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Abstract

In this paper, we consider the problem of the accuracy of estimating the location and other attributes
of a moving single molecule whose trajectory is imaged by fluorescence microscopy. As accuracy in
parameter estimation is closely related to the Fisher information matrix, we first give a general expression
of the Fisher information matrix for the estimated parameters for a single object moving in three-
dimensional (3D) space. Explicit Cramer-Rao lower bound (CRLB) expressions are then obtained from
the Fisher information matrix for a single object moving in the two-dimensional (2D) focus plane with
the object trajectory being either linear or circular. We also investigate how extraneous noise sources,
pixelation, parameters of the detection system and parameters of the trajectory affect the limit of the
accuracy. The results obtained in this paper provide insights that enable the experimentalists to optimize
their experimental setups for tracking single molecules in order to achieve the best possible accuracy.

They are also applicable to the general problem of tracking an object using quantum limited detectors.
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. INTRODUCTION

In recent years, single-molecule fluorescence microscopy has become an important biological research
tool in cell biology, biochemistry and biophysics and is experiencing a rapid growth in its applications
[1]-[6]. It provides, for example, quantitative information on the behaviour of molecules in cells, which is
seldom available through bulk studies due to averaging effects [7], [8]. One way of gaining new insights
into biological and cellular processes is to optically track the molecules as they move over time [9]-[11].
It is therefore important to know the accuracy with which the location and other attributes of a single
molecule can be determined with fluorescence microscopy. It has been shown in [12] that the localization
accuracy has to be taken into account when analyzing the diffusion behaviour of single molecules, as
otherwise noisy measurements of the single molecule locations could be misinterpreted as sub-diffusion.
In addition to the noise, the molecular motion during the finite acquisition time also contributes to the
localization error [13]. Hence, knowing the limit of the accuracy of the parameters concerned not only
helps to validate the results obtained but also provides a means to evaluate and optimize the single-
molecule tracking experimental setups and various algorithms used [14].

To obtain the lower bound on the accuracy of parameter estimation, Ober et al. [15] and Ram et al.
[16] derived the Cramer-Rao lower bound (CRLB), i.e., the inverse of the Fisher information matrix.
The general expression of the Fisher information matrix derived in [16] is applicable to both stationary
and moving point sources. They applied their methodology to the case of a stationary point source and
performed an extensive investigation on the effect of noise, image function, pixelation, detector size and
pixel size on the limits of the accuracy of the parameter estimates [15], [16].

In this paper, we apply the general framework developed in [16] to the case of a moving point source,
which is used to model a single molecule here. We express the Fisher information matrix, from which
the performance limit that quantifies the capabilities of an optical microscope is determined, in terms of
the image function and object trajectory. Explicit CRLB expressions are obtained for a moving single
object with the object trajectory being either linear or circular. In the case of a 2D pixelated detector, we
show through simulations how extraneous noise sources, pixelation, parameters of the detector system
and parameters of the trajectory affect the performance of an optical microscope. Some of the results
obtained are unique to a moving point source as no counterparts exist for a stationary point source. For
example, in the case of a linear trajectory, the practical limit of the accuracy for the estimation of the
starting location depends not only on the acquisition time, but also on the speed of the moving point

source. In the case of a circular trajectory, for certain starting points, there is a noticeable disparity
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between the limits of the localization accuracy for estimating the coordinates of its eengard y.
when the radius of the circular trajectory is small.

The organization of this paper is as follows. In Section Il, we derive an expression of the Fisher
information matrix for a non-pixelated detector of infinite size in terms of the image function and object
trajectory in 3D space. We then obtain explicit expressions for the fundamental limit of the accuracy
of parameter estimation for specific image functions and a single object moving in the two-dimensional
(2D) focus plane with the object trajectory being either linear or circular. In Section Ill, we consider
a pixelated detector of finite size and derive the general expression of the Fisher information matrix
for two stochastic models when various types of noise are present. We also investigate the effect of
extraneous noise sources, pixelation, parameters of the detector system and parameters of the trajectory
on the performance of an optical microscope, and provide guidelines for experimentalists to optimize
their experimental setups for tracking single molecules in order to achieve the best possible results.

Conclusions are presented in Section IV. Proofs are given in the Appendix.

Il. GENERAL FRAMEWORK

In a basic optical microscope setup, we consider an object of interest moving in the object space,
imaged by a lens system and its image captured by a detector in the detector space. The detector detects
photons emitted by the fluorescent-labelled object during a fixed acquisition time. Since this detection
process of the emitted photons is inherently a random phenomenon, the recorded image of the object is
stochastic in nature.

From the acquired data, using a specific estimation technique such as the maximum likelihood method,
we can estimate object attributes such as the location and orientation and in the case of a moving object,
its speed, direction of movement, etc. The accuracy of these estimates can be determined by calculating
their standard deviations from the true parameter values upon repeated experiments [11], [14], [16], [17].
However, in any estimation problem, it is important to have a benchmark against which the accuracy of
the estimate of the desired attribute can be measured. According to the Cramer-Rao inequality [18]—-[20],
the (co)variance (matrix) of any unbiased estimatoof an unknown vector parametéris bounded
from below by the inverse of the Fisher information matti¥), i.e., Co\d) > 1-1(9). Hence, we
can obtain the benchmark, which provides the limit of the accuracy, by taking the square root of the
diagonal elements of the inverse of the Fisher information matrix for the underlying random process that
characterizes the acquired data. It should be noted that the Fisher information matrix is independent of

any estimation technique used and only depends on the statistical nature of the acquired data.
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Following [16], the acquired data is modelled as a space-time random process [21] which we will refer
to as the image detection procgssThe temporal part describes the time points of the photons detected
by the detector and is modelled as a temporal Poisson process with intensity fufigtidhe spatial
part describes the spatial coordinates of the arrival location of the detected photons and is modelled
as a family of mutually independent random variab{és }.>,, with probability densities{ fs - }->¢,
defined on the detectdf, wherer denotes the time point of a detected photon. The time dependence
of the random variable$l{; } .>;, denotes the fact that the spatial distribution of the detected photons
can change with time as is the case with a moving object. Although not explicitly denoted as such, the
probability densities fy - }>¢, can also depend on the focus lewg(r) and orientatiorvy(7), 7 > t,
of the object. Throughout the paper, we igtc R andf € ©, where® denotes the parameter space
that is an open subset &" with n being the dimension of which consists of the location and other
attributes of the moving object that are to be estimated. We assume that the spatial and temporal parts of
G are mutually independent of each other and that the probability density fungtiosatisfies certain
regularity conditions that are necessary for the calculation of the Fisher information matrix (see [16] for
details).

In the following theorem and throughout this section, we consider the case of a non-pixelated detector
of infinite size, i.e.C = R2. This idealized detector provides us with the best case scenario where all
the photons from the moving object are detected and pixelation does not deteriorate the accuracy of the
photon impact measurements. In addition, in this case we assume that there are no extraneous noise
sources that negatively influence the quality of the acquired data. Therefore this scenario allows us to
evaluate what is theoretically possible. In Section Il we will consider the ‘practical’ scenario that also
models the experimental factors that are not considered here. Comparison of the results from the two
models provides important insights to what extent the specific experimental settings, such as pixel size,
array size and the noise levels adversely affect the quality of the estimates. In the following theorem an
expression for the Fisher information matrix is given for data acquired as a space-time random process.

It is a slightly simplified version of a more general result presented in [16].

Theorem 1. [16] Let G(Ag, {fo.+}->1,,C) be an image detection process. Assume that the photon
distribution rate Ag(7), 7 > to, is independent of the parameter vectorThen foré € ©, the Fisher

information matrixl (6) of G for the time intervallty, ¢] is given by

0= [ 55 (25 (25 o
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In the remainder of the section this result will be used to derive expressions for the Fisher infor-
mation for the estimation of parameters related to moving objects as observed using highly sensitive
microscopy techniques. As the next step of the derivation we make the assumption that the photon
distribution profile f , can be expressed as a scaled and shifted version of the image of the object
since in an optical microscope, the image of an object can often be considered to be invariant with
respect to shifts in the object location. In the case of a moving objggt,can then be written as
for(,9) = TR %G00 (37 —20(7), 3 —vo(7)), (z,y) € R%, 7 > to, Whereq.,(-)o,(-) denotes
an image function) > 0 denotes the lateral magnification agey(7),ys(7)), 7 > to, denotes the
time dependent trajectory of the object. The image functign. ,, (), which is dependent on its focus
level zg(7) and orientatioroy(7), describes the image of an object on the detector plane at unit lateral
magnification when the object is located along theaxis in the object space and is assumed to be
normalized such thafy: ¢.,(r).0,(r) (T, y)drdy = 1, 7 > to.

The following theorem provides a more concrete expression for the Fisher information matrix than

that given in Theorem 1 by illustrating its dependence on the trajectory of the tracked object.

Theorem 2. (Appendix A) LeG (A, {fs.+}->1,, R?) be an image detection process. FbE ©, assume

that

(A1) there exists an image functiop, ;) ,,(-) such that ford/ > 0, the photon distribution profilgfy -
of a moving object is given by - (z,y) = ﬁq@(ﬂ,og(f) (& —zo(7), % — yo(7)), (z,y) € R?,
T 2 to,

(A2) |zo(7)| and |yg(7)| are uniformly bounded foty < 7 < ¢,

(A3) angm’ow(%z:(i;m’ﬁ_ye(ﬂ) exists for(z,y) € R2, 2zy(7), 0p(7) € R, 7 > to wherep(r) :=
[z y 2(r) op(r) I"-

Then forf € ©, the Fisher information matrix(6) of G for the time intervalfto, t] is given by

' 1 0z0(r),00) @ 9) \ " ( 0zg(r).00(r) (2,9)
10) = | AV (7 // < e e ) ( T )d;vd
) to (Ve () l R JR Qo (r),00(r) (T5 Y) Ip(T) 9p(7) ’

T
whereVy(r) = { —s9r0(1)  —5ye(T)  Lpze(T)  Foo(7) } ,T 2> to.

Vo(r)dr, (1)

i i 1 094 (11,090 @)\ T [ 0295).00(r) (.9) ; A
The inner integralfy [z E— e ( G) ) ( G) )dazdy of the Fisher infor
mation matrix in Theorem 2 is essentially the same as the spatial integral of the time-invariant case
[16]. Thus the time-varying case can be obtained by integrating the time-invariant result over time with

weighting functionsVp(7) and V(7). The weighting functionVp () is the derivative of the object



IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

trajectory with respect to the parameters concerned. The significance of this theorem is that we can now
calculate the Fisher information matrix of the underlying random process that characterizes the acquired
data from a moving object by assuming the image function to be stationary in-theplane, such that
its origin is located along the—axis, i.e., the optical axis of the objective lens. To calculate the Fisher
information matrix of an object moving in 3D space, we simply use the derivative of the parametric
expressions of the object trajectory and its image at the corresponding locations along the optical axis.
This expression can be applied to an arbitrary trajectory in 3D space. Note that the image function used
is quite general.

In the following proposition, we consider a 2D time-varying case where the image fumction,, -
does not depend on the focus lexg{r) and the orientation,(7) and is simply denoted as This leads

to a further simplification of the expression for the Fisher information matrix.

Proposition 3. (Appendix B): LeG (A, { fo.r }->t,, R?) be an image detection process. Boe ©, assume

that

(A1) there exists a radially symmetric image functigni.e.,q(z,y) = §(r?) = §(«=>+v?), for a function
¢ : R — R, that does not depend on(7) and oy(7) such that forAM > 0, the photon distribution

profile fo - of a moving object is given by

1
forw) = 550 (57— 200 =)+ (@) €BE 7210,

(A2) aq((;;,y) and aquy) exist for every(z,y) € R2.
Let (xz¢(7), yo(7)), T > to, denote the time dependent trajectory of the object with respect to its starting

location (xo, yo). Then forf € ©, the Fisher information matrix(6) of G for the time intervallty, ¢] is

given by .
oo 7“3 86(T2) 2 ; 8x§ér) axgé'r)
I =4 A . 2
O =1 | o (W) i | A ot || ow |47 @)

The expression of(#) in Proposition 3 is now separable in terms of the spatial and temporal integrals,
similar to the case of a stationary object [16]. The spatial integral includes the image function and
its derivative while the temporal integral includes the photon detection rate and the derivative of the
trajectory. Thus, to calculate the Fisher information matrix of an object moving in the 2D focus plane or
in a relatively flat structure, we can assume that its trajectory is decoupled from its image. The significance
of this expression is that it greatly simplifies the calculation of the Fisher information matrix since it is

now simply a product of two entities and hence it can be easily applied to an arbitrary trajectory in the 2D
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focus plane provided that the image function is radially symmetric. Note that there is a major difference
between the expressions of the Fisher information matrix for the time-invariant and the time-varying
cases. In the former case, its Fisher information matrix is affected by the image function and the photon
detection rate whereas in the latter, other than the image function and the photon detection rate, it is also
affected by the parameters of the trajectory to be estimated.

We now illustrate the result in Proposition 3 by considering specific image functions that describe
the image of a moving object, more specifically a moving point source. According to optical diffraction
theory, when a point source is in focus with respect to the detector, the intensity distribution of the image
of the point source is described by the Airy profile. The 2D Gaussian profile, on the other hand, has been
widely used to approximate the Airy profile as it is argued that the Gaussian profile provides a good
approximation to the Airy profile in the central region and its use simplifies the analysis [17], [22], [23].
As such, we will consider two different image profiles, specifically a Gaussian image profile and an Airy
profile, for both the linear and circular trajectories. For both trajectories, we use the expreskiéin of
in Proposition 3 to derive general expressions for the lower bound to the best possible accuracy for the
parameters to be estimated. We will also obtain an explicit analytical expression for the lower bound for
a special case where the photon detection rate is assumed to be a known constant. Following [16], this
lower bound is referred to as the fundamental limit of the accuracy for the particular parameter vector, or
in short, the fundamental limit. The term fundamental is used to describe the fact that the model which
underlies the expressions for calculating the lower bound does not take into account any deteriorating
effects of the acquisition system such as pixelation of the detector and the various noise sources that
typically occur in experimental settings. The fundamental limit has practical value as it provides us with
a quantity of what is theoretically possible in the absence of deteriorating factors and thus serves as a
benchmark for practical cases. Since the fundamental limit only takes into consideration the basic optical
and stochastic phenomena that are inherent in any single-molecule experiment, it can easily be used
to study the impact of the important optical and physical parameters without being confounded by the
influence of extraneous parameters such as noise, detector properties, etc. In particular, comparisons with
the practical limits (see Section 1ll) allow us to evaluate by how much the experimental conditions, e.g.,
detector array size, pixel size, readout noise level, deteriorate the theoretically best possible results.

In the following corollary, we consider the case of a linear trajectory where the object moves from
a given initial position(xg,yo) in the direction of movemeny at a constant speed We derive the
fundamental limits of the estimated parameters for the corresponding time infeyval and then

specialize the results to the case where the photon detection rate of the image detection process is a
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known constant.

Corollary 4. (Appendix C): LetG(A, {fs+}->t,, R?) be an image detection process. The parametric
expressions for the linear trajectory of the object for the time intefalt] are given byzy(7) = o +
v(T—tg) cos @, yo(T) = yo+v(T—1to)sin g, to < 7 < t. ForT > to and M > 0, assume that there exists a

radially symmetric image function(z, y) such thatfy - (z,y) = 1=q(& —2o(7), & —ve(7)), (z,y) € R

3 a(r? 2
with ¢(z,y) = ¢(r?) = ¢(2* + y?), for a functiong : R — R and lety? := 4r [3° ) (%q((;))) dr.
1) For 0 = (x0,y0, ¢,v) € O, the fundamental limit of the localization accuragy, (dy,) of zo (yo),

the fundamental limit$, and J,, of ¢ and v are given, respectively, by

1 (1) 1 () 1 (1)
5””"_6y°_v\/a1<t>a3<t>—a%<t>’ = S0\ mes) - 3@ v\/amt)a?,(t)—a%(t)’ ©

ar(t) = /()t_tOA(T+t0)dT, as(t) = /Ot_t°A(T+tO)TdT, ag(t):‘/ot_toA(T—}—to)T?dT. 4)

In the case of the 2D Gaussian image functign, y) = -— exp (—"’“"2“/2), o >0, (z,y) € R?,

~ 2mo 202
v := 1. As for the Airy image functiop(z,y) = ‘]127(;2;7 W (z,y) € R2, 7 := 27tn, /), where

nq and A denote the numerical aperture and emission wavelength respectively,athehotes the
first order Bessel function of the first kind.

2) If A(t) = Ao, 7 > to, WhereAq is a positive constant, then fat = (z¢,yo,¢,v) € O, the
fundamental limit of the localization accurady, (d,,) of zg (yo), the fundamental limitg, and

0, of ¢ and v are given, respectively, by

2 2v/3 2v/3

v A brrrn v AR sy, R L) ©

whereN := Ay (t—to) denotes the expected number of detected photons for the time irtgrval

5$0 = 5yo =

From Corollary 4, it can be seen that for both the Airy and the Gaussian image functions, the
fundamental limits ofzg, yo and v are independent of whereas the fundamental limit af is only
independent ok, yo and¢. When the photon detection rate is assumed to be a constant, the expressions
for the fundamental limit of the parameter estimates further simplify to expressions comprising some
properties of the photon emission process of the single-molecule, parameters of the detection system
and parameters of the trajectory. There are also several interesting common observations for both image
functions. The fundamental limit exhibits an inverse square root dependence on the expected number of
detected photons. This result is similar to the case of a stationary object [16]. As &md ,,, not only

are they inversely proportional t¢ N, the former is also inversely proportional to the distance moved by
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the object of interest(t — ty) while the latter to the acquisition time intervidl— ¢y). The fundamental
limit of the localization accuracy,, or é,, derived here is twice that @, or ¢, for a stationary object
[16]. Therefore, in the case of an object moving in a straight line, we are able to estimate the unknown
parameters, andd, at the expense of reducing the estimation accuracy,aind yo.

In the next corollary, we consider the case of a non-linear trajectory, specifically a circular trajectory
[24], [25]. The object is assumed to start moving(ag, yo), which is angularly offset at)y degrees
with respect to thec-axis. It revolves at a constant angular velocityat a fixed radiusk about the
center of its trajectoryx., y.). For the corollary that follows, we derive the Fisher information matrix
for the corresponding time intervady, t] using a similar approach to that of the linear trajectory. We
also consider a special case where the length of the time intgpval is assumed to equal the period
with respect to the angular velocity and the photon detection Xaté the image detection process is

assumed to be a known constant.

Corollary 5. (Appendix D): LetG(A, {fs+}->t,, R?) be an image detection process. The parametric
expressions for the circular trajectory of the object of interest for the time intdryal] are given by
29(T) = X+ Rcos(w(T—1t0)+0), Yo (T) = ye+Rsin(w(T—tg)+40), to < 7 < t, where(z., y.) denotes
the center of the circular trajectornyz, w and 1y, its radius, angular velocity and angular offset of the
starting point(xg, yo) from thez-axis, respectively. For > t; and M > 0, assume that there exists a
radially symmetric image function(z, y) such thatfy - (z,y) = 1=q(& —2o(7), & —ve(7)), (z,y) € R?
with ¢(z,y) = ¢(r?) = ¢(2* + y?), for a functiong : R — R. Let~? := 47 [;° G 32) (dq” )) dr.

a(r?)
1) For 0 = (R, z¢, ye, w, ¥p) € O, the Fisher information matrix ofj for the time intervalft, ¢] is

given by
1(0) =
ftto A(r)dr ftto A(7) cospdr ft’; A(7) sinydr 0 0 1
Ji A7) cos pdr i A(r)dr 0 — [ A(R(T = to) sinpdr = [ A(7)Rsingsdr
ftt A(T) sinedr 0 f:ﬁ A(T)dr ft A(T)R(T — to) cospdr ft A(T)R cosdr )
0 —fjo A(T)R(T — to) sinypdr fjo A(T)R(7 — to) cos pdr f A(T)R2(7 — to)2dr f A(T)R%(1 — to)dr
0 —f; A(T)Rsingdr ffo A(7)Rcos pdr f A(T)R2(1 — to)dr fto A(T)R%dr

(6)

where := w(r — to) + vo, T > to. In the case of the 2D Gaussian image functign, y) =

= exp (~ ), 0 > 0, (z,y) € R%, v = L. As for the Airy image function(z,y) =

“7127(%7 Vﬁ;?)’z) (z,y) € R?, v = 2mn,/\, wheren, and \ denote the numerical aperture and

emission wavelength respectively aihddenotes the first order Bessel function of the first kind.
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2) Let T, denote the length of the time intervigh, t], i.e., T}, := t — to, and assume thal), equals
the period with respect to the angular velocity, i.€,, = %” Assume also the photon detection
rate to be a known constant, i.6\(7) = Ao, to < 7 < t. Then the fundamental limit @f,. (9,.)
of z. (y.) and the fundamental limitsz, é,, and d,,, of R, w andy are given by

3 cos>2 1/}0 3 Sln2 ¢0
R Seor o
v\/Nr, SN

5 = (42 —3 @
? YRT,\/Nr, V (7 —3 WR NT,, (w2 —3)

where N, := AT}, denotes the expected number of detected photons for the @gyiod

The general expression to calculate the Fisher information migttixof G corresponding to the time
interval [to, t] for an object with a circular trajectory is given in the first part of the above corollary. By
taking the square root of diagonal elements of the inverse of Fisher information matrix, we obtain the
fundamental limits of the parameter estimates. Unlike the linear trajectory case, it seems that no simple
analytical expression is available for the fundamental limits in the case of a general circular trajectory.

However, in the special case where the length of the time inté¢tyal is the periodl}, with respect
to the angular velocity and the photon detection rate is a known consgarihe fundamental limit of
0 = (R, x.,ye,w, o) simplifies to that shown in result 2 of Corollary 5 with analytical expressions given
in (7). These expressions are given in terms of some properties of the photon emission process of the
single-molecule, parameters of the detection system and parameters of the trajectory. Similar to the case
of the linear trajectory, the fundamental limits for all the five parameters are dependent on the inverse
square root of the expected number of detected photons and independent of the acquisition starting time.
However, the fundamental limits of thig_. andJ,.  are periodic in nature and dependent on the angular
offset of the starting pointyy. On the other hand, the fundamental limitg é,,, andér are independent
of ¥. Moreover, bothy,, andé,,, are inversely proportional to the radius of the circular trajectory and

in addition, é,, is inversely proportional td@,.

IIl. EFFECTS OFPIXELATION AND SIMULATION RESULTS

So far we have only considered a moving object where its image is acquired by a non-pixelated
detector of infinite size without extraneous noise sources. In fluorescence single-molecule microscopy,
CCD cameras are commonly used for acquiring images of fluorescent-labelled molecules. The detectors

of CCD cameras are of finite size and pixelated, i.e., they consist of a matrix of light sensing elements
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(pixels) where photoelectrons are accumulated during an exposure interval. We will henceforth refer to
it as a pixelated detector of finite sizg or in short, just a pixelated detector since a pixelated detector
is always of finite size in practice.

As for the acquired data, it comprises the detected photons from the object of interest and noise from a
variety of sources. The detected photons from the object of interest and the external background radiation
introduce a Poisson signal from the object of interest and from the background component respectively.
Hence we Ietg(l)(Aél),{fa(}T)}TZtO,]R{?) denote an image detection process for the detected photons
from the object of interest and® (A®), { £?}.-,. R?) for the background component. Readout noise,
which is characterized as a Gaussian random process, further contributes to the degradation of the images
acquired. As such, we consider two stochastic models for the pixelated detector, one purely in terms of
Poisson random variables while the other is in terms of Poisson and Gaussian random variables. As for
the photon distribution profilg”T(Q) of G2, it is assumed to be independent of the time poirdnd is
denoted byf .

In the following theorem, we provide expressions to calculate the Fisher information matrix of the
acquired data from a pixelated detector in terms of its image function, photon detection rate and object
trajectory for two different scenarios: one where its acquired data comprise only Poisson random variables

and the other, its acquired data comprise both Poisson and Gaussian random variables.

Theorem 6. Let G (AM), {fe(}T)}TZtO,RQ) andG@ (A {f@)1 R?) be two independent image detection
processes for the object of interest and the background component, respectively. Let the pixelated detector
C, be defined as a collectiofiC,...,Cy, } of open, disjoint subsets @2 such thatUkN;1 Cr = Cp,
where N, denotes the total number of pixels. FbE O, assume that

(A1) the photon detection rates ¢f!) and G are known,

(A2) there exists an image functiaéi)( such that forM > 0, the photon distribution profil@‘(g}j

7),00(7)

of a moving object is given by

1 z Y
12w = 3580 (37~ 90 2 ~w0(0) . (@) €RAT 2 0,

and for ¢, which is assumed to be independent of the focus level and the orientation, the photon

distribution profile f(2) of the background component is given by

1 x
&) _ Ll o(r Yy
Fo@y) = (M’M)‘

1) LetZpy = Sor + B, k =1,...,N,, whereSy;, and By, are Poisson random variables from the

object of interest and background component respectivelyd EoP, the Fisher information matrix
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for {Zy1,...,Zy N, } for the time intervallto, ] is given by
N, T
- 1 aMG(’ﬁﬂ) 8#9(kat)
1(0) = 8
() ];vg(k,t) ( 00 00 ®)
where
1 ¢ x T
vo(kst) = W~/to /Ck [ADD ) 0 (ﬁ — o), 77 wo(r)) + A (r)g? (M’ %)} dzdydr,
(1) x y
Poht) [ a0 [ Metnenlir ) S )
50 = e \ AV (1) . a0 dxdyVy(T)dr,
PV = [ E —zp(r) L —ye(r) ze(r) op(r) 1T
apM (1) T
Vo) = g = [ ) ~gw() ) o) |
2) LetZy = Sor+Br+Wy, k=1,...,N,, whereSp ;, and B;, are Poisson random variables from

the object of interest and background component respectivelyigndenotes the Gaussian random
variable with meany,, and variances?, ,, which models the measurement noise. #at ©, the

Fisher information matrix fo{Zy 1,...,Zs n,} for the time intervaly, ] is given by

z—1l—n . 2
oo [ve(k,t)])~te—vek:t) 1 ;(aw’:k)z>
(0) = g: (%e(hﬂ)T Ao (k1) / (le (=1 Vamou s e
k=1 9 09 R PO.k(z)

Y

9)
where vy(k,t) and ‘9“"67(9’“’” are given in (8). The Poisson-Gaussian mixture probability density

function, py 1), is given by

S fuak O e (e’

Tw,k

= (& s

We define the square roots of the diagonal elements of the inverse of the Fisher information matrix

2€R, k=1,...,N,.

associated with a pixelated detector of finite size as the practical limits of the accuracy for the particular
parameter vector, or in short just as the practical limits. The word “practical” is used here to differentiate
it from the fundamental limit of the accuracy which is associated with a non-pixelated detector of infinite
size. Moreover, for simplicity, the term “limit of the accuracy” is used when we refer to both the
fundamental and practical limit of the accuracy.

In the following simulations, we use the results of Theorem 6 to show how extraneous noise sources,
parameters of the detection system and parameters of the trajectory affect the practical limit of the

accuracy off. The practical limits will be benchmarked against their corresponding fundamental limits.
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Consider a single exposure/image for the time inteftgal|. The photon detection rate of a moving

point source is assumed to be a known constant,z‘i.(é).(r) = A(()l) € R, 7 > tg and its image function

to be a Gaussian, i.egV (z, y) = 51y exp(— 22O Lhr=w(DFy "0y ¢ R2, 7 > #,. The photon
detection rate of the background component is also assumed to be a known caftant= A () ¢ R+,

T > tg, and the detected photons from the background component are assumed to be uniformly distributed.
Since we are considering the 2D case where the image function is independep¢e) aind oy (7), the

column vectorgp?) () and Vy(r) in Theorem 6 are reduced 8 (1) := [ & — zy(r) & —yo(r) |©
T
and Vy(7) == | —Zay(r) —Zye(r) | - For both the linear and circular trajectories illustrated in

Figure 1, we consider the noise-free and the noise-corrupted cases. In our context, noise-free refers to
the case where only “Poisson noise” or “shot noise” [26] from the object of interest is present. This
noise arises due to the stochastic nature of the acquired data. As for the noise-corrupted case, it includes

Poisson noise from the background component and Gaussian noise from the readout process.

A. Linear trajectory

For the case of a linear trajectory, we assume that the object commences to move with a constant speed
v from a given initial positionz, o) at an anglep between the linear trajectory and theaxis. During
the acquisition, the image of the object is well within the bounds of the pixelated detector, as shown in
Figure 1a. Its parametric expressions are giverdly) = zo+v(7—to) cos ¢, yo(7) = yo+v(T—to) sin ¢,

to < 1 < t. Then forf = (zg, yo, ¢,v) € O, 8#e(k ) _ auga(ciz,t) 8/15;1270 6#98((;;3@ au%(f,t) } where
%j{;t) B M%a2 /t: A /ck (37 - xe(T)) ¢ (z,y)dxdydr,
Wg(ykoyt) = Mi D) /t AS) /Ck q(l)(x y)dzdydr,
W = s 2/ A v(r = to) /C = —yo(T )cos¢— (% —xg(T)) sinqb} ¢V (z, y)dedydr,
W - Mi 2/ T_to /Ck 7_199 )5m¢+(ﬂ—$9( )) COS¢} ¢ (z,y)dzdydr.
(10)

To calculate the Fisher information matrix, we substitute the expressions in (10) into the results of
Theorem 6. Inverting the Fisher information matrix and taking the square roots of the diagonal elements,
we obtain the practical limits of = (xo, yo, ¢, v).

To study the effect of the speed of the object on the practical limi, afe fix the acquisition time

and consider a range of speeds. It can be observed in Figure 2a and 2c that the practical limits of
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Fig. 1: Schematic sketch of a linear trajectory and a circular trajectory

xg, Yo andwv improve initially but deteriorate subsequently as the speed increases. The improvement in
the practical limit is due to the increase in the number of pixels that sample the image as the speed
increases. Meanwhile, fewer photons are detected per pixel because the same number of photons is
now distributed over a greater number of pixels. When the number of detected photons from the object
decreases in relation to the photons from the extraneous noise sources, the practical limit deteriorates.
The deterioration is more pronounced in the noise-corrupted case where the extraneous noise is present
as compared to the noise-free case where only the Poisson signal is present. It can also be observed that
there is a disparity between the practical limitsagf and yo in Figure 2a as the trajectory influences
the practical localization limits differently. For the practical limit of it improves monotonically as the
speed increases. Hence for a fixed acquisition time, the improvement in the practical limit is dependent
on the trade-off between the number of pixels that sample the image and the number of detected photons
per pixel.

We next investigate the effect of magnification on the practical limi#.oAt low magnification, the
photons from the object of interest are concentrated over a small number of pixels and the projected
distance moved by the object in the pixel array is short. As the magnification increases, the image
magnifies and the projected distance moved increases too. This causes the photons from the object of
interest to be distributed over a larger number of pixels. Thus in the noise-free case, for a fixed acquisition
time, the trade-off between the number of pixels that sample the image and the number of detected photons
per pixel results in the improvement of the practical limitdoéas the magnification increases. However,
in the noise-corrupted case, the practical limit deteriorates as the magnification increases and, as a result,
the number of detected photons from the object decreases in relation to the photons from the extraneous

noise sources, as shown in Figure 3. It is noted that in the stationary case, the distribution of photons
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Fig. 2: Limits of the accuracy of the parameter estimates as a function of the speed of a linearly moving
object. Panel (a) shows the practical limits af (—) andyy (— - —). Panel (b) shows the practical

limit of ¢ and Panel (c) of. (o) corresponds to the noise-free case asiddprresponds to the case
where Poisson noiseA(()Q)) of 2 photons/pixel/s and Gaussian noigg,) of 4 ¢ /pixel are present.
Their corresponding fundamental limifs) are included as the references. For the object in all plots,

o = 83 nm, magnification)/ = 100, its direction of movemeny = 30°, and its starting coordinates are
(z0,y0) = (—268.7,—268.7) nm. The photon detection ralftef)l) = 1000 photons/s, acquisition time is

0.2 s, pixel size is 4.0am x 4.03 um and the array size is XB1 pixels.
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over the pixel array is due to the change in its image size whereas in the moving case, the distance
moved by the object affects the photon distribution too.

We now benchmark the practical limits against the fundamental limits from Corollary 4. From Figure
2, the practical limits of the accuracy 9f, yo andv first approach and then deviate from their respective
fundamental limits as the speed increases. Note that their fundamental limits remain constant throughout
because they are independent of the speed of the object. As for the practical limiitapproaches
its fundamental limit, which improves monotonically as the speed increases. From Figure 3, when the
magnification increases, the practical limit @fapproaches its fundamental limit for the noise-free case
while it deviates from its fundamental limit for the noise-corrupted case. It should be noted that the
fundamental limit off is independent of magnification and thus it remains constant regardless of the
magnification/.

For relatively low speeds, such as when the particle moves at 200 nm/s, the practical limits of both
xo andyg are quite large for the noise-corrupted case in comparison to the fundamental limits, the actual
values of the parameters and the sizes of the pixels in object space. For example, at this speed the practical
limits are larger tharz43 nm while the size of an area in the object space corresponding to a pixel in the
detector is only aboutOnm x 40nm. In this particular scenario it is clear that a parameter estimate would
be highly questionable. For significantly larger speeds the practical limits that also account for extraneous
noise are much lower, although they never reach even single pixel precision. In contrast, for the practical
limits that are computed ignoring extraneous noise sources, the predicted accuracies are of acceptable
levels, for speeds over around 1000 nm/s. They are not significantly above the fundamental limits. This
suggests that, for this range of speeds, no significant improvements in accuracy can be achieved by
changing the detector size, magnification and pixel size. This is in stark contrast to the range of speeds
below 1000 nm/s. For these speeds the difference between the fundamental limit and the practical limit
that excludes noise sources is rather large. Therefore changing the experimental conditions promises
major improvements. However, for all speeds there is a significant difference between the practical limits
that include extraneous noise sources and those without. This suggests, that in a concrete experimental
setting, the extraneous noise sources have to be significantly reduced in order to obtain estimates that

have accuracies close to what is theoretically possible as specified by the fundamental limit.

B. Circular trajectory

For the case of a circular trajectory, we assume that the center of the circular trajectory is located
at the center of the pixelated detector as shown in Figure 1b. Its parametric expressions are given by
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Fig. 3: Limits of the accuracy of the parameter estimates as a function of the magnification of a linearly

moving object. Panel (a) shows the practical limitscpf(—) andy, (—-—). Panel (b) shows the practical

limit ¢ and Panel (c) ob. (o) corresponds to the noise-free case ar)dq the case where Poisson noise

(A(()Q)) of 2 photons/pixel/s and Gaussian noige,) of 4 ¢~ /pixel are present. Their corresponding

fundamental limits(x) are included as reference. For the object in all plets; 83 nm, its direction of

movement = 30°, its speed = 1800 nm/s, and its starting coordinates &g, yo) = (—127.3, —127.3)

nm.. The photon detection ral\%l) = 1000 photons/s, acquisition time is 0.2 s, pixel size is 4.08 x

4.03 uym and the array size is 3B1 pixels.
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x9(T) = xc + Rcos(w(T — to) + o), yo(T) = ye + Rsin(w(r — to) + o), to < 7 < t. For g =
(R, ¢, ye,w, ) € O, Opo(kit) _ [ aug%f,t) Ouo(kit)  Ouo(kit)  Opo (ki) auggz,t) } where

o0 D, 9y w
) b [0 [ (s B
%mkc’t) N MiUQ /t: Ao’ /ck (37 —#0(0) ¢, )dadyar.
) 0 [ w5 e,

andy = w(T — ty) + o.

To calculate the Fisher information matrix, we substitute the expressions in (11) into the results of
Theorem 6. Inverting the Fisher information matrix and taking the square root of the diagonal elements,
we obtain the practical limit of = (R, z¢, yc, w, ¥o).

We first investigate the effect of the radius of the circular trajectory and then the effect of the angular
offset of the starting point on the practical limit 8f To investigate the dependence on the radius of the
circular trajectory, we fix the constant angular velocity for a range of radii and also fix the acquisition time
as one period with respect to the angular velocity. As the radius of the circular trajectory increases, for
the noise-free case, the practical limits Bf x. and ofy. approach their respective fundamental limits,
whereas for the noise-corrupted case, they improve initially but deteriorate subsequently as shown in
Figure 4a and 4b, respectively. Similar to the case of the linear trajectory, this improvement is due to the
increase in the number of pixels that sample the image as the radius increases. Meanwhile, fewer photons
are detected per pixel because the same number of photons is now distributed over a larger number of
pixels. When the number of detected photons from the object decreases in relation to the photons from
the extraneous noise sources, the practical limits deterioratev Bad1), their practical limits improve
as the radius of the circular trajectory increases, following the same trend of the fundamental limits.

We notice that there is also a disparity between the practical limits. @ndy,., as shown in Figure
4b. This disparity diminishes as the radius of the circular trajectory increases. This phenomenon can
also be observed in the case of the angular offset of the starting location as shown in Figure 5b and 5c.
Hence, it is seen that the trajectory has a strong influence on the practical limit. As in the case of the
linear trajectory, the practical limit of the accuracy for the circular case is also dependent on the trade-off

between the number of pixels that sample the image and the number of detected photons per pixel.
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We now benchmark the practical limits against the fundamental limit$ foébm Corollary 5. From
Figure 4, for the noise-corrupted case, the practical limit® of,. andy. first approach and then deviate
from their respective fundamental limits as the radius of the circular trajectory increases. Note that the
fundamental limits ofR, z. andy. are independent of the radius of the circular trajectory and hence
they remain constant as the radius increases. As for the practical limitsanflyg, they approach their
respective fundamental limits, which improve monotonically as the radius increases. From Figure 5, the
practical limits of R, w andt, are almost independent of the angular offset of the starting pginand
as the radius of the circular trajectory increases, they approach their respective fundamental limits which
are independent of the angular offset of the starting pgintHowever, the situation of the practical limits
of z. andy, is quite different as their deviations from the respective fundamental limits are dependent
on the angular offset of the starting poi§ and the radius of the circular trajectory. It should be noted

that the fundamental limits af. andy,. are functions of the angular offset of the starting paipt

IV. CONCLUSIONS

In this paper, we have investigated the performance of parameter estimation for moving single molecules
imaged by fluorescence microscopy. The acquired data are modelled as a space-time random process
where the detected photons are Poisson distributed. A non-pixelated detector of infinite size is first
considered. We derive a general expression of the Fisher information matrix for parameter estimation
in terms of its image function and object trajectory for an object moving in 3D space. We have shown
that the Fisher information matrix can be obtained by integrating the corresponding time-invariant results
with a weighting function that is associated with the derivative of the object trajectory with respect to the
parameters concerned. For an object moving in the 2D focus plane, we have also shown that the Fisher
information matrix is separable in terms of the spatial and temporal integrals. Furthermore, explicit CRLB
expressions have been obtained when the object moves in the 2D focus plane with the object trajectory
being either linear or circular and for two specific image functions: the Airy image function and the
Gaussian image function.

We next consider a pixelated detector of finite size. From the simulations conducted, we have obtained
insights into how extraneous noise sources, pixelation, parameters of the detection system and parameters
of the trajectory affect the limits of the accuracy of the estimated parameters. In the time-varying and
linear trajectory case, the number of pixels that sample the image is proportional to the speed of the object

while the number of detected photons per pixel is inversely proportional for a fixed acquisition time.
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Fig. 4: Limits of the accuracy of the parameter estimates as a function of the radius of the circular
trajectory. Panel (a) shows the practical limit Bf Panel (b) ofz. (—) andy. (— - —). Panel (c) ofw

and Panel (d) of)y. (o) corresponds to the noise-free case ardq the case where Poisson no(s‘x%”)

of 2 photons/pixel/s and Gaussian noisg) of 4 e~ /pixel are present. Their corresponding fundamental
limits (x), which are independent of the pixel array, are included as reference. For the object in all plots,
o = 83 nm, magnificationM/ = 100, angular offset of the starting poinfy = 20°, and the coordinates

of z. andy. are (0,0). The photon detection rat&(()l) = 1000 photons/s, period, = 0.2 s, pixel size

is 4.03um x 4.03 um and the array size is 3B1 pixels.
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(b) of z.. Panel (c) ofy.. Panel (d) ofv and Panel (e) of)y. (o) corresponds to a radius of the circular
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the noise-free case while (—) refers to that of the fundamental limit. For the object in all plet)3

nm, magnificationM/ = 100, and the coordinates of. and y. are (0,0). The photon detection rate

A(()l) = 1000 photons/s, period), = 0.2 s, pixel size is 4.03:m x 4.03m and the array size is 3B1

pixels.
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Consequently, the practical limits of the parameter estimates depend on the trade-off between the number
of pixels that sample the image and the number of detected photons per pixel. As for the magnification,
the distribution of photons over the pixel array in the time-varying case is dependent on both the image
size and the projected distance moved by the object on the pixel array whereas in the time-invariant case,
it is dependent only on the image size. In the time-varying and circular trajectory case, we have shown
that the disparity between the practical limits of the center coordinatesdy. diminishes as the radius

of the circular trajectory increases. The effect of the angular offset of the starting point on the practical
limits also diminishes as the radius increases. We also discuss the meanings and practical implication
of the results obtained. We hope that these insights will enable the experimentalists to optimize their
experimental setup in order to achieve the best possible accuracy. It should be noted that the results here
are essentially independent of the application in single-molecule microscopy and can be applied to the

general problem of tracking an object using quantum limited detectors.

APPENDIX

A. Proof of Theorem 2
T

T
7 —zo(T) 35 —ve(T) ze(7) 09(7‘)] :

Let p(7) :== | Zg(z,7) Go(y,7) Zo(1) 060(T)

_ T
z,y,7 €R, 6 €O, andVp(r) = 20 — { D xo(r) —Zya(r) Dze(r) Lop(T) ] , whereVy(7)
is independent of andy. The photon distribution profilgy -, in terms of the entries qgi(7), can then

be rewritten as

1 - N
fQ,T('r’ y) = que(T),ag(T) (:EQ(I'aT)ay@(y,T)) , T,y eR (12)
We first show that the existence &2 (%p_(‘j‘)’ (M):27 =90(7) implies the existence o‘%qg*"”“”’*’“é;;a()m’ﬂ’g”(y’”).
Using the chain rule, we have
y(7),000r) (37 — 20(T), 37 — Yo (7)) _ 9 (n).80(r) (To(@,7), To (y, 7)) Op(T)
op(7) op(7) op(7)
8 T b b Y )
_ 94z5().60(r) (wf(x 7), 9o (y T))Diag { ’171} .
op(7)
Hence,
827‘57~ 77~ ) 8Z70Tl_ 71_
z, (7),50( )(xf(ﬂf 7964 7)) 9y(r)0n(r) (37 — %6(T): 37 ye(T))Diag MM, 11
op(T) Ip(T)
Therefore,8%9“)""’9ma(sz(f“)y@(y’ﬂ) exists.

Consequently, the partial derivative §if - (x,y) with respect to can be expressed as follows
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afg,‘,-(.%', 3/) _ i 8q,:7:9(7'),5g(7')(~9(:1:7 T)v ye(y, T)) aP(T)
00 M? op(T) 00
. 1 aqgg(’r),ﬁg(’T) (CZ'Q(,I,T),]]@(Z/,T))
= e ap(7) Vo(7), (13)
Substituting (12) and (13) into the expressionl @f) in Theorem 1 and simplifying gives
1
1G / /
( ) M2 [ R 43, (1),00(T) 339 € 7-) y@(ya ))
0z, (r) 00 (r) (Fo (2. 7), G0 (4, 7))\ 0z, (7,00 () (Fo(, 7). Fo(y, 7))
X . — ’ — dzdy | Vy(7)dT.
( 55(7) 55(7) V| Yol

Sincedxr = Mdzy, dy = Mdgy and the assumption dky(7)| and|ys(7)| being uniformly bounded for

0 €0, ty <t <t, the above expression becomes

. 1
1(6) = 5 ATV (7) U}R/R Qzo(7),50(r) (Z0; To)

a z %) z 7~ g a Zo(T),00(T T ’~
8 CJZQ(T),oi(T)(fBe ) 020(r).60( ) (Zo ye)djgdgg
op() op(T)

Replacing the dummy variable® with z, and gy with y in the above expression, respectively, and

Vo(T)dr. (14)

recalling thatZy(7) = z9(7), and 6y(7) = o0g(7), we havep(r) = p(7) in (14) and hence obtain the

desired result given in (1). O

B. Proof of Proposition 3
As the image functiory is independent oty(7) andoy(7), p(7) and Vy(7) in Theorem 2 reduce to
T
p=[z y 1T andVy(7) := { 7%950(7) f%yg(ﬂ ] , respectively, and the corresponding expression

of 1(#) becomes
T

it 69089(57) o oo ] (8115904/) ) 2 3q((9w,y) 3qgw7y) 690896(7)
1(0) = A * ¥ Y dxd dr,0 € 6.
(©) LA /m /ooq(fc,y) dq(a.y) daa.y) (aq@cy))? P gy | 9TV E
00 ox oy oy 00

(15)

With the assumption of the image profijéx, y) being radially symmetric and condition (A2), it can be

readily shown that

O g [ [T (2221 oy =
/ /ooq or y dady oo G (22 + 2) \ 0@+ dxdy =0 (16)

since (861((1’ J‘:yy ))) is also radially symmetric, and that




IEEE TRANSACTIONS ON SIGNAL PROCESSING 23

9q(z,y) — 04(z>+y?)
/ /ooqzvy< Ox )dxdy / /ooq:c2+y ((2+y)) drdy. (17)

Using the polar coordinate system, where= rcos¢ andy = rsin¢, ¢,r € R, and with some

algebraic manipulations, we have

2 oq (z* + y?) 2 < 3 (9G(r?) 2
dd:4/ _ dr. 18
[ s (6( Ty ) T e\ ) - (18)
Similarly, it can be shown that
2
o oo ] <8q<m,y)>2 /°° s (04(r?)
dxdy = 47 — dr. 19
L] (55, v=AT ) T \ o) (19)
Substituting (16) - (19) into (15) gives
T
Oze(T) oo 3 (93(r2))? Oz (1)
w0 = [ a B AT o 7 (aw)) dr 0 |4
() t (T) Oye(T) oo rd 9q(r?) 2 9ye (1) !
0 e 0 47 5 gty (y) o0
T
o 7“3 8@(7«2) 2 t 8:v56('7—) (922890(7)
= 4 dr - A dr.
7T/o q(r?) <3(T2) " ~/tu (r) Qus(r) Byo(r) !
]

C. Proof of Corollary 4

1) Sincey? = 4 [5° ==

=2\ 2
(%q((;;))) dr, the expression off(#) in Proposition 3 can be rewritten as

T
Oz (T) Oxo(T)

t
H@:flAﬁ)aﬁﬂ 8ﬁﬂ dr. (20)
0 90 20

The linear trajectory of the object of interest for the time intefvglt] is given by
xg(T) = o +v(T —tg)cos @, yo(T) =yo+v(T —to)sing, to <7<t

where(zg, yo) is the starting location of the objeat,is the direction of movement, i.e., the angle between

the linear trajectory and the—axis andv is the constant speed of the object. Thenéet (xq, yo, ¢, v),

Mgéﬂ 1 0 —v(r—to)sing (7 —tp)cosd .-
- , T Z10-
Quelr) 0 1 o(r—to)cos¢ (T —to)sing

Hence,
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1 0 —v(T —tog)sing (7 —tp) cos¢
T
83656(,7) (%géﬂ _ 0 1 v(T —tg)cosp (T —tp)sing
L’géﬂ ayé’igr) —v(T —to)sing (T — tg)cos ’U2(T — t0)2 0
(T —to)cosgp (T —tg)sing 0 (1 —t0)? |
(21)

By substituting (21) into (20), partitioning the matrix obtained and considering the limits of integration

from 0 to ¢t — to, 1(#) can be expressed as

(22)

wherea; (t), az(t) andas(t) are given in (4) and

 Byo) = { —vsing cos¢o

vcosg sing

As a;(t) #0, fori=1,...,3 and B;(6) is the2 x 2 identity matrix I3, the inverse of the partitioned
matrix 1 ~1(6) [27] is given by

1-1(0) = & 52; Z , (23)
where
C1 = {ar(t)BL(0)} " + {ar(t) B1(0)} " {aa(t) B2(6)} D~ {aa(t) Ba(0)} {a1 (t) B1(0)} ',
Cy = —{a1(t)B1(0)}{aa(t)Ba(0)} D,
Cy=D1,
D = a3(t)B3(0) — {aa(t) B2(0)} {a1 (t)B1(6)} ' {az(t) B2(0)}.
Some simple algebraic manipulations give
p - )= ) L (1)] | 4
4= D™ = ety ; | )
oy = ast) g, (26)
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By substituting (25) and (26) into the inverse Fisher information matrix¢) in (23) and taking the

square root of its diagonal elements, we obtain the desired result given in (3). For the case of the 2D
3 a(r? 2 . . .
Gaussian image functiodsr [;° (.1.(7;2) (%) dr = % [15]. Hence by replacingy with % in (3), we

obtain the fundamental limit of the accuracy @&f Similarly for the Airy profile, we replace; with
2mng /X [15].

2) For the special case where the photon detection rate is constand,(-¢.+~ Ao, 7 > to, Ag € RT,

the integrals of the photon detection rate with respect to time for the expressions in (4) become

as(t) = @(t —t0)?, as(t) = @(t —t)3,

t> to.
2 3 0

a1 (t) = Ao(t — to),

Substituting the above expressions into result 1 of this corollary and le¥irg Ao(¢ — to), we obtain

the desired result given in (5). O

D. Proof of Corollary 5

3 q(r2 2 . . - .
1) Sincey? = 4 [;° @) (‘9"( )) dr, the expression of(¢) in Proposition 3 can be rewritten as

a( a(r?)
T
¢ Ozo(1) Ozo(T)
1(6) = 2 t A(7) ayf?ﬂ 8;92) dr. (27)
0 o9 o9

The parametric expressions of the moving object with circular trajectory are given by

1y(T) = T + Reos(w(T —to) +v0),  yo(T) = ye + Rsin(w(r —to) + o), to <7 <4,

where (z.,y.) is the center,R is the radius of the circlew is the constant angular velocity of the
object andyy is the angular offset of the starting poifity, yo) from the z-axis. Given that the unknown
parameter vector i8 = (R, x., y.,w, 1), then we can readily express

1 cos sin 1) 0 0
ozo(r) 17 [ owo(r) cos 1 0 —R(T —tg)siny —Rsiny
a0 90 .
Byo () oyor) | | SV 0 1 R(t —to)costp  Rcosyp |, (28)
o o 0 —R(T —tg)siny  R(7 —tg)costp R2(1 — tg)? R2(1 — to)
0 —Rsiny Rcos R2(1 — tg) R?

wherey = w(r — tg) + o.
Substituting (28) into (27), we obtain the desired Fisher information matrix given in (6). For the case

. . . o 3 8(1"(7»2) 2 . i . . l
of the 2D Gaussian image functiofir |, 7 07 dr = = [15] and by replacingy with ~, we
obtain its Fisher information matrix#). Similarly for the Airy profile, we obtain its Fisher information

matrix by replacingy with 27n, /A [15].
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2) AssumingA(7) = Ao, to < 7 < t, andt = ty+ T, whereT, = %” we can further simplify the Fisher

information matrixl (6) in (6) after evaluating the following expressions.

t to+T,
A(r)dr = / Aodr = AT, (29)
to to
t to+T, T2
A (7 — to)dr = / Ro(7 — to)dr = Ao-L, (30)
to tO
t to+T, T3
| ADG = t0dr = [ A~ t0)dr = AL (31)
to t()
Next,
t to+T,
A(1) cospdr = / Ao cos(w(T —tg) + ¢o)dT =0, (32)
to tO

since it is the integration over one period of a cosine. SimilafﬁyA(r) sintdr = 0.

Using integration by parts and with some simplifications, we also have

t
/ A(T)R(T — tg) sinpdr = —RAOE cos o, (33)
to w
t T,
A(T)R(T — tg) cospdr = RAOUP sin 1)g. (34)
to

Substituting (29)-(34) into (6) and making usewf= QT—: we have

AoT,, 0 0 0 0
0 AoT, 0 RAg2z costhy 0 o
10) = 7 0 0 AoT), RAgg—i sin g 0 = ’YQNTP
T2 T2 T T2 0 | 1 (9)
0 RAg5% costpg  RAg3Z sin iy R%Ag + R2%Ag -
0 0 0 R RPAT, |
where Ny, = A¢T}, and
o 0 | RLcosyy 0 |
1 (6) 0 1 RIrsinygy 0
1(0) == 5
R% cos g RQT—; sin 1 R? %’ RQ%
0 0 R R? |
Hencel ~1(9) is given by
1 1 ‘ 0
171(6) (35)

== 2 _
PNz o] 1)
Adopting the same approach to inverting the4matrix in (22), which has a similar structure la$6)

here, we can readily obtain
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1+ ﬁ cos? 1y (Wf’_3) sin g cos iy ﬁ cos g (7r23_77r3)R cos g

W% sinygcosyy 1+ ﬁ sin? ﬁ sin ¥g (7r23_77r3)R sin ¥g

171(0) = . (36)
1 2
—67 —67 : 1272 —6m
=3 R, C08 Yo sy R, SN Yo (7—3)R?T2 ("2—3)R7T,
37 3 . —672 4n2%-3
R c0s Yo = —a)R Sin Yo (72—3)R7°T, (m2—3)R?

Substitutingll‘l(e) in (36) into (35) and taking the square root of its diagonal elements, we obtain the

fundamental limits of the accuracy 6f= (R, x., y.,w, 1) as given in (7). O

E. Proof of Theorem 6
1) Using condition (A1), the mean of the number of detected photons at'thgixel due to the object
of interest for the time intervdky, t] is given by [16]

o(k 1) / A () £ (2, y)dadydr, 0€ O, k=1,...,N,.
to JCy

The above expression can then be expressed in terms of its image fum((]:%Tg

00(T)

_ 1 1) (7)™ T Y
polk,t) = /t /C AV 0 ( =~ ag(r), y9(7)> dedydr. (37)

The mean of the number of detected photons atkffiepixel due to the background component for the

time interval[to, t] is given by [16]

t t p
B(k,t) = / A1) O (2, y)dadydr = ]\;2/ A® (r)q? ( x ) dxdydr, 0 € ©,k =1,...,N,.
to /Cr t

MM
(38)
From [16], U,g(k t) = po(k,t) + B(k,t). Substituting (37) and (38) intoy(k, t) gives
0000 = 373 [ [ A0 o) (57 = 000135 = 0)) 442010 (5725 )| .
(39)

The partial derivative ohg(k: t) with respect tof is expressed as

aﬂ k t y
%(0 L Ut [ A9, 06()<M—x9( A (T)> dmdydT]. (40)

Interchanging the operation of differentiation with that of integration for (40) and adopting a similar

approach used in Theorem 2, the derivativeugfk,t) with respect taf can be expressed as

1) Z —zp(T), L —yp(r
Opg(k,t) 1 A( )( )/ lanS(T),Oe(T)(M o(7), 31 — Yol ))] ddyVi(7)dr. (a1)

00 M2 ap (1)

Substituting (39) and (41) intd(6) = Y, o dy (2elk0)" 2k [21] we obtain the Fisher

information matrixI (#) in (8) for the pixelated detecta? where the detected photons from the object
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of interest and background component are independently Poisson distributed.
2) For the case comprising Poisson and Gaussian random variables, we can substitute thg anean

variancea?uvk of the Gaussian random variable, (39) and (41) into the expressibi# oin (9) [16]. O
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