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A Software Framework for the Analysis of
Complex Microscopy Image Data
Jerry Chao, E. Sally Ward, and Raimund J. Ober∗, Senior Member, IEEE

Abstract—Technological advances in both hardware and soft-
ware have made possible the realization of sophisticated bio-
logical imaging experiments using the optical microscope. As a
result, modern microscopy experiments are capable of producing
complex image data sets. For a given data analysis task, the
images in a set are arranged, based on the requirements of the
task, by attributes such as the time and focus levels at which
they were acquired. Importantly, different tasks performed over
the course of an analysis are often facilitated by the use of
different arrangements of the images. We present a software
framework which supports the use of different logical image
arrangements to analyze a physical set of images. Called the
Microscopy Image Analysis Tool (MIATool), this framework
realizes the logical arrangements using arrays of pointers to the
images, thereby removing the need to replicate and manipulate
the actual images in their storage medium. In order that they may
be tailored to the specific requirements of disparate analysis tasks,
these logical arrangements may differ in size and dimensionality,
with no restrictions placed on the number of dimensions and
the meaning of each dimension. MIATool additionally supports
processing flexibility, extensible image processing capabilities,
and data storage management.

Index Terms—Microscopy, multi-dimensional data, image anal-
ysis, image viewer, software framework.

I. I NTRODUCTION

T HE optical microscope has been an invaluable tool for
the study of biological events at the cellular, the sub-

cellular, and more recently, the single molecule level (e.g.,
[1], [2], [3]). With advances in both hardware and software
technology, the microscopist today is well-equipped to design
and operate sophisticated microscopy image acquisition sys-
tems. As microscopy imaging experiments have become more
creative, however, so have the resulting image data grown in
complexity. Therefore, to obtain the desired information from
the acquired images in an efficient manner, software is needed
that facilitates the analysis of complex image data sets. When
designing such a software application, the nature of the image
data and of its analysis requirements warrants consideration.
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A. Software Design Considerations for Image Data Analysis

Different image arrangements for different analysis tasks
Supported by image acquisition software and hardware com-
ponents such as optical filters, focusing devices, and image
detectors, modern microscopy experiments are capable of
producing complex and multi-dimensional image data sets.
Throughout the course of a fluorescence microscopy (e.g., [4],
[5]) experiment, for example, images of different colors (i.e.,
different wavelengths) can be captured at different times by
one or more cameras at different focus levels. Depending on
the nature of an analysis task that needs to be performed,
the images are arranged along an appropriate number of
dimensions by color, focal position, acquisition time stamp,
and/or any other experimental or analytical parameters. Im-
portantly, in an analysis that comprises different types of
tasks, different arrangements of the images may be used to
facilitate the execution of the component tasks. As necessitated
by the specifics of the tasks, these arrangements may differ
in the number of dimensions as well as the meaning of the
dimensions.

In the most general case, an arrangement isN -dimensional
(where N is any positive integer) and the meaning of each
dimension is designated as required by an analysis task. For
example, a simple linear (i.e., one-dimensional) arrangement
with the images sorted in no particular order may be sufficient
for a visual inspection of the general image quality. However,
a two-dimensional (2D) arrangement with the same images
sorted by time in one dimension and color in the other may
be more suitable for the purpose of generating overlays of the
different colors. In addition, an arrangement is in generalnot
limited to a reordering of the entire set of acquired images,
but may comprise only some of the images and/or contain
repeated images, also as necessitated by the particular task at
hand. For example, to generate the overlay of two large time
lapse series acquired simultaneously, but at different rates by
two cameras, one might choose to work with only a small
time segment of interest, and to repeat within that segment
images from the slower camera to temporally align them with
the images from the faster camera.

We note that the integerN does not include thex and y

dimensions that are intrinsic to an image. AnN -dimensional
arrangement of images is therefore equivalent to what would
commonly be referred to as an(N + 2)-dimensional image
data set.

Large numbers of imagesBesides the multitude of ways
in which it may be arranged, a given data set often consists
of a large number of images. Using fast frame rate cameras,
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for example, microscopists can acquire many images in a
relatively short period of time, ending up with thousands or
even tens of thousands of images by the end of an experiment.
Given the limited hardware resources of a conventional per-
sonal computer, data of this size poses a challenge in terms of
both storage on the hard disk and processing in random access
memory (RAM).

Heterogeneity of images and flexible processingIn general,
a microscopy experiment can produce images of different
sizes. For example, when using multiple cameras with dif-
ferent specifications, one may be constrained to images of
similar, but nevertheless different sizes. In addition, the use
of image acquisition software programs from different camera
manufacturers may result in a data set composed of images
in different file formats. It would therefore be useful for a
software application to support the display and processingof
a heterogeneous data set comprising differently-sized images
of potentially different file formats. The idea of heterogeneity
is also important in terms of the processing of the image data.
Given an arrangement of images, one should be able to process
individual or subsets of the images differently, but at the same
time also have the ability to operate on all images uniformly.
For example, due to photobleaching of the imaged fluorophore,
one might find it necessary to apply different pixel intensity
adjustment settings to images in different segments of a time
lapse series. On the other hand, to confine an analysis to a
region of interest, one might need to crop all the images in
the exact same way.

Provision for adding new analysis capabilitiesAn impor-
tant point to take into account in the software design is the
wide variety of image analysis requirements in microscopy that
range from simple tasks such as the cropping of an image to
more sophisticated processing such as image deconvolution.
Not only is it impractical to support all the existing image
processing algorithms for all types of analyses, it is also
important to note that analysis requirements are constantly
evolving and that customized or new algorithms are always
needed. Therefore, it is essential that a general microscopy
data analysis application provide some means for the incorpo-
ration of new capabilities.

Organized storage of images and associated informationA
last point to consider is that, in addition to the images, there are
other types of important information that an analysis software
application should maintain, potentially on a per-image basis.
These include the processing settings (e.g., intensity adjust-
ment settings, crop settings, etc.) which have been applied
to the images and which can be stored to provide a history
of the processing, the metadata (e.g., acquisition time stamp,
imaged fluorophore, etc.) which are essential for certain types
of analyses, and analytical results (e.g., computed background
intensity, number of identified objects of interest, etc.) which
need to be kept. In light of the various types of information that
need to be saved and associated with the images, a software
application should support a storage management mechanism
that helps with the organization of the images and any related
experimental or analytical information, both on a temporary
basis in RAM and on a permanent basis on the hard disk.

B. Current Software Solutions

Software has been and continues to be developed by various
parties to support the analysis of microscopy image data. The
Open Microscopy Environment [6], for example, takes an
informatics approach to the analysis and storage of microscopy
data. This environment defines an extensible data model for
the management of not only the images themselves, but also
the metadata and the analytical results that are associated
with the images. In [7], a data model and architecture are
introduced in the context of leveraging grid technologies for
the knowledge-based processing of large image data sets.
Another example is the popular Java-based application ImageJ
[8] which offers an abundance of image analysis capabilities
that range from standard functionalities such as intensity
adjustment to advanced features such as object tracking. For
more information on some of the currently available software
packages, see [9].

The typical microscopy image analysis software package
today, however, assumes the use of either a single or a few
image arrangements throughout the course of an analysis.
Moreover, an image data set is limited to a certain number
of dimensions, commonly set to five (i.e., limited to a three-
dimensional (3D) arrangement), and these dimensions are
fixed to represent an image’sx and y dimensions, focal
position along the microscope’s optical (z-)axis, color, and
acquisition time. Therefore, an analysis consisting of disparate
tasks that require arrangements of higher numbers of dimen-
sions with arbitrary representations is in general not readily
supported. Some applications also require the loading of an
entire set of images into RAM for viewing and processing,
and therefore have difficulty supporting the analysis of large
numbers of images. The typical software application today
also does not readily provide for the arbitrary reordering,
repetition, and subset construction of the images in a set. In
addition, the images comprising a set are commonly required
to have the same size and/or file format, and the storage
of processing settings, metadata, and analytical results is not
generally supported by all software packages. In general, the
typical software solution today addresses some, but not allof
the aspects of image analysis discussed in Section I-A.

C. The Microscopy Image Analysis Tool

In this paper, we discuss the design of a microscopy image
analysis software framework which takes into account all
the points raised in Section I-A regarding the analysis of a
complex image data set. This framework is motivated by the
recognition that the different tasks involved in the analysis of a
data set are potentially facilitated by different arrangements of
its images. Importantly, it is based on the central idea thatthese
arrangements can be achieved as different logical views of the
same physical images which may reside either in RAM or on
the hard disk. In this way, a clear distinction is drawn between
the logical data sets (i.e., arrangements) which are used for
analysis, and the actual images in RAM or on disk which
are looked upon only as physical repositories of the data, and
which remain unchanged throughout the course of an analysis.
In addition to its underlying support for multiple and arbitrary
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logical arrangements of images, this framework is a generic
one where no restrictions are placed on the dimensionality of
an arrangement. Furthermore, the meaning of each dimension
of an arrangement can be designated arbitrarily as necessitated
by the analysis task at hand.

We note that the framework we introduce here is not meant
to supersede other software solutions such as those described
in Section I-B. Rather, it is an approach to microscopy image
analysis which we find effective in dealing with the challenges
posed by a complex data set. In fact, given the wide-ranging
problem domains, objectives, and approaches that characterize
the different software solutions, it is entirely possible that our
framework may be used in conjunction with the other solutions
to make certain types of analyses more efficient.

Called the Microscopy Image Analysis Tool, or MIATool
for short, our software framework realizes different logical
arrangements of the images in a given physical data set via
multi-dimensional arrays of pointers to the images. We note
that the term “pointer” as used here is distinct from the pointer
data type found in programming languages such as C and
C++. Rather, it is used in the sense of a general, language-
independent data type that stores the address of an image that
can reside in RAM or on a hard disk. For example, if in RAM,
the value stored could be a memory address. If on disk, the
value stored could be a file path.

The use of image pointers provides at least three advantages.
First, it eliminates the need to physically replicate the images
in RAM or on the hard disk in order to create different
arrangements, and therefore helps to save a significant amount
of memory and disk space. Also, any reordering, repetition,
and subset construction of the images needed to arrive at an
arrangement can all be easily achieved by moving, replicating,
and selectively creating or removing pointers. Second, since
pointers are typically much smaller in size than the images
they reference, a pointer array occupies considerably less
RAM than an array of actual images. Therefore, pointer arrays
allow MIATool to store and process large logical data sets in
RAM. Third, since pointers can refer to images of different
sizes and file formats, a pointer array can naturally support
the analysis of a heterogeneous data set.

To accommodate the analysis of the images specified by
an array of pointers, the MIATool framework employs arrays
of corresponding size and dimension to manage the vari-
ous processing settings, metadata, and analytical resultsthat
are associated with the pointer-referenced images. The main
idea behind these corresponding arrays is that they allow
each pointer in a pointer array to be associated with its
own processing specification, metadata, and analytical results.
Consequently, they provide the flexibility to process each
referenced image differently, while at the same time support
the uniform processing of some or all of the referenced images
through the specification of the same processing settings for
appropriate subsets of pointers in a pointer array. Additionally,
an advantage offered by corresponding arrays of processing
settings is that they can be saved in place of the actual images
that result from the processing, which are typically much larger
in size than the settings. When this option is used, MIATool
is able to make further savings in the usage of the limited

hard disk space and at the same time preserve a record of the
processing.

Since visual feedback plays an important role in many
types of image processing, the MIATool framework specifies
an image viewer which supports the visualization of the
images referenced by anN -dimensional image pointer array.
In addition, it specifies processing tools which allow the
manipulation, via a graphical user interface, of the processing
settings contained in arrays that correspond to the image
pointer array that is currently displayed in a viewer. By
interacting with a viewer to provide immediate visual feedback
whenever processing settings are changed, these tools make
possible the interactive, on-the-fly processing of the pointer-
referenced images. While the advantage of immediate visual
feedback renders these tools most suitable for types of process-
ing that require relatively little time to complete (e.g., intensity
adjustment, cropping, etc.), such tools can in principle be
created for all kinds of image processing. Importantly, by
defining standard ways of interaction between the viewer, the
processing tools, and the corresponding arrays of processing
settings, the MIATool framework facilitates the addition of
new processing capabilities to its existing repertoire.

To help keep track of the multiple image pointer arrays and
their corresponding arrays of settings and information that may
be used over the course of analyzing a physical image data set,
a storage management mechanism is provided by the MIATool
framework. Capable of managing storage both in RAM and on
the hard disk, this storage manager uses a hierarchical structure
to associate a physical image data set with the arrays employed
for its analysis, and to maintain the relationships among the
various arrays. Furthermore, it serves as the standard channel
through which the various arrays are stored and retrieved.

The remainder of this paper is organized as follows. In
Section II, we give a description of the general architecture of
the MIATool software framework. In Section III, we illustrate
the use of different image pointer arrays to perform different
analysis tasks on a given physical image data set. This is
done via examples of some commonly encountered problems
in microscopy image analysis. We follow in Section IV with
a discussion on how MIATool uses arrays corresponding to
an image pointer array to provide flexibility in the processing
of the images it references and to maintain the metadata and
analytical results that are associated with those images. In Sec-
tion V, we present the MIATool image viewer and processing
tools which together provide a visual, user-interactive means
for working with an image pointer array and its corresponding
arrays. In Section VI, we describe how MIATool manages the
storage of a physical image data set and the various types of
arrays that are used for its analysis. Lastly, we conclude our
presentation in Section VII.

II. A RCHITECTURE

The MIATool software framework comprises three principal
components, as shown in Fig. 1. The first component consists
of the logicalN -dimensional pointer array interpretation of a
physical image data set (Section III), along with corresponding
N -dimensional arrays of processing settings, metadata, and
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Fig. 1. The three-component MIATool software framework. The first compo-
nent provides the underlying representation and analysis of logical image data
sets using multi-dimensional image pointer arrays and corresponding arrays of
processing settings, metadata, and analytical results. Thesecond component
provides a graphical user interface for the viewing and the interactive, on-the-
fly processing of the pointer arrays. The third component provides the RAM
and disk storage management that associates a physical image data set with
the pointer arrays and the corresponding arrays that are used for its analysis.

analytical results that are used to support the analysis of the
pointer-referenced images (Section IV). These corresponding
arrays are contained in modules which are capable of carrying
out the actual processing of the images. The second component
includes a viewer and processing tools (Section V) which
together provide a graphical user interface for the viewing
of the images referenced by anN -dimensional image pointer
array, and the interactive, on-the-fly processing of those images
by way of modifying the processing settings contained in cor-
responding arrays. The third component is a storage manager
(Section VI) which associates in RAM or on the hard disk a
physical image data set with its potentially many pointer and
corresponding arrays.

The underlying pointer array-based representation and pro-
cessing of a logical data set, the graphical user interface for
visual, interactive data analysis, and the image and information
storage manager therefore constitute the three main compo-
nents of the software framework. Provided that standard proto-
cols of interaction are adhered to, this architecture is amenable
to the independent development of the components. Based on
this design, a prototype software application, MIATool V1.1
[10], has been implemented using the technical programming
language of MATLAB (The MathWorks, Inc., Natick, MA)
and its image processing toolbox. A preliminary introduction
to the prototype implementation MIATool V1.1 was published
in the conference paper [11]. In contrast, the current paperfo-
cuses on the underlying implementation-independent software
framework, including the reference architecture that provides a
blueprint for the implementation of the design considerations
delineated in Section I-A.

In the sections that follow, we make use of diagrams created
using the standard Unified Modeling Language (UML) (e.g.,
[12]) notation system to help illustrate the design of, and the
interaction between, the three main components of the MIA-
Tool framework. These diagrams were created using the soft-
ware package StarUML 5.0 (http://staruml.sourceforge.net).

Fig. 2. TheImageSet andImageSingle classes. AnImageSet contains anN -
dimensional array ofImageSingles, where eachImageSingle is a pointer which
contains, for example, the location on the hard disk at which an image resides.
An ImageSingle also stores information such as the size and color type of the
image it references. Both theImageSet and theImageSingle support operations
for creating pointers to images and for retrieving images via pointers.

III. D ATA ANALYSIS USING LOGICAL ARRANGEMENTS OF

IMAGES

A complex image data set generated by a microscopy
experiment is often subjected to multiple types of processing
tasks throughout the course of an analysis. As identified in
Section I-A to be an important consideration in the design ofa
data analysis software, these different tasks are often facilitated
by different arrangements of the images that may differ in
size and dimensionality. To address this important aspect of
data analysis, the MIATool software framework supports the
realization of different arrangements of a set of images as
logical data sets in the form of arrays of pointers to the images.
Since the images physically reside either in RAM or on disk,
a pointer is simply a memory address or a file path which
uniquely identifies an image in a data set.

By creating, manipulating, and storing arrays of image
pointers, MIATool avoids having to create or modify physical
arrangements of the images which would require the replica-
tion or shuffling of the images in RAM or on the hard disk.
As a pointer is typically much smaller in size than the image
it references, this allows MIATool to make efficient use of the
limited amount of RAM and disk space. As a result, this also
enables MIATool to accommodate the analysis and storage of
large data sets and hence address another important design
criterion.

As shown in the UML class diagram of Fig. 2, the concept
of a logical image data set is embodied in anImageSet. The
ImageSet class contains in general anN -dimensional image
pointer array, and supports operations such as the creationof
the array (importImages) and the retrieval of an actual image
via a pointer (getImage). Each image pointer in the array
takes the form of anImageSingle, a class which stores not
only the physical location (e.g., the file path) of an image, but
also information such as the image’s size, color type, and file
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format. In addition, theImageSingle class provides operations
for creating a pointer to an image (setImage) and for retrieving
an image via a pointer (getImage).

The storage of image attributes in anImageSingle is im-
portant in that it allows theImageSingles belonging to an
ImageSet to reference images of, for example, different sizes,
color types, and file formats. This directly enables MIATool
to support the analysis of heterogeneous image data sets,
and thereby address the data heterogeneity design criterion.
In particular, the support for heterogeneous image data al-
lows MIATool to deal with data sets of mixed image file
formats which can easily arise, for example, from collaborative
projects involving different imaging modalities contributed by
potentially different research groups (see, e.g., [13], [14]).
Note that in order to realize support for such data sets, an
implementation of thegetImage operation of theImageSingle
class should use the value of the file format attribute to
determine the appropriate image reading routine to invoke to
retrieve the referenced image from disk.

We note that in our MATLAB implementation of the
ImageSingle class in MIATool V1.1, the address of an image
on disk is a file path that is straightforwardly stored as a string
field. However, since MATLAB does not support a native
pointer data type such as that in C or C++, the address of an
image in RAM is stored in two basic ways. One, the image
can reside in a field of theImageSingle itself, in which case
its address is simply given by the field. Two, the image can
reside in the “UserData” property of a MATLAB figure, in
which case its address is given by the handle of the figure.
Note that these details are implementation-specific choices
which we made in the development of MIATool V1.1. Other
methods are certainly possible and can be used in a different
implementation of the framework.

Depending on the specific requirements of an analysis, an
image pointer array can be of any dimensionality and can
contain pointers arranged to represent an arbitrary reordering
of the physical set of images. A pointer array can also contain
repeated pointers to the same image, and at the same time
consist of pointers that refer to just a subset of the images
in the complete data set. In what follows, we illustrate, using
concrete examples of problems frequently faced in microscopy
image analysis, the use of different pointer arrays (and hence
different ImageSets) to analyze a physical image data set.
These examples represent a small sample of the broad range
of pointer arrangements that may be employed to carry out
different analysis tasks on a data set. Importantly, thougha
particular example might in and of itself be a relatively simple
image processing task, together they demonstrate the high
level of data analysis customization that MIATool is designed
to support. (For more data analysis examples using pointer
arrangements, see [11].)

Let us consider a fluorescence microscopy (e.g., [4], [5]) live
cell imaging experiment in which a cell is labeled with two
differently-colored fluorescent dyes. The green dye is attached
to the protein of interest, and the red dye to endosomes with
which vesicles containing the protein of interest interact. The
objective is to track the trajectories of the fast-moving vesicles
and observe their associations with the relatively stationary

Fig. 3. (a)-(d) Logical arrangements (image pointer arrays) of different
sizes and dimensionalities for performing different analysis tasks on the
same set of physical images. An image pointer is represented by anumber
followed by a subscript. The number refers to the sequence number of
the physical image that is referenced by the pointer, and the subscript “g”
or “r” refers, respectively, to the green or red color of thatimage. These
arrangements are suitable for (a) the simple visual inspection of, (b) the
temporally-synchronized overlay of, (c) the logical extraction of an event of
interest from, and (d) the differential processing (e.g., intensity adjustment) of
“duplicates” of, the physical images. (e) A 4D arrangement which references
images acquired from two different focal planes. The superscripts “B” and
“T” associated with the pointers refer to the “bottom” and “top” focal planes,
respectively.

endosomes. Accordingly, two simultaneously running cameras
are used to image the same focal plane within the cell, but
each captures the fluorescence of a different dye, and writes
sequentially numbered images in the order of acquisition toits
own designated directory on the hard disk. In general, the two
cameras may not be synchronized in time, and hence the total
number of images acquired by each camera may be different
at the end of the experiment. Furthermore, the images captured
by the two cameras can potentially be of different sizes and
saved in different file formats.

To visually assess the quality of the acquired images, we
may first want to step through and view the image files
contained in the two camera output directories. For this
purpose, we can construct anImageSet containing a 2D array
of image pointers that mirrors the physical arrangement of
the images on disk (Fig. 3(a)). Specifically, this array has two
rows of potentially different lengths, each containing pointers
to images in a different directory (or equivalently, from a
different camera, of a different color) that are ordered by the
sequence numbers of the images they reference. The MIATool
viewer (Section V) can then be used to traverse this 2D
pointer array and display the referenced images of possibly
different sizes and file formats. Conferred by pointers thatcan
reference images with different attributes, this ability of the
MIATool framework to handle heterogeneous data sets is an
important advantage over software designs that restrict data
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sets to consist of images of uniform size and file format.
After the initial verification of image quality, we may want

to overlay the images from the two cameras in order to
visualize the interactions between the green vesicles and the
red endosomes. To ensure that these interactions are properly
observed, overlays need to be performed with pairs of images
that were captured at approximately the same time. Assuming
that the two cameras were not temporally synchronized, we
then need to form pairs of images based on their acquisition
time stamps. This can be done using anotherImageSet which
contains a pointer array that is similar to the one used for the
initial visualization, but whose columns represent time points
rather than sequence numbers (Fig. 3(b)). Compared to the
array of Fig. 3(a), the pointers in one row of the array of
Fig. 3(b) might be shifted with respect to the pointers in the
other row as per the time stamp information. In addition, if
images of the relatively immobile endosomes were acquired
at a slower rate, pointers to these images may be repeated to
synchronize them against the pointers to the faster acquired
images of the vesicles. Given this time-synchronized pointer
array, overlaid images can be generated by moving through
the columns and processing the images one pair at a time. It
is important to note that instead of creating it from scratch, the
array of Fig. 3(b) can be derived by shifting and replicating
the pointers in the array of Fig. 3(a). In general, it is oftenthe
case that the creation of a newImageSet can be made more
efficient by deriving it from an existingImageSet.

Now suppose that thousands of images were taken by each
camera, and that from the viewing of the overlaid images, we
identify a small sequence of a few hundred time points which
contain the trajectory of a representative green vesicle. To
logically isolate this particular sequence, we can create athird
ImageSet which contains a 2D pointer array that references
only the images confined to this time frame (Fig. 3(c)). As
an example of how one pointer array can sometimes be easily
derived from another, the creation of this new 2D array simply
requires that we keep a contiguous portion of the array of Fig.
3(b) and discard the rest. The significantly smaller pointer
array of Fig. 3(c) allows us to focus our analysis on just a
particular segment of the image data. A collection of such
arrays can be generated to “mark” all the events of interest
within a large physical data set.

Let us now assume that the red dye used to label the
endosomes also attaches to other cellular organelles, but at
much lower quantities. Due to the significant difference in the
amount of labeling, an appropriate intensity setting for viewing
the strongly labeled endosomes will not allow the weakly
labeled organelles to be seen clearly. Therefore, a different
intensity setting is needed in order to observe any potential
interactions between the green vesicles and the weakly labeled
organelles. A method that supports the simultaneous existence
of two intensity adjustment settings per image, and yet requires
only a single pointer array, is to stack two copies of a given
2D array to form a 3D array. This 3D pointer array will
therefore contain two pointers to each image along its third
dimension, and each of the two pointers can be associated with
a different intensity setting (Section IV). Fig. 3(d) showsan
example of such a 3D array of duplicate pointers that has been

derived by stacking two copies of the array of Fig. 3(c). In
order to work with it, a fourthImageSet would be created. As
other arrangements of possibly different dimensionalities can
be made of the same set of duplicate pointers, an advantage
of this particular 3D arrangement is that, for any given image,
one can go from one intensity setting to the other by simply
toggling the value of the third dimension.

To illustrate the concept of logical data sets, we have thus
far demonstrated MIATool’s use of different image pointer
arrays to perform different analysis tasks on a relatively simple
physical image data set. To show how easily a change to the
experiment can make the resulting data more complex, let
us assume that two additional cameras were used to capture
the same green and red fluorescence, but from a focal plane
within the cell that is located higher along the microscope’s
z-axis. Due to the additional view of the cell that is provided
by the images from this “top” plane, this multifocal plane
imaging setup [15] allows us to detect the fast-moving green
vesicles of interest at locations along thez-axis that we
would otherwise not be able to detect by imaging at only
the “bottom” focal plane. Therefore, by using four cameras to
simultaneously capture images from two distinct focal planes,
we can better visualize the trajectories of the green vesicles
in three dimensions.

Since MIATool places no limits on the number and meaning
of the dimensions of an image pointer array, the same analysis
tasks can be performed on the more complex data set using
the same type of logical arrangements as before, but with
an additional dimension to distinguish images from the “top”
and “bottom” focal planes. At the end of the same sequence
of tasks, we would obtain a four-dimensional (4D) pointer
array as depicted in Fig. 3(e). Note that in Fig. 3(e), the
two 3D arrays corresponding to the “top” and “bottom” focal
planes are intended to represent a 4D array where the fourth
dimension allows us to toggle between images of the same
color and from the same time point, but from different focal
planes and with potentially different intensity settings.

In practice, we have used the same types of logical arrange-
ments to analyze complex image data of a similar nature.
In [16] and [17], for example, 3D trajectories of vesicles
and single molecules inside live cells were determined from
images acquired with multifocal plane imaging setups. In
those experiments, multiple cameras were operated at different
speeds to capture images of different colors from up to four
distinct focal planes.

To close this section, we provide some concrete numbers
regarding the size of the image data set on which our examples
have been based. These numbers are representative of the
actual image data we analyzed in [16] and [17] using our
prototype implementation of MIATool, and will illustrate the
significant advantage gained with the use of image pointer
arrays in terms of RAM usage.

Suppose that 6000 16-bit grayscale images, each of
420×400 pixels, are acquired by the camera which captures
the fluorescence of the green dye from the “bottom” focal
plane. This amounts to approximately 328 kilobytes (KB) per
image, and approximately 1.88 gigabytes (GB) for all 6000
images. At the same time, suppose 4000 16-bit grayscale
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images, each of 420×420 pixels, are acquired by the camera
that captures the fluorescence of the red dye from the “bottom”
focal plane. This equates to approximately 345 KB per image,
and approximately 1.31 GB for all 4000 images. The total size
for all 10000 images from the “bottom” focal plane is then
approximately 3.19 GB. Now suppose that the same amounts
of data are acquired by the two cameras that image the “top”
focal plane. The size of the entire set of 20000 images then
becomes approximately 6.38 GB.

Given a conventional personal computer with 1, 2, or
even 4 GB of RAM, software applications that require the
loading of all 6.38 GB of images into RAM would either
not be able to handle this data set, or at a minimum cause a
substantial slowdown of the application itself and the restof
the computer system. Using the pointer array representation
of MIATool, however, anImageSet containing a pointer array
that references the 20000 images would require a significantly
smaller amount of RAM. In MIATool V1.1, for example, an
ImageSet containing a 3D array of pointers to the 20000
images would only take up approximately 145 megabytes
(MB) of RAM. This 3D array is constructed by stacking
two copies of the type of 2D pointer array depicted in Fig.
3(a) along a third dimension. One copy contains pointers that
reference the 10000 images from the “bottom” focal plane, and
the other contains pointers that reference the 10000 images
from the “top” focal plane.

We note that the significant savings in RAM provided by
an ImageSet will translate to similar savings in disk space.
Therefore, instead of physically replicating images to form
various arrangements such as those illustrated in Fig. 3, the
saving of ImageSets containing pointer arrangements could
save a nontrivial amount of disk space. Also, it is important
to point out that, regardless of how large or small the data set,
a software application that requires all images to be of the
same size would not readily support the analysis of the type
of heterogeneous data described.

IV. CORRESPONDING ARRANGEMENTS OF PROCESSING

SETTINGS, METADATA , AND ANALYTICAL RESULTS

In Section III, we illustrated MIATool’s use of different
image pointer arrays to facilitate the different processing tasks
that comprise a data analysis. Here, we describe the means by
which the framework supports the execution of a given task. In
general, a task may require that each of the images referenced
by its pointer array be processed differently. Moreover, the
processing of the referenced images may potentially be based
on metadata that is specific to each image, and may produce
analytical results that need to be maintained on a per-image
basis. Specified as a crucial design consideration in Section
I-A, MIATool supports this processing flexibility by making
use of arrays of processing settings, metadata, and analytical
results which are constructed in parallel to an image pointer
array. In what follows in this section, we give our main focus
to arrays of processing settings, but end with a discussion on
arrays of metadata and analytical results which can conceptu-
ally be seen as simple special cases of arrays of processing
settings.

Fig. 4. Examples ofSet andSingle classes for the processing ofImageSets
and ImageSingles. Analogous to theImageSet-ImageSingle relationship, a
Set contains anN -dimensional array of its associated type ofSingles. A
Single at a particular position in theN -dimensional array stores the settings
for the processing of theImageSingle located at the same position in the
array contained in a correspondingImageSet. An IntensitySingle and a
CropSingle contain, respectively, the settings for the intensity adjustment and
cropping of the image referenced by a correspondingImageSingle. Similarly,
a SegmentationSingle and aLabelSingle store, respectively, settings for the
partitioning and labeling of the referenced image.

Given anN -dimensional image pointer array, one should
on the one hand be able to process each of the referenced
images differently, and on the other hand have the option to
process all referenced images in a uniform way. In order to
accommodate both extremes and all permutations in between,
MIATool uses arrays corresponding in size and dimension
to a pointer array to support the flexible processing of its
referenced images. More specifically, an image referenced by
a pointer belonging to element(x1, x2, . . . , xN ) of a pointer
array is processed according to the settings that are stored
in element(x1, x2, . . . , xN ) of a corresponding array. With
such a parallel design, custom processing is possible on a
per-image basis, while at the same time uniform processing
for all or subsets of the images can be achieved by simply
specifying identical settings in the appropriate elementsof a
corresponding array.

Different corresponding arrays of processing settings are
used for different processing tasks. Just as an image pointer
array is stored in and managed by anImageSet, these cor-
responding arrays are kept in and handled by variousSet
classes, as illustrated in Fig. 4. Arrays that store intensity
adjustment and crop settings, for example, reside in the classes
IntensitySet andCropSet. Moreover, analogous to image point-
ers being instances of theImageSingle class, each element
of a corresponding array is an instance of aSingle class
that contains the processing settings for a specific image.
As shown in Fig. 4, anIntensitySingle, for instance, keeps
information such as the intensity adjustment method to use and
the values of the associated adjustment parameters. Similarly, a
CropSingle stores parameters whose values describe the region
of the image to retain while the rest is trimmed.

Importantly, Fig. 5 shows that allSet classes support a
common repertoire of operations specified by the interface
SetUsage. In addition to operations for the storing and re-
trieving of processing settings to and from the elements of the
array that is managed by aSet, this interface requires aSet
class to implement two important operations. Given an image
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Fig. 5. TheSetUsage andSingleUsage interfaces. TheSetUsage interface is
supported by allSets and specifies standardSet operations such as the creation
of an N -dimensional array ofSingles, the assignment and the retrieval of
processing settings to and from a particularSingle, and the actual processing
of the images referenced by a correspondingImageSet according to the stored
processing settings. Analogously, theSingleUsage interface is implemented by
all Singles and specifies similar standard operations at the level of aSingle.

pointer array by way of anImageSet, the initializeSingleArray
operation creates an array of processing settings that corre-
sponds in size and dimension to that pointer array, and hence
initializes the Set for working with the suppliedImageSet.
The applyParameters operation accepts the sameImageSet as
input, and processes each of its referenced images according to
the settings stored in theSet. The applyParameters operation
shows thatSets do not only store the processing settings,
but also carry out the actual tasks of intensity adjustment,
cropping, segmentation, labeling, etc. In an analogous manner,
all Single classes implement the interfaceSingleUsage, which
specifies analogous operations at the level of a single image.

In general, the output of theapplyParameters operation of
a Set is a new ImageSet containing an array of pointers to
the (e.g., intensity-adjusted, cropped, segmented, or labeled)
images generated by its processing. These resulting imagescan
again reside either in RAM or on the hard disk, and if need
be, they can be subjected to further processing by the next
Set in a sequence of processing operations. In this model of
processing, actual images and anImageSet that refers to them
are generated at each intermediate processing step. While this
is a good way to proceed in cases where images created at
intermediate steps are desired, in other cases it could present
problems when there is insufficient RAM or disk space.

An alternative model of processing is therefore to iterate
through the initial array of pointers and process one referenced
image at a time from beginning to finish. In this way, only a
single set of final images is created at the end of the processing
sequence. This alternative approach can be readily realized
by carrying out the processing at the level ofSingles instead
of Sets. That is, given an image (i.e.,an ImageSingle) from

the initial ImageSet, we can process it from beginning to end
by invoking in proper order theapplyParameters operation
on each of its correspondingSingles. The two models of
processing need not be mutually exclusive, and depending on
the available hardware resources and the intermediate results
that are desired, they can be applied as appropriate to different
segments of a sequence of processing steps.

In addition to processing flexibility, the use of correspond-
ing arrays provides at least three further advantages. First,
the parallel design allows the straightforward propagation of
processing settings when one image pointer array is derived
from another as illustrated by the sequence of analysis tasks
described in Section III. Due to the one-to-one correspondence
between a pointer array and its associated arrays of processing
settings, the arrays of settings corresponding to an existing
pointer array can be manipulated in exactly the same way
as the pointer array to arrive at arrays of settings that not
only correspond in size and dimension to a derived pointer
array, but also retain the same processing settings for the
images referenced by the derived pointer array. This carryover
of processing settings is useful since in many situations, pre-
existing settings apply just as well to a derived image pointer
array.

Second, by adhering to the paradigm ofSets and their as-
sociatedSingles, the design criterion of software extensibility
is accounted for as new image processing capabilities can be
incorporated into MIATool with relative ease in the form of
new types ofSets and Singles. As we will see in Section V,
this paradigm also forms the basis for the extensibility of the
image display and the interactive, on-the-fly processing frame-
work adopted by the MIATool viewer and the various image
processing tools. Third, the saving ofSets andSingles provides
a practically useful alternative to the saving of the imagesthat
result from the processing. ASingle that contains processing
settings is typically much smaller than the image that results
from the processing, and therefore occupies significantly less
disk space. This is another way by which MIATool addresses
the design consideration of accommodating the analysis of
large image data sets. Furthermore, the saved settings readily
provide a record of the processing that can be used at a later
time to generate the desired images.

Besides processing settings, corresponding arrays can be
used for the storage of information such as the metadata
and the analytical results that are associated with the images
referenced by a pointer array. For example, new types ofSets
and Singles can be created to maintain for each referenced
image of a pointer array metadata such as its acquisition time
stamp, focus level, and color (i.e., wavelength). Analytical
results such as the objects of interest identified in a tracking
application and their computed attributes (e.g., size, centroid,
fluorescence intensity, etc.) can also be stored on a per-
image basis using theSet and Single paradigm. Note that
since theseSets and Singles are used purely for information
maintenance and do not perform any processing on images,
theapplyParameters operations specified by theSetUsage and
SingleUsage interfaces can be trivially defined to either do
nothing or to simply return the stored information.
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Fig. 6. An instance of the MIATool V1.1 viewer that has been opened with
four sliders for the traversal of a 4D image pointer array. Thearray contains
replicated pointers that reference a physical data set of 11321 images on the
hard disk, acquired using a two-plane multifocal plane microscopy imaging
setup. The dimensions of the pointer array are given by 2 (focal planes)
× 3946 (time points)× 2 (colors/fluorophores)× 2 (intensity settings). The
displayed image is an RGB overlay, formed on the fly, of two grayscale images
of a human microvascular endothelial cell acquired at different wavelengths
corresponding to QD 655-labeled IgG (red channel) and pHluorin-labeled
FcRn (green channel). The two grayscale images were acquiredby two
cameras that simultaneously imaged the “bottom” focal plane of the two-
plane imaging setup.

V. I MAGE VIEWER AND PROCESSING TOOLS

In Section IV, we discussed MIATool’s use of corresponding
arrays (i.e.,Sets) of processing settings, metadata, and analyt-
ical results for the processing of the images referenced by
an array of pointers (i.e., anImageSet). There, the nature of
the processing described assumes that the precise processing
specifications are already known, and that therefore no visual
feedback or user interactivity is necessary during the execution
of an analysis task. For many types of image processing,
however, the ability to visualize the images as well as the
changes made to the images is desirable if not crucial. A
simple intensity adjustment, for example, often requires the
user to manually try out and visually assess different adjust-
ment methods and/or intensity settings before deciding on
the best choice. In this section, we describe the viewer and
tools specified by the MIATool framework to support image
visualization and user-interactive, on-the-fly processing with
visual feedback.

As we alluded to in the discussion of Fig. 3(a), perhaps
the most basic of necessities when given anN -dimensional
image pointer array is to be able to traverse the array and view
the referenced images. To address this requirement, MIATool
provides as a basic component of its graphical user interface
an image viewer that supports the traversal and display of the
images referenced by a pointer array. Since each pointer in
an N -dimensional array is uniquely identified by anN -tuple
(x1, x2, . . . , xN ), the MIATool viewer allows the selection of a
pointer with a set ofN controls such as sliders, each specifying
the value of a different dimension. The screen capture of Fig.
6, for example, shows an instance of the MIATool V1.1 [10]
viewer that has been opened with four sliders for the traversal
of a 4D image pointer array.

Upon the selection of a pointer, the MIATool viewer re-

trieves on the fly the referenced image from RAM or the hard
disk and displays it to a window. The currently displayed
image is always overwritten with a newly retrieved image.
In this way, the viewing of a large image data set which
physically resides on disk is made possible without having
to first load all the referenced images into RAM, which can
often be a problem when the amount of RAM is very limited.
The physical image data set displayed by the viewer of Fig.
6, for example, consists of 11321 16-bit grayscale images,
each of 320×390 pixels. The size of each image is therefore
approximately 244 KB, and that of the entire data set is
approximately 2.63 GB. The loading of all 2.63 GB of data
into RAM could already prove difficult with a conventional
personal computer. However, as we explain next, the 4D image
pointer array (i.e.,ImageSet) that is loaded in the viewer of
Fig. 6 actually references 31568 images by virtue of replicated
pointers to the 11321 physical images on the disk. Whereas
this 4D ImageSet as implemented in MIATool V1.1 only
takes up approximately 231 MB of RAM, an equivalent 4D
arrangement of actual replicated images would require around
7.34 GB of RAM.

The set of 11321 physical images was produced by the
type of live cell fluorescence imaging experiment we carried
out in [17], where multifocal plane microscopy [15] was used
to image and track in three dimensions the itineraries of the
neonatal Fc receptor (FcRn) and its ligand immunoglobulin
G (IgG) in a human microvascular endothelial cell. Similar
to the experiment described in Section III, four cameras were
used to simultaneously acquire time sequences of images from
two distinct focal planes, and the images from each camera
were written to the camera’s own separate directory in the
order they were acquired. In the “bottom” focal plane, the
first camera captured the fluorescence from pHluorin-labeled
FcRn, and the second camera captured the fluorescence from
quantum dot (QD) 655-labeled IgG. In the “top” focal plane,
the third camera captured the fluorescence from monomeric
red fluorescence protein (mRFP)-labeled FcRn, and the fourth
camera captured the fluorescence from QD 655-labeled IgG.
(For more details concerning the experiment, see [17].)

Since the four cameras acquired images at different rates,
the resulting data set of 11321 images consists of four di-
rectories of image sequences of different lengths. This 2D
physical arrangement of images is therefore sorted by camera
and sequence number, and the images acquired by the different
cameras are not temporally synchronized with one another.
However, to properly visualize the trajectories of, and the
interactions between FcRn and IgG, we needed to view
overlays of temporally synchronized images from each focal
plane with different intensity settings. To this end, we made
use of the pointer array manipulations illustrated in Fig. 3to
temporally synchronize the images and introduce the necessary
dimensions. The resulting 4D pointer array is the 2 (focal
planes)× 3946 (time points)× 2 (colors/fluorophores)× 2
(intensity settings) array loaded in the viewer of Fig. 6, and it
is similar to the 4D array depicted in Fig. 3(e).

Abstracted by the classMIAToolViewer as shown in Fig. 7,
the MIATool viewer supports various display modes that are
useful for microscopy image analysis. Besides the standard
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Fig. 7. TheMIAToolViewer class. AMIAToolViewer supports the interactive
traversal and viewing of the images referenced by anImageSet. Optionally, it
uses the processing settings contained in the various typesof Sets to process
(e.g., intensity-adjust, crop, etc.) the images on the fly before displaying
them in processed form. AMIAToolViewer supports operations for loading
the ImageSet to view and theSets to use, and for displaying the currently
selected images. Different types of displays can be specified. A grayscale
image, for example, can be visualized individually as a standard 2D image,
a 3D mesh, or a contour plot, or it can be displayed simultaneously with
other grayscale images, either in parallel but in its own window, or as a color
channel in an overlay.

2D display, an image can be presented, for example, as a
3D mesh or as one of the color channels in an overlay (as
in Fig. 6) with other images. Note that modes such as the
overlay display require the selection of multiple images instead
of just one, and the mechanism for making such a selection
in a viewer is implementation-specific. In MIATool V1.1, for
example, viewing of RGB overlays is achieved by scrolling
through one dimension of anImageSet and viewing the images
in another dimension in groups of up to three as different color
channels of a single RGB image. In Fig. 6, the dimension from
which images are taken to form the overlays is indicated by
the disabled (i.e., grayed out) slider.

It is important to point out that the specification of the
simultaneous display of multiple images in aMIAToolViewer is
a general concept that readily includes the 3D visualization of
the images. Just as up to three images can be selected to form
an RGB overlay, up to M (where M is an integer greater than
1) images can be selected and displayed as a 3D volume of, for
instance, a time lapse sequence or az-stack. Such visualization
options in three dimensions can be useful, if not essential,in
the analysis of complex biological structures (see, e.g., [18],
[19]).

Importantly, Fig. 7 also illustrates that, given an image
pointer array in the form of anImageSet, the viewer can
additionally be supplied with correspondingSets. By carry-
ing out on-the-fly processing of an image according to its
associated settings contained in theseSets, the viewer enables
the viewing of processed (e.g., intensity-adjusted, cropped,
segmented, etc.) images without requiring that they pre-exist in
RAM or on the hard disk. However, in order that the viewer is
shielded from the specifics of the various processing tasks,this
on-demand processing of images relies on its interaction with
the SetUsage and SingleUsage interfaces (Fig. 5). As such,
new processing capabilities can be added to the viewer by

Fig. 8. Interaction of the MIATool viewer with various image processing tools
via the ViewerUsage and theToolUsage interfaces. The processing settings
contained in aSet can be displayed and modified through the graphical user
interface provided by a correspondingTool. The settings in anIntensitySet,
for example, can be manipulated using anIntensityTool. Via theViewerUsage
interface supported by the MIATool viewer, any type ofTool can retrieve its
correspondingSet, return a potentially modified version of theSet, and for
immediate visual feedback request the viewer to re-display the current image
which may have been altered by the changed settings. On the other hand, all
types of Tools implement theToolUsage interface which allows the viewer
to, for example, open and close aTool, and to request aTool to update its
settings display whenever a new current image is selected.

way of new types ofSets andSingles that support operations
which conform to their respective interfaces.

To allow the user to view and to interactively specify and
modify processing settings, MIATool provides graphical user
interfaces for displaying and manipulating the contents ofthe
various types ofSets. The graphical user interface to each type
of Set is managed by a different image processing tool. For
example, as shown in Fig. 8, anIntensityTool is responsible
for mediating access to anIntensitySet, while a CropTool is
the intermediary that facilitates the manipulation of aCropSet.
As it is important for the user to receive immediate visual
feedback on the effects of the changed settings on the images,
an image processing tool is designed to be able to work with
the MIATool viewer. Through the interfaceViewerUsage (Fig.
8) that is supported by the viewer, aTool can retrieve aSet
from the viewer, return to it a modified version of theSet based
on the user input, and “ask” the viewer to re-process and re-
display the current image. Any changes due to the modified
settings are then reflected immediately in the refreshed display.
As an example, Fig. 9 shows the same viewer as in Fig. 6,
but displaying an altered version of the same image that has
been specified interactively via the intensity adjustment tool
and the crop tool shown.

Conversely, all image processing tools implement a common
interfaceToolUsage (Fig. 8) which is used by the MIATool
viewer. Relying on the operations specified by this interface,
the viewer can, for example, open and close the graphical
user interface that is provided by aTool without knowing
the Tool’s implementation details. Through this interface, it
can also request the variousTools to display the processing
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Fig. 9. An instance of the MIATool V1.1 intensity adjustment tool (upper
right panel) and an instance of the crop tool (lower left panel) that have been
opened for the display and modification of, respectively, anIntensitySet and
a CropSet that are loaded in an instance of the MIATool viewer (upper left
panel). The viewer instance is the same as the one in Fig. 6 and is displaying
a version of the same image that has been intensity-adjusted and cropped on
the fly according to altered intensity and crop settings specified via the two
tools. The settings displayed in the tools reflect that of themodified image
currently displayed.

settings that correspond to the currently displayed image
(e.g., the settings displayed in the intensity adjustment tool
and the crop tool of Fig. 9 reflect that of the displayed
image). This capability is essential as the viewer uses it to
ensure that the information reported by the tool graphical
user interfaces stays updated whenever a new current image is
selected by the user. Importantly, by adhering to theToolUsage
and ViewerUsage interfaces, the design criterion of software
extensibility specified in Section I-A is also fulfilled for
the visual and interactive component of MIATool as viewer-
compatible image processing tools can be created with relative
ease to support new types ofSets andSingles.

Along with theSets they modify, the image processing tools
we have discussed thus far constitute a simple and extensible
means of supporting processing on a per-image basis. While it
makes sense to realize many kinds of image processing in this
manner, there is a different category of processing that operates
on multiple images at a time. Just as 3D visualization displays
multiple images together in one form or another, 3D process-
ing such as movie making and particle tracking operates on
multiple images at a time. Analogous to how 3D visualization
can be realized, an implementation of the MIATool framework
can take advantage of the MIATool viewer’s multiple image
selection feature to create 3D processing tools. Internally in
our laboratory, for example, a movie making tool and other
types of 3D processing tools have been implemented which,
analogous to the way RGB overlays are displayed in MIATool
V1.1, operate on images along a particular dimension of an
image pointer array.

Fig. 10. MIATool’s image andSet storage management. (a) Sketch of a
representative hierarchical directory structure used by the MIATool storage
manager. Underneath a root directory are two subdirectories, one containing
the physical set of images and the other the logical data sets used to analyze
those images. Within the latter subdirectory, each logical data set (i.e.,Image-
Set) occupies its own subdirectory. Underneath eachImageSet subdirectory
are subdirectories which store theSets (e.g., IntensitySets, CropSets, etc.)
that correspond to thatImageSet. (b) The storage manager abstracted by the
MIAToolDirectory class. AMIAToolDirectory manages a directory structure
like the one depicted in (a). It keeps track of the location ofthe root directory
and the names of all of its subdirectories, and maintains information such as
the number of savedImageSets, their file names, and similar details pertaining
to any savedSets corresponding to eachImageSet. A MIAToolDirectory also
supports operations for the saving and retrieval of the variousSets to and from
the directory structure it manages.

VI. STORAGE MANAGEMENT OF IMAGES AND

ASSOCIATEDINFORMATION

In Section III, we gave practical examples of microscopy
image analysis which illustrate that different image pointer
arrays (ImageSets) may be employed for performing various
analysis tasks on images from the same physical data set
(Fig. 3). In Section IV, we discussed corresponding arrays
of settings of various types (IntensitySets, CropSets, etc.), as
well as arrays of metadata and analytical results, which may
be associated with a given image pointer array. Consequently,
a physical set of images in RAM or on the hard disk can
be associated with severalImageSets, each of which can
in turn be associated with several correspondingSets. All
things combined, a physical image data set can potentially
be associated with manyImageSets and correspondingSets
of different types. Even moreSets could be involved if, for
example, multipleSets of the same type are associated with
the same image pointer array. One can imagine, for instance,
the use of multipleCropSets to define different regions of
interest within the referenced images.

In addition to being potentially large in quantity, theSets
associated with a physical data set are related to one another in
different ways. For example, while allImageSets are “peers”
in the sense that they represent independent logical data
sets derived from the same physical image data, a given
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IntensitySet is “attached” to the particularImageSet with which
it is associated.

Due to the potentially large amount of differently-related
information that can be associated with a physical image
data set, a storage management mechanism that provides
organization is needed as pointed out in Section I-A as a
software design criterion. That is, not only is it importantfor
this mechanism to group data and information that are related,
it is essential that it organizes them in a way that encodes
their relationships. To this end, MIATool employs a manager
which enforces storage in a hierarchical directory structure
to help with the organization of a physical image data set
with the potentially many and differently-relatedImageSets
and correspondingSets that are used for its analysis. The
hierarchical directory structure importantly allows the manager
to capture the relationships between the variousImageSets and
correspondingSets, and it can be applied to both storage in
RAM and storage on the hard disk.

As illustrated in Fig. 10(a), the MIATool storage manager
stores allImageSets and their correspondingSets in the same
directory as the physical image data with which they are
associated, but under a subdirectory structure of their ownto
denote a clear separation between the physical images and the
logical data sets used to analyze them. Within this subdirec-
tory, eachImageSet is given its own subdirectory, underneath
which all of its correspondingIntensitySets, CropSets, etc.,
are grouped by type and stored in separate subdirectories of
their own. For storage on disk, this hierarchy of directories
is literally created on the hard disk. For storage in RAM,
however, the implemented directory structure would only be
logical in nature.

The MIATool storage manager is abstracted by the class
MIAToolDirectory, diagrammed in Fig. 10(b). An instance of
MIAToolDirectory acts as a table of contents for the directory
structure it manages. It keeps track of information such as
the location of the top level directory and the names of the
subdirectories that contain the physical image data and the
ImageSets. It also records information such as the number of
savedImageSets and their file names, and maintains details
such as the number and file names of correspondingSets of
each type that are associated with eachImageSet. (Note that
when the storage is in RAM, details such as directory and file
names are still relevant as they provide a means for uniquely
identifying eachImageSet and its associatedSets.) Importantly,
a MIAToolDirectory provides operations for the saving and
the retrieval ofImageSets and the variousSets to and from
its managed directory structure. These operations ensure that
ImageSets and their associatedSets are saved to and retrieved
from the correct locations within the hierarchy of directories,
and that the information contained in aMIAToolDirectory is
updated properly (e.g., that an appropriate counter is incre-
mented when a newSet is saved).

Though most straightforwardly interpreted and implemented
as a directory structure that resides on a single hard drive of
a single computer, it is important to note that the hierarchical
structure managed by aMIAToolDirectory can be realized as
one that spans multiple networked computers running poten-
tially different operating systems. As long as all the images

and all the associatedImageSets and their correspondingSets
are uniquely identifiable and retrievable across the network and
the various platforms, aMIAToolDirectory can be implemented
that manages subdirectories of images,ImageSets, and other
Sets that reside on different computers. AMIAToolDirectory
implementation that supports such network-spanning, cross-
platform image data sets can be particularly useful for large-
scale collaborative projects (see, e.g., [13], [14]).

In a collaborative project, it is also important that different
users are able to access the same image data set simultane-
ously, and yet manipulate it differently. This sharing of data
can help to avoid the replication of the large amounts of data
that are especially typical of large-scale collaborations. To this
end, read-only image data can be stored on shared drives
across the network, such that multiple users can access the
images at the same time, but are not able to overwrite them.
Given a shared data set, two general approaches can be used
to support the analyses performed by the users. With either
approach, each user can create and work with his or her own
ImageSets that reference the same shared images. However,
the two schemes differ in the way the access to the shared
images and the storage of results are realized.

In the first approach, each user has his or her own storage
manager (i.e.,MIAToolDirectory) through which he or she
accesses the shared images and saves the results of analysis.
In this scenario, each user’s ownImageSets and corresponding
Sets are saved under his or her own directory structure. This
approach avoids the sharing of a storage manager by the users,
but lacks a central mechanism that keeps track of the storage
locations of the results of all analyses that are associatedwith
the shared image data. (Note that since they are read-only,
it is possible to have multiple storage managers that provide
potentially concurrent access to the shared images.)

In the second approach, all users go through a shared storage
manager to access the shared images and save their results.
In this scheme, each user’sImageSets and corresponding
Sets are saved under a single central directory structure. The
single storage manager adopted by this approach provides
a means to centrally locate the results of all analyses that
are performed on the shared image data. However, while the
storage manager can allow concurrent access to the read-only
images, the saving of the users’ analysis results must be done
in a sequential way to ensure that the manager always has
accurate knowledge of the contents of the central directory
structure.

VII. C ONCLUSION

We have described the MIATool software framework which
has been built based on several design considerations per-
taining to the analysis of complex image data sets produced
by modern optical microscopy experiments. A central design
criterion is support for the use of different arrangements of
a set of images to facilitate the execution of the different
processing tasks that comprise a microscopy data analysis.
To this end, MIATool supports data analysis that is based on
logical image arrangements in the form of arrays of pointers
to the physical images. These image pointer arrays can be
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of arbitrary size and dimension, thus allowing MIATool to
accommodate analysis tasks with disparate requirements.

The use of image pointer arrays also allows MIATool to
support the storage and analysis of large image data sets, and
thereby address another important software design considera-
tion. Pointer arrays are typically significantly smaller insize
than the sets of images they reference. Therefore, by enabling
the realization, manipulation, and storage of different image
arrangements without the need to replicate and shuffle the
actual images in their physical storage medium, pointer arrays
make for the space-efficient usage of RAM and the hard disk,
and naturally permit MIATool to handle data sets containing
large numbers of images. An additional advantage of using a
pointer array is that its pointers can refer to images of different
sizes and file formats. Consequently, MIATool can easily
support sets of different-sized images of possibly different file
formats, and hence account for the data heterogeneity design
consideration.

To address the design criterion of flexibility in process-
ing, the idea of image pointer arrays is complemented by
corresponding arrays of processing settings, metadata, and
analytical results which provide the ability to perform dif-
ferential processing on a per-image basis. Importantly, the
construction of these corresponding arrays is described bya
simple paradigm that, when adhered to, allows the relatively
easy incorporation of new image processing capabilities. A
crucial design consideration, the idea of software extensibility
also plays an important role in the design of MIATool’s
image viewer and processing tools. The viewer supports the
visualization of the images referenced by a multi-dimensional
image pointer array, while the tools support their interactive,
on-the-fly processing via the modification of the processing
settings stored in corresponding arrays. By specifying the
viewer and the processing tools to interact through well-
defined interfaces, the framework allows the straightforward
addition of new viewer-compatible processing tools.

Lastly, in accordance with the storage management design
criterion, MIATool specifies a storage manager which enforces,
either in RAM or on the hard disk, the association of a physical
image data set with the pointer and corresponding arrays that
are used for its analysis. Importantly, this manager plays an
organizing role in using a hierarchical directory structure to
maintain the relationships among the various arrays.

The MIATool framework and its current implementation
[10] have been developed over the course of several years
based on design elements we have found to be essential for
working with microscopy image data. In our laboratory, it has
been, and continues to be, employed for projects of varying
sophistication. Taken together, we find that the various features
of MIATool make it a suitable software framework for a
research environment where microscopy imaging experiments
produce constantly evolving data analysis requirements.

REFERENCES

[1] A. J. Lacey, Ed.,Light Microscopy in Biology: A Practical Approach,
2nd ed. Oxford, UK: Oxford University Press, 1999.
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