x, y) = qθe (−x, y) = qθe (x,−y) and ∂qθe (x,y)

∂θe,i
= ∂qθe (−x,y)

∂θe,i
= ∂qθe (x,−y)

∂θe,i
, respectively,

for (x, y) ∈ R
2.

In several applications the image of the object can be considered to be invariant with
respect to time, for example, when the object is not moving during the acquisition of its
image. In such cases, the expression for the photon distribution profile will be independent
of time. In the following Corollary we derive a general expression for the Fisher information
matrix for such applications. Here, the parameter vector is set to be θ = (θl , θa, θΛ) ∈ Θ ,
where θl = (x0, y0) denotes the x-y location of the object and θΛ = Λ0 is a scalar param-
eter that characterizes the photon detection rate Λ1

θ . We assume that the photon distribution
profile f 1

θ,τ is given in terms of a symmetric image function. We also assume the detector

to be infinite, i.e., C = R
2. An infinite detector provides the best case scenario, where all

the photons that reach the detector plane are detected by the detector (see Fig. 1). Hence
the square root of the inverse Fisher information matrix for an infinite detector provides the
fundamental limit to the accuracy with which the components of the parameter vector θ can
be determined. We then consider a special case, where θl and θΛ are as given above and
the auxiliary component θa = ε0 is a scalar. For this special case we show that the Fisher
information matrix is diagonal. Finally, we assume the photon distribution profile f 1

θ,τ to be
independent of θa and the parameter vector to be θ = (θl , θΛ) with θl and θΛ as given above.

Corollary 9 Let Θ ⊆ R
n be a parameter space. Let G1(Λ1

θ , { f 1
θ,τ }τ≥t0 , R

2) and

G2(Λ2, { f 2
τ }τ≥t0 , R

2) be two independent image detection processes such that G2 is indepen-
dent of θ . Let G be the superposition of G1 and G2. For θ = (θl , θa, θΛ) ∈ Θ , let θl = (x0, y0)

and θΛ = Λ0, where x0, y0 and Λ0 are scalar parameters. Assume that for θ ∈ Θ ,

(A1) ∂Λ1
θ (τ )/∂θl = 0, ∂Λ1

θ (τ )/∂θa = 0 and Λ2(τ ) = 0 for τ ≥ t0,
(A2) there exists a symmetric image function qθa such that for M > 0, the photon distribution

profile f 1
θ,τ is given by

f 1
θ,τ (x, y) = 1

M2 qθa

( x

M
− x0,

y

M
− y0

)
, (x, y) ∈ R

2, τ ≥ t0,

(A3) all the elements of the vector (∂qθa (x, y)/∂θa) are symmetric, (x, y) ∈ R
2.

1. Then for θ ∈ Θ the Fisher information matrix of G corresponding to the time interval
[t0, t] is given by

I(θ) =
⎡

⎣
Il,l(θ) 0 0

0 Ia,a(θ) 0
0 0 IΛ,Λ(θ)

⎤

⎦ ,

where

Il,l(θ) = Diag

[∫ t

t0
Λ1

θ (τ )dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂x

)2

dx dy,

∫ t

t0
Λ1

θ (τ )dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂y

)2

dx dy

]

, θ ∈ Θ,

where Diag denotes the diagonal matrix.
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Ia,a(θ) =
∫ t

t0
Λ1

θ (τ )dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂θa

)T
∂qθa (x, y)

∂θa
dx dy, θ ∈ Θ,

IΛ,Λ(θ) =
∫ t

t0

1

Λ1
θ (τ )

(
∂Λ1

θ (τ )

∂Λ0

)2

dτ, θ ∈ Θ.

2. If θa = ε0 is scalar, then for θ = (x0, y0, ε0,Λ0) ∈ Θ the Fisher information matrix of G
corresponding to the time interval [t0, t] is given by

I(θ) = Diag

⎡

⎣
∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

qε0(x, y)

(
∂qε0(x, y)

∂x

)2

dxdy,

∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

qε0(x, y)

(
∂qε0(x, y)

∂y

)2

dxdy,

∫ t

t0
Λ1

θ (τ )dτ

∫

R2

1

qε0(x, y)

(
∂qε0(x, y)

∂ε0

)2

dxdy,

∫ t

t0

1

Λ1
θ (τ )

(
∂Λ1

θ (τ )

∂Λ0

)2

dτ

⎤

⎦, θ ∈ Θ, (18)

where Diag denotes the diagonal matrix.

3. If θ = (x0, y0,Λ0) ∈ Θ , then the Fisher information matrix of G corresponding to the
time interval [t0, t] is given by

I(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∫ t
t0

Λ1
θ (τ )dτ

∫
R2

1
q(x,y)

(
∂q(x,y)

∂x

)2
dxdy 0 0

0
∫ t

t0
Λ1

θ (τ )dτ
∫
R2

1
q(x,y)

(
∂q(x,y)

∂y

)2
dxdy 0

0 0
∫ t

t0
1

Λ1
θ
(τ )

(
∂Λ1

θ
(τ )

∂Λ0

)2
dτ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(19)

Proof
1. Let M > 0. By conditions (A1) and (A2), ∂ f 1

θ,τ (r)/∂θΛ = 0, ∂Λ1
θ (τ )/∂θl = 0 and

∂Λ1
θ (τ )/∂θa = 0 for r ∈ R

2, θ ∈ Θ and τ ≥ t0. Further, from condition (A2) we can
verify that ∂ f 1

θ,τ (r)/∂x0 = −M(∂ f 1
θ,τ (r)/∂x) and ∂ f 1

θ,τ (r)/∂y0 = −M(∂ f 1
θ,τ (r)/∂y) for

r = (x, y) ∈ R
2, θ ∈ Θ and τ ≥ t0. Since (Mx0, My0) ∈ R

2, for every (x, y) ∈ R
2, (2Mx0−

x, y) ∈ R
2, (x, 2My0 − y) ∈ R

2 and (2Mx0 − x, 2My0 − y) ∈ R
2. Hence R

2 is symmetric
with respect to the point (Mx0, My0) (see Definition 5). From conditions (A2 – A3) we can
easily verify that f 1

θ,τ (x, y) and all the elements of the vector ∂ f 1
θ,τ (x, y)/∂θa = (1/M2)(∂qθa

(x/M − x0, y/M − y0)/∂θa) are symmetric with respect to the point (Mx0, My0), where
(x, y) ∈ R

2, θ ∈ Θ and τ ≥ t0. Finally we note that by condition (A1), Λ2(τ ) = 0, τ ≥ t0.
Thus from the above and from Remark 7, we see that the photon distribution profile and

the photon detection rate of G1 and G2 satisfy all of the conditions of result 3 of Theorem 6.
Hence for the present case, the Fisher information matrix I(θ) is block diagonal (see Eq. 8).
From Eq. 9 we see that Il,l(θ) is diagonal and we evaluate its diagonal terms [Il,l(θ)]11 and
[Il,l(θ)]22. Substituting for Λ1

θ and f 1
θ,τ in the integral expression of [Il,l(θ)]11, we get
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[Il,l(θ)]11 = M2
∫ t

t0

∫

R2

Λ1
θ (τ )

f 1
θ,τ (r)

(
∂ f 1

θ,τ (r)

∂x

)2

drdτ

= M2
∫ t

t0
Λ1

θ (τ )dτ

∫

R2

1
1

M2 qθa

( x
M − x0,

y
M − y0

)

×
(

1

M2

∂qθa

( x
M − x0,

y
M − y0

)

∂x

)2

dxdy

=
∫ t

t0
Λ1

θ (τ )dτ

∫

R2

Λ1
θ (τ )

qθa (u, v)

(
∂qθa (u, v)

∂u

1

M

)2

(Mdu)(Mdv)

(
u:= x

M
− x0, v := y

M
− y0

)

=
∫ t

t0
Λ1

θ (τ )dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂x

)2

dxdy, θ ∈ Θ.

Similarly, we can show that

[Il,l(θ)]22 =
∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂y

)2

dxdy,

Ia,a(θ) =
∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

f 1
θ,τ (r)

(
∂ f 1

θ,τ (r)

∂θa

)T
∂ f 1

θ,τ (r)

∂θa
dr

=
∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂θa

)T
∂qθa (x, y)

∂θa
dxdy,

IΛ,Λ(θ) =
∫ t

t0

1

Λ1
θ (τ )

(
∂Λ1

θ (τ )

∂θΛ

)T
∂Λ1

θ (τ )

∂θΛ

dτ =
∫ t

t0

1

Λ1
θ (τ )

(
∂Λ1

θ (τ )

∂Λ0

)2

dτ,

where θ ∈ Θ , and Ia,a(θ) and IΛ,Λ(θ) are given by Eqs. 10 and 11 respectively. From this
the result follows.
2. If θa = ε0 is scalar, then for θ ∈ Θ ,

Ia,a(θ) =
∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

qθa (x, y)

(
∂qθa (x, y)

∂θa

)T
∂qθa (x, y)

∂θa
dxdy

=
∫ t

t0
Λ1

θ (τ ) dτ

∫

R2

1

qε0(x, y)

(
∂qε0(x, y)

∂ε0

)2

dxdy.

Substituting this in result 1 of this Corollary we obtain the desired result.
3. The result immediately follows from result 2 of this Corollary. �

From the above Corollary we see that the Fisher information matrix I(θ) is independent
of (x0, y0) and only depends on the image function and its partial derivatives. Moreover, I(θ)

is diagonal when θ = (x0, y0, ε0,Λ0) and θ = (x0, y0,Λ0). Note that if ε0 = z0 denotes the
z coordinate of the object location, then I(θ) that is given in result 2 of the above Corollary
can be used to calculate the three dimensional fundamental limit of the localization accuracy
of the object. In Ober, Ram et al., (2004), we recently reported integral expressions for I(θ)

that are analogous to Eqs. 18 and 19, where the parameter vector was set to be θ = (x0, y0),
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Λ0 was assumed to be known and I(θ) was a 2×2 diagonal matrix. We note that Eqs. 18 and
19 are generalizations of our earlier result and show that the diagonality of I(θ) is preserved
even when additional parameters such as ε0 and Λ0 are assumed to be unknown.

Example-1

We now illustrate the results derived in this section by considering specific image func-
tions that describe the image of a fixed point source. According to optical diffraction theory,
when a point source is in focus with respect to the detector, the intensity distribution of the
image of the point source is described by the Airy profile (Born & Wolf, 1999, pp. 440).
The 2D Gaussian profile, on the other hand, has been widely used to approximate the Airy
profile, for example, in the analysis of data from single molecule fluorescence experiments
(Kubitscheck, Kückmann, Kues, & Peter, 2000; Santos & Young, 2000; Thompson, Larson, &
Webb, 2002). In the following Corollary, the parameter vector is set to be θ = (x0, y0,Λ0) ∈
Θ and the photon distribution profile f 1

θ,τ is assumed to be given in terms of an image func-

tion q . The photon detection rate is assumed to be a constant, i.e., Λ1
θ (τ ) = Λ0, τ ≥ t0. For

each image function, we derive a simple formula for the fundamental limit of the localization
accuracy

√[I−1(θ)]11 (
√[I−1(θ)]22) of x0 (y0) and for the fundamental limit of the accuracy√[I−1(θ)]33 of Λ0. We note that the following results are extensions of the results reported

in Ober, Ram et al., (2004).

Corollary 10 Let Θ ⊆ R
3 be a parameter space. Let G1, G2 and G be image detection pro-

cesses that are given in Corollary 9. For θ = (x0, y0,Λ0) ∈ Θ and τ ≥ t0, let Λ2(τ ) = 0,
Λ1

θ (τ ) = Λ0 and for M > 0, assume that there exist a symmetric image function q such
that f 1

θ,τ (x, y) = (1/M2)q(x/M − x0, y/M − y0), (x, y) ∈ R
2.

1. Airy profile: If, for na, λ > 0, q is given by

q(x, y) = J 2
1 ( 2πna

λ

√
x2 + y2)

π(x2 + y2)
, (x, y) ∈ R

2, (20)

then for θ = (x0, y0,Λ0) ∈ Θ the Fisher information matrix of G corresponding to the time
interval [t0, t] is given by

I(θ) =
⎡

⎢
⎣

(2πna)2Λ0(t−t0)

λ2 0 0

0 (2πna)2Λ0(t−t0)

λ2 0
0 0 t−t0

Λ0

⎤

⎥
⎦ .

Further, the fundamental limit of the localization accuracy δ2d
x0

(δ2d
y0

) of x0 (y0) and the fun-

damental limit of the accuracy δ2d
Λ0

of Λ0 are given by

δ2d
x0

= δ2d
y0

= λ

2πna
√

Λ0(t − t0)
, δ2d

Λ0
=
√

Λ0

(t − t0)
. (21)

2. 2D Gaussian profile: If, for σ > 0, q is given by

q(x, y) := 1

2πσ 2 exp

(

− x2 + y2

2σ 2

)

, (x, y) ∈ R
2, (22)
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then for θ = (x0, y0,Λ0) ∈ Θ the Fisher information matrix of G corresponding to the time
interval [t0, t] is given by

I(θ) =
⎡

⎢
⎣

Λ0(t−t0)

σ 2 0 0

0 Λ0(t−t0)

σ 2 0
0 0 t−t0

Λ0

⎤

⎥
⎦ .

Further, the fundamental limit of the localization accuracy δ
gau
x0 (δgau

y0 ) of x0 (y0) and the
fundamental limit of the accuracy δ

gau
Λ0

of Λ0 are given by

δ
gau
x0 = δ

gau
y0 = σ√

Λ0(t − t0)
, δ

gau
Λ0

=
√

Λ0

(t − t0)
. (23)

Proof
1. It can be verified that the Airy profile is a symmetric image function. By definition,
for θ = (x0, y0,Λ0) ∈ Θ and τ ≥ t0, Λ2(τ ) = 0, ∂Λ1

θ (τ )/∂x0 = ∂Λ1
θ (τ )/∂y0 = 0,

∂ f 1
θ,τ (r)/∂Λ0 = 0, r ∈ R

2, and f 1
θ,τ is expressed as a shifted and scaled version of q . Hence

for the present case result 3 of Corollary 9 holds and the Fisher information matrix I(θ) is
diagonal (see Eq. 19). Using Eq. 19 we can easily show that [I(θ)]33 = (t − t0)/Λ0. Let
α := 2πna/λ. Using the identity (∂/∂x)

[
x−n Jn(x)

] = −x−n Jn+1(x), x ∈ R (see Watson,
1958, pp. 18) with n = 1, we can show that

∂

∂ζ

J 2
1 (α
√

x2 + y2)

x2 + y2 = −2ζα
J1(α

√
x2 + y2)

√
x2 + y2

J2(α
√

x2 + y2)

x2 + y2 , (x, y) ∈ R
2, ζ ∈ {x, y}.

(24)

Hence by using this result and the integral identity
∫∞

0 (J 2
n (t)/t)dt = 1/(2n) (Watson, 1958,

pp. 405) with n = 2, we can show that [I(θ)]11 = [I(θ)]22 = (2πna)2Λ0(t − t0)/λ2 (see
also Ober, Ram et al., 2004).
2. We can easily verify that the 2D Gaussian profile is a symmetric image function. Fur-
ther, we can show that for the present situation the Fisher information matrix is diagonal
and is given by Eq. 19 (see proof of result 1). Substituting for Λ1

θ and q in Eq. 19 we get
[I(θ)]33 = (t − t0)/Λ0, and it can be shown that [I(θ)]11 = [I(θ)]22 = Λ0(t − t0)/σ 2 (see
Ober, Ram et al., 2004).

In both cases, the fundamental limit of the localization accuracy of x0 (y0) and the funda-
mental limit of the accuracy of Λ0 are obtained by inverting the Fisher information matrix
and taking the square root of the corresponding leading diagonal elements. �

The Airy profile depends on the term α that is given by α = 2πna/λ, where na denotes
the numerical aperture of the objective lens and λ denotes the wavelength of the detected
photons. For a given experimental configuration, the numerical values of na and λ are known
and hence α is known. On the other hand, the 2D Gaussian profile depends on the term σ

that needs to be empirically determined from calibration experiments (see Kubitscheck et al.,
2000; Thompson et al., 2002).

It can be shown that the maximum likelihood estimator of the photon detection rate Λ0

is given by Λ̂0 := Ntot/(t − t0), where Ntot denotes the total number of detected photons
and t − t0 denotes the acquisition time (see e.g., Snyder & Miller, 1991 pp. 74–75), and the
standard deviation of Λ̂0 is given by

√
Λ0/(t − t0). From the above results, we see that for

both the Airy profile and the 2D Gaussian profile, the performance limit to determining the
parameter Λ0 is given by

√
Λ0/(t − t0), which is equal to the standard deviation of Λ̂0. Thus

for the above scenario, the maximum likelihood estimator of the photon detection rate is an
efficient estimator.
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Effects of reduced detector size

In the previous section we derived the Fisher information matrix for the 2D Gaussian profile
and the Airy profile, where it is assumed that the detector occupies the full detector plane,
i.e., C = R

2. These models imply that photons impact the detector plane not only close to the
center of the image profile, but also far away from the center of the image. This is, however,
not a practical assumption since detectors have a finite size. In addition, when analyzing
microscopy images typically only small regions of interest are used. This raises the question
of how the detector size or the region of interest influences the performance limits.

In the following proposition we show how an image detection process G(Λθ , { fθ,τ }τ≥t0 , C)

has to be adjusted when instead of the detector C, the photons are detected on a reduced part
Crd of C, i.e., on an open subset Crd of C.

Proposition 11 Let G(Λθ , { fθ,τ }τ≥t0 , C) be an image detection process and let Crd ⊆ C be
open. For θ ∈ Θ and τ ≥ t0, let αθ,τ := ∫

Crd fθ,τ (r)dr . The time points and the spatial
coordinates of the arrival location of the photons detected on the reduced detector Crd are
described by an image detection process Grd whose photon detection rate Λrd

θ and photon
distribution profile f rd

θ,τ are given by

Λrd
θ (τ ) = αθ,τΛθ (τ ), τ ≥ t0, θ ∈ Θ,

f rd
θ,τ (r) = 1

αθ,τ

fθ,τ (r), r ∈ Crd , θ ∈ Θ, τ ≥ t0.

Proof By definition of the image detection process G, the time points of the detected photons
on the detector C are modeled as a Poisson process with intensity function Λθ . It then follows
that the time points of the detected photons on the detector Crd form a Poisson process with
intensity function αθ,τΛθ , τ ≥ t0, θ ∈ Θ (Papoulis & Pillai, 2002 pp. 381).

Let A ⊆ Crd . Let Uτ denote the random variable that describes the arrival location of a
photon that is detected on the detector Crd at time τ , τ ≥ t0. Then the probability that the
arrival location of the detected photon is in the set A given that the arrival location is in the
detector Crd is given by

P[Uτ ∈ A | Uτ ∈ Crd ] = P[(Uτ ∈ A) ∩ (Uτ ∈ Crd)]
P[Uτ ∈ Crd ] = P[Uτ ∈ A]

P[Uτ ∈ Crd ]
=
∫
A fθ,τ (r)m(dr)
∫
Crd fθ,τ (r)m(dr)

=
∫
A fθ,τ (r)m(dr)

αθ,τ

,

where m denotes the Lebesgue measure in R
2. Since the above equation holds for every

A ⊆ Crd and τ ≥ t0, the term P[Uτ ∈ A | Uτ ∈ Crd ] is absolutely continuous with respect
to m. Hence there exists a probability density function f rd

θ,τ such that

f rd
θ,τ (r) = 1

αθ,τ

fθ,τ (r), r ∈ Crd , θ ∈ Θ, τ ≥ t0.

Since, by definition fθ,τ satisfies conditions (C3–C5) of Definition 1, it can be verified that
f rd
θ,τ also satisfies these conditions. �

We refer to the image detection process Grd as the reduced version of G corresponding
to the detector Crd . We next derive a general expression for the Fisher information matrix of
Grd . We also derive a formula to calculate the loss of information when a detector of reduced
size is used.
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Theorem 12 Let G(Λθ , { fθ,τ }τ≥t0 , C) be an image detection process and Grd be the red-
uced version of G corresponding to the detector Crd , where Crd ⊆ C. For θ ∈ Θ , let I(θ)

denote the Fisher information matrix of G corresponding to the time interval [t0, t]. Then
for θ ∈ Θ ,

1. the Fisher information matrix of Grd corresponding to the time interval [t0, t] is given by

Ird(θ) =
∫ t

t0

∫

Crd

1

Λθ(τ) fθ,τ (r)

(
∂[Λθ(τ) fθ,τ (r)]

∂θ

)T (
∂[Λθ(τ) fθ,τ (r)]

∂θ

)

drdτ,

2.�I(θ) := I(θ) − Ird(θ) =
∫ t

t0

∫

C\Crd

1

Λθ(τ) fθ,τ (r)

(
∂[Λθ(τ) fθ,τ (r)]

∂θ

)T

×
(

∂[Λθ(τ) fθ,τ (r)]
∂θ

)

drdτ,

3. I(θ) ≥ Ird(θ).

Proof
1. For θ ∈ Θ and τ ≥ t0, let αθ,τ = ∫Crd fθ,τ (r) dr . For the image detection process Grd , by
Proposition 11 the photon detection rate Λrd

θ (τ ) = αθ,τΛθ (τ ) and the photon distribution
profile f rd

θ,τ (r) = (1/αθ,τ ) fθ,τ (r) for r ∈ Crd , θ ∈ Θ , τ ≥ t0. Substituting for Λrd
θ and f rd

θ,τ

in Theorem 2 the result immediately follows.
2. The result immediately follows by using the expressions for the Fisher information matrix
of G and Grd that are given in Theorem 2 and in part 1 of this Theorem, respectively.
3. The integrand in the integral expression of �I(θ) given in result 2 of this theorem is non-
negative. This implies that �I(θ) is positive semidefinite for θ ∈ Θ and from this the result
follows. �

From result 1 of the above theorem we see that the expression for the Fisher information
matrix of Grd is analogous to that of G (see Theorem 2) with the only difference being that
the region of integration of the spatial integral is now the reduced detector Crd .

Upper and lower bounds to the performance limits

In Example-1 the integral expressions of the Fisher information matrix I(θ) for an infinite
detector reduced to simple formulae. However, in a practical situation the calculation of I(θ)

can become cumbersome, for example, due to the shape of the finite sized detector C. Hence
determining the limit of the accuracy

√[I−1(θ)]i i for the components of θ can become diffi-
cult. We next address this concern by deriving integral expressions for matrices Iu(θ) and
Il(θ) that provide an upper and lower bound to the Fisher information matrix I(θ), respec-
tively, i.e., Iu(θ) ≥ I(θ) ≥ Il(θ). Note that if Il(θ) is invertible, then it can be shown that√

[I−1
l (θ)]i i and

√
[I−1

u (θ)]i i provide an upper and lower bound to
√[I−1(θ)]i i , respectively,

i.e.,
√

[I−1
u (θ)]i i ≤ √[I−1(θ)]i i ≤

√
[I−1

l (θ)]i i , i = 1, . . . , n. This is of particular relevance
since in a number of situations the upper and lower bounds are diagonal matrices whose
diagonal entries can be analytically calculated. We will show that this is the case for the 2D
Gaussian profile and the Airy profile if the ‘bounding detectors’ are circular with center at the
center of the image profile. The integral expression for Iu(θ) (Il(θ)) is derived in such a way
that its integrand is identical to that of I(θ) and its spatial integral is evaluated over a circular
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region Brc (u) (Brc (l)) known as the upper (lower) circular bounding detector that is centered
at a point rc ∈ C with radius u (l). The circular bounding detectors are defined below.

Definition 13 Let C be a detector and rc = (rc,x , rc,y) ∈ C. For ρ > 0, let Brc (ρ) := {(x, y)

| (x − rc,x )
2 + (y − rc,y)

2 < ρ2, (x, y) ∈ R
2} denote a circular region centered at rc

with radius ρ and let Brc (∞) := R
2. We define Brc (u) and Brc (l) to be the upper and

lower circular bounding detectors of C, respectively, if l = sup{ρ | Brc (ρ) ⊆ C} and
u = inf{ρ | C ⊆ Brc (ρ)}.

Earlier in this section we discussed the relationship between an image detection process
described on a large, possibly infinite, detector and a more realistic smaller detector (see
Proposition 11). In the derivation of the upper and lower bounds for the Fisher information
matrix it will be useful to have the notion of an ‘extended’ version of an image detection
process. We refer to any image detection process Ge as an extended version of G if G is the
reduced version of Ge.

Theorem 14 Let Θ ⊆ R
n be a parameter space and let G be an image detection process that

is defined over the detector C. Assume that Ge(Λe
θ , { f e

θ,τ }τ≥t0 , Ce) is an extended version of G.
For rc ∈ C, let Brc (l) and Brc (u) denote the circular bounding detectors of C. Let I(θ) be the
Fisher information matrix of G corresponding to the time interval [t0, t]. If C ⊆ Brc (u) ⊆ Ce,
then

1. Iu(θ) ≥ I(θ) ≥ Il(θ), θ ∈ Θ, (25)

where for β ∈ {u, 	}

Iβ(θ) :=
∫ t

t0

∫

Brc (β)

1

Λe
θ (τ ) f e

θ,τ (r)

(
∂[Λe

θ (τ ) f e
θ,τ (r)]

∂θ

)T (∂[Λe
θ (τ ) f e

θ,τ (r)]
∂θ

)

drdτ, (26)

2. Further, if Il(θ) is invertible, then

[I−1
u (θ)]i i ≤ [I−1(θ)]i i ≤ [I−1

l (θ)]i i , i = 1, . . . , n, θ ∈ Θ. (27)

Proof
1. Since Ge is an extended extension of G, it follows that G is the reduced version of Ge

and the expression for the Fisher information matrix I(θ) of G corresponding to the time
interval [t0, t] is given by result 1 of Theorem 12. Note that Brc (β) is open and Brc (β) ⊆ Ce,
β ∈ {u, l}. Hence from Proposition 11 it follows that the detected photons on the circular
bounding detector Brc (u) (Brc (l)) can be modeled as an image detection process Grd

u (Grd
l ),

which is the reduced version of Ge corresponding to Brc (u) (Brc (l)). If the Fisher information
matrix of Grd

u (Grd
l ) corresponding to the time interval [t0, t] is denoted as Iu(θ) (Il(θ)), then

from result 1 of Theorem 12 we obtain the desired integral expression that is given by Eq. 26.
Further, since Brc (l) ⊆ C ⊆ Brc (u), from result 3 of Theorem 12 it can be deduced that
Iu(θ) ≥ I(θ) ≥ Il(θ), θ ∈ Θ .
2. If Il(θ) is invertible for θ ∈ Θ , then by result 1 of this Theorem I(θ) and Iu(θ) are also
invertible. It then follows that I−1

u (θ) ≤ I−1(θ) ≤ I−1
l (θ) (Zhang, 1999, pp. 169) and from

this the result follows. �

The above result provides a general formula to calculate the upper and lower bound
to the (inverse) Fisher information matrix I(θ). We next consider a special case in which
the extended version Ge is defined over R

2. Here, the parameter vector is given by θ =
(x0, y0,Λ0) ∈ Θ , the photon distribution profile f e

θ,τ of Ge is assumed to be given in terms
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of a symmetric image function q and the photon detection rate Λe
θ of Ge is independent of

x0 and y0 for θ ∈ Θ . We assume that the circular bounding detectors of C are centered at the
point rc := (Mx0, My0) ∈ C, where M > 0 denotes the lateral magnification. For this case,
we show that the matrices Il(θ) and Iu(θ) are diagonal.

Corollary 15 Let Θ ⊆ R
3 be a parameter space and let G be an image detection pro-

cess that is defined over the detector C. Let M > 0. Assume that Ge(Λe
θ , { f e

θ,τ }τ≥t0 , R
2)

is an extended version of G and that there exist a symmetric image function q such that
f e
θ,τ (r) = 1

M2 q
( x

M − x0,
y
M − y0

)
for r = (x, y) ∈ R

2, θ = (x0, y0,Λ0) ∈ Θ and τ ≥ t0.
Assume that ∂Λe

θ (τ )/∂x0 = ∂Λe
θ (τ )/∂y0 = 0 for τ ≥ t0 and θ ∈ Θ . Let θ ∈ Θ , assume

that rc := (Mx0, My0) ∈ C, and let Brc (l) and Brc (u) denote the circular bounding detectors
of C. Then

1. Iu(θ) ≥ I(θ) ≥ Il(θ). (28)

where

I(θ) =
∫ t

t0

∫

C

Λe
θ (τ )

f e
θ,τ (r)

⎡

⎢
⎢
⎣

M
∂ f e

θ,τ (r)

∂x

M
∂ f e

θ,τ (r)

∂y

− f e
θ,τ (r)

Λθ (τ )

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎥
⎦

[
M

∂ f e
θ,τ (r)

∂x M
∂ f e

θ,τ (r)

∂y − f e
θ,τ (r)

Λθ (τ )

∂Λe
θ (τ )

∂Λ0

]
drdτ,

(29)

Iβ(θ) =

⎡

⎢
⎢
⎢
⎢
⎣

∫ t
t0

Λe
θ (τ )dτ

∫
B0(

β
M )

1
q(x,y)

(
∂q(x,y)

∂x

)2
dxdy 0 0

0
∫ t

t0
Λe

θ (τ )dτ
∫
B0(

β
M )

1
q(x,y)

(
∂q(x,y)

∂y

)2
dxdy 0

0 0
∫ t

t0
1

Λe
θ (τ )

(
∂Λe

θ (τ )

∂Λ0

)2
dτ
∫
B0(

β
M )

q(x, y)dxdy

⎤

⎥
⎥
⎥
⎥
⎦

,

(30)

with B0(β/M) = {(x, y) | √x2 + y2 <
β
M } and β ∈ {u, l}.

2. Further, if Il(θ) is invertible, then

[I−1
u (θ)]i i ≤ [I−1(θ)]i i ≤ [I−1

l (θ)]i i , i = 1, 2, 3. (31)

Proof Let θ ∈ Θ . Equations 28 and 31 immediately follow by noting that Brc (l) ⊆ C ⊆
Brc (u) ⊆ R

2 and that the results of Theorem 14 hold for the present case. In rest of this
proof we derive the integral expressions for I(θ) and Iβ(θ) that are given in Eqs. 29 and 30,
respectively.

By assumption, ∂Λe
θ (τ )/∂x0 = ∂Λe

θ (τ )/∂y0 = ∂ f e
θ,τ (r)/∂Λ0 = 0 and it can be shown

that ∂ f e
θ,τ (r)/∂x0 = −M(∂ f e

θ,τ (r)/∂x) and ∂ f e
θ,τ (r)/∂y0 = −M(∂ f e

θ,τ (r)/∂y), for r =
(x, y) ∈ R

2 and τ ≥ t0. Using these results and substituting for Λe
θ and f e

θ,τ in result 1
of Theorem 12, we obtain the expression for I(θ) that is given in Eq. 29. By definition,
for β ∈ {u, l}, Brc (β) = {(x, y) | √(x/M − x0)2 + (y/M − y0)2 < β/M}, (x, y) ∈ R

2}.
Substituting for f e

θ,τ and Λe
θ in Eq. 26, we have for β ∈ {u, l},

Iβ(θ) =
∫ t

t0

∫

Brc (β)

1

Λe
θ (τ ) f e

θ,τ (r)

⎡

⎢
⎢
⎢
⎣

Λe
θ (τ )

∂ f e
θ,τ (r)

∂x0

Λe
θ (τ )

∂ f e
θ,τ (r)

∂y0

f e
θ,τ (r)

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎥
⎥
⎦

×
[

Λe
θ (τ )

∂ f e
θ,τ (r)

∂x0
Λe

θ (τ )
∂ f e

θ,τ (r)

∂y0
f e
θ,τ (r)

∂Λe
θ (τ )

∂Λ0

]

drdτ
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= 1

M2

∫ t

t0
Λe

θ (τ )

∫

Brc (β)

1

q
( x

M
− x0,

y

M
− y0

)

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−M
∂q

( x

M
− x0,

y

M
− y0

)

∂x

−M
∂q

( x

M
− x0,

y

M
− y0

)

∂y
q
( x

M − x0,
y
M − y0

)

Λe
θ (τ )

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−M
∂q

( x

M
− x0,

y

M
− y0

)

∂x

−M
∂q

( x

M
− x0,

y

M
− y0

)

∂y

q

( x

M
− x0,

y

M
− y0

)

Λe
θ (τ )

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

dxdydτ

= 1

M2

∫ t

t0
Λe

θ (τ )

∫

B0(
β
M )

1

q(u, v)

⎡

⎢
⎢
⎢
⎢
⎣

M
∂q(u, v)

∂u

∂u

∂x

M
∂q(u, v)

∂v

∂v

∂y
− q(u,v)

Λe
θ (τ )

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎣

M
∂q(u, v)

∂u

∂u

∂x

M
∂q(u, v)

∂v

∂v

∂y
− q(u,v)

Λe
θ (τ )

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎥
⎥
⎥
⎦

T

(Mdu)(Mdv)dτ

⎛

⎝
u := x

M
− x0

v := y

M
− y0

⎞

⎠

=
∫ t

t0
Λe

θ (τ )

∫

B0(
β

M
)

1

q(x, y)

⎡

⎢
⎣

∂q(x,y)
∂x

∂q(x,y)
∂y

− q(x,y)

Λe
θ (τ )

∂Λe
θ (τ )

∂Λ0

⎤

⎥
⎦

×
[

∂q(x,y)
∂x

∂q(x,y)
∂y − q(x,y)

Λe
θ (τ )

∂Λe
θ (τ )

∂Λ0

]
dxdydτ. (32)

Since the image function q is symmetric, it can be shown that ∂q(x, y)/∂x = −∂q(−x, y)/∂x
and ∂q(x, y)/∂y = ∂q(−x, y)/∂y for (x, y) ∈ R

2 (see Eqs. 12 – 13). Thus we have

[Iβ(θ)]12 = [Iβ(θ)]21 =
∫ t

t0
Λe

θ (τ )dτ

∫

B0(
β
M )

1

q(x, y)

∂q(x, y)

∂x

∂q(x, y)

∂y
dxdy

= −
∫ t

t0
Λe

θ (τ ) dτ

∫

B0(
β
M )

1

q(−x, y)

∂q(−x, y)

∂x

∂q(−x, y)

∂y
dxdy

= −
∫ t

t0
Λe

θ (τ ) dτ

∫

B0(
β
M )

1

q(u, y)

∂q(u, y)

∂u

∂u

∂x

∂q(u, y)

∂y
(−du)dy (u := −x)

= −
∫ t

t0
Λe

θ (τ ) dτ

∫

B0(
β
M )

1

q(u, y)

∂q(u, y)

∂u

∂q(u, y)

∂y
dudy

= −[Il(θ)]12 = −[Il(θ)]21, β ∈ {u, l}.
Hence [Iβ(θ)]12 = [Iβ(θ)]21 = 0, β ∈ {u, l}. Similarly, we can show that [Iβ(θ)]13 =
[Iβ(θ)]31 = 0, β ∈ {u, l}. Further, by using the symmetry property of q we can also show
that ∂q(x, y)/∂y = −∂q(−x, y)/∂y for (x, y) ∈ R

2 (see Eq. 16). From this it follows that
[Iβ(θ)]23 = [Iβ(θ)]32 = 0, β ∈ {u, l}. Substituting these in Eq. 32 the result follows. �
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For the localization accuracy problem the upper and lower bounds of the limit of the
localization accuracy of (x0, y0) are referred to as the localization accuracy bounds.

Example-2

We now illustrate the results derived in this section by considering specific image func-
tions that describe the image of a point source. Here, the parameter vector is set to be
θ = (x0, y0,Λ0) ∈ Θ and the photon distribution profile f e

θ,τ is assumed to be given in
terms of a symmetric image function q . Further, the photon detection rate is assumed to be
a constant, i.e., Λe

θ (τ ) = Λ0, τ ≥ t0. For each image function, we derive the expression for
the Fisher information matrix I(θ) corresponding to the detector C and also derive the upper
and lower bound for

√[I−1(θ)]i i , i = 1, 2, 3, which denotes the limit of the accuracy of the
components of θ .

Corollary 16 Let Θ ⊆ R
3 be a parameter space and let G be an image detection pro-

cess that is defined over the detector C. Let M > 0. Assume that Ge(Λe
θ , { f e

θ,τ }τ≥t0 , R
2)

is an extended version of G and that there exists a symmetric image function q such that
f e
θ,τ (r) = 1

M2 q
( x

M − x0,
y
M − y0

)
for r = (x, y) ∈ R

2, θ = (x0, y0,Λ0) ∈ Θ and τ ≥ t0.
Assume that Λe

θ (τ ) = Λ0 for τ ≥ t0 and θ ∈ Θ . Let θ ∈ Θ , assume that rc := (Mx0, My0) ∈
C, and let Brc (l) and Brc (u) denote the circular bounding detectors of C.

1. Airy profile: If q is given by Eq. 20, then the Fisher information matrix of G corresponding
to the time interval [t0, t] is given by

I(θ) = Λ0(t − t0)
∫

C

1
J 2

1 (a||r−rc||)
π ||r−rc||2

QT
θ (r)Qθ (r) dr,

where a = 2πna/(λM), ||r − rc|| := √(x − Mx0)2 + (y − My0)2 and

Qθ (r) := J1(a||r − rc||)
π ||r − rc||

[
2aM(x−Mx0)

||r−rc ||2 J2(a||r − rc||) 2aM(y−My0)

||r−rc ||2 J2(a||r − rc||) − 1
Λ0

J1(a||r−rc ||)
||r−rc ||

]
.

Moreover, if u and l are as defined above, then

λ/
(
2πna

√
Λ0(t − t0)

)

√
1 − (J 2

0 (au) + 2J 2
1 (au) + J 2

2 (au)
) ≤

√
[I−1(θ)]i i

≤ λ/
(
2πna

√
Λ0(t − t0)

)

√
1 − (J 2

0 (al) + 2J 2
1 (al) + J 2

2 (al)
) , i = 1, 2, (33)

√
Λ0/(t − t0)√

1 − (J 2
0 (au) + J 2

1 (au)
) ≤

√
[I−1(θ)]33 ≤

√
Λ0/(t − t0)√

1 − (J 2
0 (al) + J 2

1 (al)
) , (34)

where Jn denotes the nth order Bessel function of the first kind, n = 0, 1, 2.

2. 2D Gaussian profile: If q is given by Eq. 22, then the Fisher information matrix of G
corresponding to the time interval [t0, t] is given by
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I(θ) = Λ0(t − t0)
∫

C

2π(Mσ)2

e
− ||r−rc ||2

2(Mσ)2

QT
θ (r)Qθ (r) dr,

where σ > 0, ||r − rc|| := √(x − Mx0)2 + (y − My0)2 and

Qθ (r) := 1

2π(Mσ)2 e
− ||r−rc ||2

2(Mσ)2
[

(x−Mx0)

Mσ 2
(y−My0)

Mσ 2 − 1
Λ0

]
.

If u and l are as defined above, then

σ/
√

Λ0(t−t0)√

1−e− 1
2 (

u
Mσ )

2(
1+ 1

2 (
u

Mσ )
2
) ≤

√
[I−1(θ)]i i

≤ σ/
√

Λ0(t − t0)√

1 − e
− 1

2

(
l

Mσ

)2 (
1 + 1

2

( l
Mσ

)2)
, i = 1, 2, (35)

√
Λ0/(t − t0)√

1 − e− 1
2 (

u
Mσ )

2
≤
√

[I−1(θ)]33 ≤
√

Λ0/(t − t0)√

1 − e
− 1

2

(
l

Mσ

)2
. (36)

Proof We can show that the Airy profile and the 2D Gaussian profile satisfy the properties
of a symmetric image function. Let θ ∈ Θ . It can be verified that for the present case the
results of Corollary 15 hold. Then the expressions for the Fisher information matrix I(θ)

immediately follow by substituting the corresponding image function in Eq. 29. Further, we
can also verify that I−1(θ) exists for each image function. In rest of this proof we derive the
expressions for the upper and lower bounds of I(θ).

1. Let α := 2πna/λ. Substituting for Λe
θ and q in the integral expression of [Iβ(θ)]11

([Iβ(θ)]22) that is given in Eq. 30, we have for β ∈ {u, l},

[Iβ(θ)]11 = [Iβ(θ)]22 =
∫ t

t0
Λ0 dτ

∫

B0(
β
M )

1

J 2
1 (α

√
x2+y2)

π(x2+y2)

[
∂

∂x

(
J 2

1 (α
√

x2 + y2)

π(x2 + y2)

)]2

dxdy

= 4α2

π
Λ0(t − t0)

∫

{(x,y)|
√

x2+y2<β/M}
J 2

2 (α
√

x2 + y2)

(x2 + y2)2 dxdy

= 4α2

π
Λ0(t − t0)

∫ 2π

0
cos2 φ dφ

∫ β
M

0

J 2
2 (αρ)

ρ
dρ

= 4α2Λ0(t − t0)
∫ aβ

0

J 2
2 (w)

w
dw = 4α2Λ0(t − t0)

×
(∫ ∞

0

J 2
2 (w)

w
dw −

∫ ∞

aβ

J 2
2 (w)

w
dw

)

= 1 − (J 2
0 (aβ) + 2J 2

1 (aβ) + J 2
2 (aβ)

)

λ2/((2πna)2Λ0(t − t0))
,

where x = ρ cos φ, y = ρ sin φ, a = α/M , the partial derivative of q with respect to x
is given in Eq. 24, and the integral expressions in the final step are evaluated by using the
integral identities

∫∞
0 (J 2

n (t)/t) dt = (1/2n) (Watson, 1958, pp. 405) and n
∫∞

x (J 2
n (t)/t)
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dt = (1/2)J 2
0 (x)+ J 2

1 (x)+· · ·+ J 2
n−1(x)+(1/2)J 2

n (x) (Bowman, 1968, pp. 95) with n = 2
and x ∈ R. Similarly, for β ∈ {u, l}, we have

[Iβ(θ)]33 = 1

π

∫ t

t0

1

Λ0
dτ

∫

B0(
β
M )

J 2
1 (α
√

x2+y2)

x2+y2 dxdy = (t−t0)

πΛ0

∫ 2π

0
dφ

∫ β
M

0

J 2
1 (αρ)

ρ
dρ

= 2(t−t0)

Λ0

∫ aβ

0

J 2
1 (w)

w
dw= 1−(J 2

0 (aβ)+ J 2
1 (aβ))

Λ0/(t−t0)
.

Using result 2 of Corollary 15 the result follows.

2. Substituting for Λe
θ and q in the integral expression of [Iβ(θ)]11 ([Iβ(θ)]22) that is given

in Eq. 30, we have for β ∈ {u, l},

[Iβ(θ)]11 = [Iβ(θ)]22 =
∫ t

t0
Λ0 dτ

∫

B0(
β
M )

1

1
2πσ 2 e− x2+y2

2σ2

(
∂

∂x

(
1

2πσ 2 e− x2+y2

2σ2

))2

dxdy

= Λ0(t − t0)

2πσ 2

∫

B0(
β
M )

x2

σ 2 e− x2+y2

2σ2
dxdy

σ 2 = Λ0(t − t0)

2πσ 2

∫ 2π

0
dφ

∫ β
Mσ

0
ρ3e− ρ2

2 dρ

= Λ0(t − t0)

4σ 2

∫ β
Mσ

0
ρ2e− ρ2

2 2ρ dρ

= Λ0(t − t0)

4σ 2

∫ (
β

Mσ

)2

0
we− w

2 dw =
1 − e

− 1
2

(
β

Mσ

)2 (

1 + 1
2

(
β

Mσ

)2
)

σ 2/(Λ0(t − t0))
,

[Iβ(θ)]33 = 1

2πσ 2

∫ t

t0

1

Λ0
dτ

∫

B0(
β
M )

e− x2+y2

2σ2 dxdy

= (t − t0)

Λ02π

∫ 2π

0
dφ

∫ β
Mσ

0
ρe− ρ2

2 dρ = (t − t0)

2Λ0

∫ β
Mσ

0
2ρe− ρ2

2 dρ

= (t − t0)

2Λ0

∫ (
β

Mσ

)2

0
e− w

2 dw = 1 − e
− 1

2

(
β

Mσ

)2

Λ0/(t − t0)
.

Using result 2 of Corollary 15 we obtain the desired result. �

From the above Corollary we see that for both image functions, the localization accuracy
bounds for x0 (y0) and the bounds for the limit of the accuracy of Λ0 reduce to simple
formulae. Note that the above results for the upper and lower bounds hold only if the point
(Mx0, My0) is located on the detector Crd . In most experimental situations this condition is
satisfied.

We now discuss the results derived in Corollary 16 by considering a finite-sized square
detector. Figure 2a (Figure 2b) shows the behavior of the limit of the localization accuracy√[I−1(θ)]11 for x0 for a square detector corresponding to the Airy profile (2D Gaussian
profile) as a function of detector size. A reduced detector detects relatively lower number
of photons than an infinite detector. Hence the limit of the localization accuracy for the
reduced detector is greater (worse) than the fundamental limit of the localization accuracy
that is calculated for the infinite detector (see Corollary 10). As the detector size increases,
more photons are detected by the reduced detector and the limit of the localization accu-
racy approaches the fundamental limit. Figure 2a (Figure 2b) also shows the behavior of
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Fig. 2 (a) shows the behavior of the limit of the localization accuracy of x0 (y0) for a square detector cor-
responding to the Airy profile (•) as a function of detector size and (b) shows the same for the 2D Gaussian
profile (•). (c) shows the behavior of the limit of the accuracy of Λ0 for a square detector corresponding to
the Airy profile (•) as a function of detector size and (d) shows the same for the 2D Gaussian profile (•). In
all the panels the corresponding fundamental limit of the accuracy (—) and the upper (�) and lower (∗) bound
to the limit of the accuracy for the square detector are shown. For a square detector with side length s, the
position of the point source on the detector is set to be rc = (s/2, s/2), the radius of the lower circular bound-
ing detector Brc (l) is l = s/2 and the radius of the upper circular bounding detector Brc (u) is u = s/

√
2. For

the Airy profile, the numerical aperture is set to be na = 1.4 and the wavelength of the detected photons is
set to be λ = 0.52 µm. The parameter σ corresponding to the Gaussian profile is set to be σ = 0.083 µm and
is determined by fitting a 2D Gaussian profile to an Airy profile (na = 1.4, λ = 0.52 µm) through the least
squares criterion. For all the plots, Λ0 = 104 photons/sec, the acquisition time is set to be t = 50 msec (with
t0 = 0) and the magnification is set to be M = 100

the localization accuracy bounds given by Eq. 33 (Eq. 35) for a square detector correspond-
ing to the Airy profile. Here, we see that the localization accuracy bounds provide a tight
bound, as they are consistently close to the limit of the localization accuracy for the square
detector.

Note that the behavior of the limit of the localization accuracy for a square detector also
depends on the functional form of the image function. In the case of the 2D Gaussian profile
(see Figure 2b), the limit of the localization accuracy for a square detector with side length
80 µm is close to the fundamental limit of the localization accuracy. However, this is not
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the case for the Airy profile (see Figure 2a), where even for a square detector with side
length 140 µm, the limit of the localization accuracy does not come close to the fundamental
limit. In a practical application such as single molecule data analysis, the above observation
provides guidelines for choosing the optimal size of the region of interest on the acquired
image. Moreover, it also shows the importance of using the correct image function, as this
influences the behavior of the limit of the localization accuracy.

Figure 2c (Figure 2d) shows the variation of the limit of the accuracy
√[I−1(θ)]33 of Λ0

for a square detector corresponding to the Airy profile (2D Gaussian profile) as a function of
detector size. Analogous to the behavior of the limit of the localization accuracy, the limit of
the accuracy of Λ0 approaches the fundamental limit of the accuracy of Λ0 (= √

Λ0/(t − t0),
see Eqs. 21 and 23) as the detector size increases. Moreover, the behavior of the limit of the
accuracy of Λ0 also depends on the functional form of the image function. Figure 2c (Figure
2d) also shows the behavior of the upper and lower bounds to the limit of the accuracy of Λ0

that is given by Eq. 34 (Eq. 36) for a square detector corresponding to the Airy profile (2D
Gaussian profile). Similar to the localization accuracy bounds (Figure 2a and 2b), we see that
the upper and lower bounds for the limit of the accuracy of Λ0 provide a tight bound.

Effects of pixelation

In all our results so far the detector C is such that the acquired data consist of the time points
and the spatial coordinates of the detected photons. However, in the presence of pixelation
the acquired data consist of the number of detected photons at each pixel. We next show
how this data can be described in terms of the photon distribution profile and the photon
detection rate of an image detection process. Here, we follow an approach that was intro-
duced in Ober, Ram et al., (2004) to address the localization problem. This approach will be
generalized and applied to the general parameter estimation problem that is discussed in this
paper. Let G1(Λ1

θ , { f 1
θ,τ }τ≥t0 , C) denote an image detection process that models the detected

photons from the object of interest. The pixelated version of the detector C is defined as a

collection {C1, . . . , CNp } of open, disjoint subsets of R
2 such that

⋃Np
k=1 Ck = C, where

Np denotes the total number of pixels. For k = 1, . . . , Np and t ≥ t0, assume that nk

photons are detected in the pixel Ck during the time interval [t0, t]. Let K denote the total

number of detected photons from the object of interest, i.e.,
∑Np

k=1 nk = K . Then it can be
shown that for k = 1, . . . , Np , nk is independently Poisson distributed with mean µθ(k, t) =∫ t

t0

∫
Ck

Λ1
θ (τ ) f 1

θ,τ (r) drdτ , θ ∈ Θ . Similarly, the number of detected photons at the kth pixel

during the time interval [t0, t] from a background component G2(Λ2, { f 2
τ }τ≥t0 , C) is inde-

pendently Poisson distributed with mean β(k, t) = ∫ t
t0

∫
Ck

Λ2(τ ) f 2
τ (r) drdτ , θ ∈ Θ . Hence

the acquired data in the time interval [t0, t] from a pixelated detector can be described by a
collection {Iθ,1, . . . , Iθ,Np } of random variables given by

Iθ,k = Sθ,k + Bk, θ ∈ Θ, k = 1, . . . , Np.

Using the standard expression for the Fisher information matrix of a Poisson distribution
(snyder & Miller 1991), the Fisher information matrix for {Iθ,1, . . . , Iθ,Np } corresponding
to the time interval [t0, t] is given by

I(θ) =
Np∑

k=1

1

µθ(k, t) + β(k, t)

(
∂µθ (k, t)

∂θ

)T
∂µθ (k, t)

∂θ
. (37)
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In a pixelated detector the acquired image contains measurement noise, which, for exam-
ple, arises due to the readout process (Snyder, Helstrom, Lanterman, & White, 1995). At
each pixel this can be modeled as a Gaussian random variable Wk with mean ηk and variance
σ 2

w,k , k = 1, . . . , Np . The acquired image is then given by Iθ,k = Sθ,k + Bk + Wk , θ ∈ Θ ,
k = 1, . . . , Np . To derive the Fisher information matrix for the present case, we first note
that Iθ,k is a sum of a Poisson and independent Gaussian random variable, and its probability
density function is given by (see Snyder et al., 1995)

pθ,k(z) := 1√
2πσw,k

∞∑

l=0

[νθ (k, t)]l e−νθ (k,t)

l! e
− 1

2

(
z−l−ηk
σw,k

)2

, z ∈ R, k = 1, . . . , Np,

where νθ (k, t) := µθ(k, t) + β(k, t), k = 1, . . . , Np . If {n1, . . . , nNp } denotes the acquired

data, then the log likelihood function is given by L(θ | n1, . . . , nNp ) :=∑Np
k=1 ln[pθ,k(nk)],

θ ∈ Θ and the partial derivative of the log-likelihood function with respect to θ is given
by

∂L(θ | n1, . . . , nNp )

∂θ
=

Np∑

k=1

[
∂µθ (k, t)

∂θ
(ζθ,k(nk) − 1)

]

, θ ∈ Θ, (38)

where

ζθ,k(z) :=
∑∞

l=1
l[νθ (k,t)]l−1e−νθ (k,t)

(l−1)!
1√

2πσw,k
e
− 1

2

(
z−l−ηk
σk,w

)

pθ,k(z)
, θ ∈ Θ, k = 1, . . . , Np, z ∈ R.

It can be shown that E[ζθ,k(nk)] = 1 for θ ∈ Θ and k = 1, . . . , Np . Further, it can be
verified that the random variables {Iθ,1, . . . , Iθ,Np } are mutually independent. Using these
results and Eq. 38, the Fisher information matrix for {Iθ,1, . . . , Iθ,Np } corresponding to
the time interval [t0, t] is given by

I(θ) = E

[(
∂L(θ | n1, . . . , nNp )

∂θ

)T ∂L(θ | n1, . . . , nNp )

∂θ

]

= E

⎡

⎣
Np∑

k=1

Np∑

m=1

(
∂µθ (k, t)

∂θ

)T ∂µθ (m, t)

∂θ

(
ζθ,k (nk )ζθ,m (nm ) − ζθ,k (nk ) − ζθ,m (nm ) + 1

)
⎤

⎦

=
Np∑

k=1

(
∂µθ (k, t)

∂θ

)T ∂µθ (k, t)

∂θ

(
E[ζ 2

θ,k (nk )] − 1
)

+
Np∑

k �=m,k,m=1

(
∂µθ (k, t)

∂θ

)T ∂µθ (m, t)

∂θ

(
E[ζθ,k (nk )]E[ζθ,m (nm )] − 1

)

=
Np∑

k=1

(
∂µθ (k, t)

∂θ

)T ∂µθ (k, t)

∂θ
×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∫

R

⎛

⎝∑∞
l=1

[νθ (k,t)]l−1e−νθ (k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

(
z−l−ηk
σw,k

)2
⎞

⎠

2

pθ,k (z)
dz − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, θ ∈ Θ. (39)
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The above expressions are valid for general intensities µθ(k, t) (νθ (k, t)), k = 1, . . . , Np ,
t > t0. These intensities depend on the photon distribution profiles fθ,τ , τ ≥ t0, through the
above identities. The approach is therefore generally applicable to a large class of photon
distributions profiles/image functions. Note that in the above expressions no assumptions
are made about the size or shape of the pixels. In Winick (1986) an expression was derived
that is essentially a special case of Eq. 37, i.e. for a two-dimensional estimation problem of
the location parameters for a Gaussian photon distribution profile in a stationary imaging
scenario for square pixels in the absence of Gaussian noise.

Example-3

In this section we present a numerical comparison of the standard deviation of the maxi-
mum likelihood estimator and the performance limit for the problem of estimating the 2D
location of a stationary point source. All calculations are carried out in the Matlab pro-
gramming language (Coleman, Branch, & Grace, 2000). The image function of the point
source is described by the Airy profile given in Eq. 20. The parameter vector θ is given by
θ = (x0, y0) and it is assumed that the photon detection rate of the point source is a con-
stant and is known, i.e., Λ1

θ (τ ) := Λ1
0, θ ∈ Θ , τ ≥ t0. The data consists of a sequence of

50 images of the point source that are simulated for a finite-sized detector in the presence
of noise sources. Maximum likelihood estimation is carried out by using a gradient based
search algorithm (Coleman, Branch, & Grace, 1999). Table 1 lists the standard deviations
of the maximum likelihood estimates of the 2D location that are calculated for three differ-
ent imaging conditions. The performance limit is calculated by using the expression for the
Fisher information matrix given in Eq. 39. From the table we see that for all the data sets,
the standard deviation of the maximum likelihood estimator comes close to the performance
limit. For example, in data set 1 the performance limit predicts an accuracy not smaller than
±5.01 nm to determine the x0 and the y0 coordinates of the point source. The corresponding
standard deviations of the maximum likelihood estimator for the x0 and the y0 coordinates
are ±5.4 nm and ±5.19 nm, respectively. Note that due to the finite number of location esti-
mates, the standard deviations can be greater or smaller than the performance limit. With
the increase in the number of location estimates, further agreement can be expected between
the standard deviations and the performance limit. We note that the simulations presented
here supplement the results given in Ober, Ram et al., (2004), where the performance of
the maximum likelihood estimator has been compared with the performance limit for other
imaging conditions.
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