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Abstract The high quantum efficiency of the charge-coupled device (CCD) has rendered it
the imaging technology of choice in diverse applications. However, under extremely low light
conditions where few photons are detected from the imaged object, the CCD becomes unsuit-
able as its readout noise can easily overwhelm the weak signal. An intended solution to this
problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically
amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for
calculating the Fisher information content of the amplified signal, which is modeled as the
output of a branching process. Specifically, Fisher information expressions are obtained for
a general and a geometric model of amplification, as well as for two approximations of the
amplified signal. All expressions pertain to the important scenario of a Poisson-distributed
initial signal, which is characteristic of physical processes such as photon detection. To facil-
itate the investigation of different data models, a “noise coefficient” is introduced which
allows the analysis and comparison of Fisher information via a scalar quantity. We apply our
results to the problem of estimating the location of a point source from its image, as observed
through an optical microscope and detected by an EMCCD.
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1 Introduction

The charge-coupled device (CCD) is an important digital imaging technology that has found
utility in many applications. It plays crucial roles, for example, in areas as disparate as high
sensitivity cellular microscopy and astronomy. A typical CCD has high quantum efficiency,
which enables it to detect a large percentage of the photons which impinge upon its surface.
However, a CCD is generally not suitable for imaging under extremely low light conditions.
This is mainly due to the measurement noise of the CCD, which can overwhelm the signal
when relatively few photons are detected from the imaged object. Measurement noise is
added when the signal is read out from the device, and is commonly called the readout noise
(e.g., Snyder et al. 1995).

A technology that is intended to overcome the detrimental effect of the readout noise under
low light conditions is the electron-multiplying charge-coupled device (EMCCD). Similar to
a CCD, an EMCCD is a device which accumulates electrons in proportion to the number of
photons it detects. Unlike a CCD, however, an EMCCD can significantly increase the number
of electrons through a multiplication process before they are read out. Therefore, whereas
the readout noise can overwhelm the signal detected by a CCD under low light conditions, it
is effectively drowned out by the amplified signal in the case of an EMCCD.

An EMCCD achieves signal amplification by transferring the electrons through a multi-
plication register that consists of a sequence of typically several hundred stages. Electrons
are moved through the stages in sequence, repeatedly exiting one stage and entering the next
until they exit the last stage. Multiplication occurs because in any given stage, each input
electron can, with certain probabilities, generate secondary electrons via a physical phenom-
enon called impact ionization. All secondary electrons are transferred to the next stage for
further amplification along with the input electrons. In this way, even when the probabilities
of secondary electron generation (typically 0.01 to 0.02 (Basden et al. 2003) for one sec-
ondary electron per input electron, and even smaller for more than one per input electron)
are small in each stage, the cascading effect can potentially produce a large number of elec-
trons per initial electron. An important observation is that while multiplication is intended
to drown out the readout noise, it is a random process, and hence introduces stochasticity
of its own. Therefore, when enough photons can be detected from the imaged object such
that the readout noise level is already low in comparison to the signal, the use of electron
multiplication can actually have the adverse effect of unnecessarily introducing increased
stochasticity in the acquired data.

From an image acquired using a CCD-based camera, parameters of interest can be esti-
mated to obtain useful information about the imaged object. In single molecule microscopy
(e.g., Walter et al. 2008; Moerner 2007), for example, a major topic of interest has been the
accurate estimation of the location of a fluorescent molecule (e.g., Thompson et al. 2002;
Ober et al. 2004; Andersson 2008; Pavani and Piestun 2008; Ram et al. 2008), which has
important applications in, for instance, the study of intracellular processes (e.g., Ram et al.
2008). In this context, we have proposed a general framework (Ram et al. 2006) for calcu-
lating the Fisher information, and hence the Cramer-Rao lower bound (Rao 1965), for the
estimation of parameters from an image produced by a microscope. Based on this framework,
accuracy limits have been obtained for estimating, for example, the positional coordinates
of a single molecule (e.g., Ober et al. 2004). These performance measures, however, assume
the image to have been acquired by a CCD, and hence do not apply to EMCCD imaging.

Our current purpose is then to develop the theory that is necessary for deriving performance
measures for estimating parameters from an EMCCD image. To obtain the Fisher informa-
tion for EMCCD data, we need to find the probability distribution of the electron count
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that results from the multiplication process described above. To this end, we consider the
stochastic multiplication as a branching process (e.g., Harris 1963; Athreya and Ney 2004),
as others have done for EMCCDs (e.g., Hynecek and Nishiwaki 2003; Basden et al. 2003;
Tubbs 2003) and other electron-multiplying devices (e.g., Matsuo et al. 1985; Hollenhorst
1990). The probability distribution for the output of the branching process depends on the
model that is used to describe the secondary electron generation in each multiplication stage.
While multiple secondary electrons can be generated per input electron per stage (Hynecek
and Nishiwaki 2003), for simplicity it is common to describe the electron generation as a
Bernoulli event (i.e., a secondary electron is generated per input electron per stage with
probability b, or not generated with probability 1−b). However, since no explicit expression
exists for the probability distribution of the output electron count of such a branching pro-
cess, different approximating distributions have been proposed (e.g., Hynecek and Nishiwaki
2003; Basden et al. 2003; Tubbs 2003). Rather than starting with the assumption of Bernoulli
multiplication, here we propose using the geometric distribution to describe the probability
of secondary electron generation.

The main contribution of the current work lies in the derivation of Fisher information
expressions for data that can be described as the output of a branching process, with or
without added readout noise. The expressions differ in the random variable, and hence the
probability distribution, that is used to model the data. In all cases, however, the input to
the branching process is modeled as a Poisson random variable. This assumption of a Pois-
son-distributed initial signal is significant, in that many physical processes that give rise to
stochastic signals can be modeled as a Poisson process. Photon emission by a fluorescent
molecule (and hence the detection of those photons by a camera), for example, is typically
modeled as a Poisson process.

Importantly, in the process of presenting our theory, illustrations and comparisons are
made of different data models in terms of their Fisher information. To facilitate the investiga-
tion, we use a quantity which we call the “noise coefficient”. The noise coefficient allows us
to analyze and compare the Fisher information of different data models via a scalar quantity,
and its definition is based on the assumption that information about the parameters of interest
is contained in the Poisson-distributed signal.

We note that in the context of EMCCD image analysis, little has been done, to the best
of our knowledge, in the way of Fisher information which importantly allows the com-
putation of Cramer-Rao lower bound-based accuracy limits for estimating parameters of
interest from the acquired data. The studies performed in Hynecek and Nishiwaki (2003)
and Basden et al. (2003), for example, consider the stochasticity of electron multiplica-
tion, but not from the perspective of Fisher information. Note however that in Mortensen
et al. (2010), the Fisher information has been presented for an EMCCD data model that is
characterized by a probability distribution that has previously been described in Basden
et al. (2003). This distribution is also the probability density for what we refer to as
the high gain approximation (see Sect. 5.1) of our geometric model of electron multi-
plication. In their analysis, Mortensen et al. ultimately arrive at a simple approximation
of the Fisher information for EMCCD data that is based on the “excess noise factor,” a
well known quantity in electron multiplication literature (e.g., Matsuo et al. 1985; Hollen-
horst 1990; Hynecek and Nishiwaki 2003). Specifically, the Fisher information for EM-
CCD data is approximated as half the Fisher information for the ideal scenario where the
data consists of just the initial Poisson-distributed signal. However, as suggested in their
work, as well as by our analysis here (see Sect. 5.2), this approximation is appropriate
only when a relatively large number of photons are detected by an EMCCD operating
at a high level of amplification. In contrast, the Fisher information corresponding to our
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geometric model of multiplication is suitable for arbitrary photon counts and amplification
levels.

This paper is organized as follows. We begin in Sect. 2 with a general result from which
all ensuing Fisher information expressions can be derived. This result immediately gives rise
to the Fisher information for the ideal scenario of an uncorrupted signal and the practical
scenario of a signal that is corrupted by readout noise. Based on this result, we also define
the noise coefficient. In Sect. 3, general Fisher information expressions are presented which
pertain to a signal that is amplified according to a branching process. These results assume a
general model of multiplication, and allow the straightforward derivation of expressions for
specific multiplication models. In Sect. 4, explicit Fisher information expressions are derived
for the geometric model of multiplication. Using these results, we examine multiplication in
terms of the stochasticity that it introduces and its ability to drown out the device readout
noise. In Sect. 5, Fisher information expressions are presented for two approximations of an
amplified signal that are relatively easy to work with computationally and/or analytically.
In Sect. 6, we generalize the theory developed in previous sections for a single signal to a
collection of independent signals such as that which comprise an EMCCD image. This is
followed by an example which applies the generalized theory to the localization of a single
molecule from an EMCCD image. In this example, the calculation of the Fisher information
matrix and the Cramer-Rao lower bound-based limit of the localization accuracy is accom-
panied by the results of maximum likelihood estimations performed with simulated images.
Finally, we conclude in Sect. 7.

2 The noise coefficient

The first part of this paper deals with the analysis of the information content of a scalar
random variable that models the data in a single pixel of an electron multiplication imag-
ing sensor or a similar device. The signal that impacts the detector is modeled as a Poisson
random variable, but the data is a readout noise-corrupted version of the signal that may have
been amplified with the intention to overcome the added noise.

Of particular interest in this paper is the calculation of the Fisher information matrix related
to various parameter estimation problems such as the localization of a single molecule from
its image. These estimation problems take on a typical form. The probability mass function
of the incident Poisson random variable is parameterized by its mean ν. The mean ν itself is,
however, typically a function of the parameter vector θ that is of interest, e.g., the positional
coordinates of a single molecule. Since these problems form the basis of what follows, we
first state an expression for the Fisher information of a random variable using the specific
parameterization that will be of importance for the later developments.

Theorem 1 Let Zν be a continuous (discrete) random variable with probability density
(mass) function pν , where ν is a scalar parameter. Let ν = νθ be a reparameterization of
pν through the possibly vector-valued parameter θ ∈ Θ , where Θ is the parameter space.
We use the notation Zθ (pθ ) to denote Zνθ (pνθ ), θ ∈ Θ . Then the Fisher information matrix
I(θ) of Zθ with respect to θ is given by

I(θ) =
(

∂νθ

∂θ

)T
∂νθ

∂θ
· E

[(
∂

∂νθ

ln(pθ (z))

)2
]
. (1)
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Proof Let L(θ |z) be the log-likelihood function for θ . By the definition of the Fisher
information matrix,

I(θ) = E

[(
∂L(θ |z)

∂θ

)T
∂L(θ |z)

∂θ

]
= E

[(
∂

∂θ
ln(pθ (z))

)T
∂

∂θ
ln(pθ (z))

]

=
(

∂νθ

∂θ

)T
∂νθ

∂θ
· E

[(
1

pθ (z)

∂pθ (z)

∂νθ

)2
]

=
(

∂νθ

∂θ

)T
∂νθ

∂θ
· E

[(
∂

∂νθ

ln(pθ (z))

)2
]

.

��
Note that the above theorem can be seen to be a special case of the transformation result for
Fisher information matrices (e.g., Kay 1993) that applies to our specific conditions, and that
the scalar expectation term in Eq. 1 is just the Fisher information of Zθ with respect to νθ .

Theorem 1 importantly breaks the Fisher information matrix I(θ) into two parts: a matrix

portion
(

∂νθ

∂θ

)T
∂νθ

∂θ
which does not depend on the specific probability distribution pθ of

Zθ , and a scalar portion E

[(
∂

∂νθ
ln(pθ (z))

)2
]

which does depend on pθ . This formulation

provides the foundation of our definition of a “noise coefficient” for comparing the Fisher
information of different data models. To motivate the purpose and definition of this coeffi-
cient, we first present two corollaries which follow immediately from Theorem 1. The results
of both corollaries have been presented in our earlier work (e.g., Ober et al. 2004; Ram et al.
2006), but are given here again as two important realizations of the general Fisher information
expression of Eq. 1.

The two corollaries pertain to data acquired under two important scenarios. The first gives
the Fisher information matrix for the ideal scenario where a Poisson-distributed number of
detected particles are read out from a device without being corrupted by measurement noise.
This scenario thus represents the best case wherein a CCD is able to read out a signal without
introducing readout noise, and will serve as the benchmark against which practical scenarios
are compared. In this and all ensuing scenarios, the function νθ will represent the mean of
the Poisson-distributed signal.

Corollary 1 Let Zθ be a Poisson random variable with mean νθ > 0, such that its proba-

bility mass function is pθ,P (z) = e−νθ νz
θ

z! , z = 0, 1, . . .. The Fisher information matrix IP (θ)

of Zθ is given by

IP (θ) =
(

∂νθ

∂θ

)T
∂νθ

∂θ
· 1

νθ

. (2)

Proof Since pθ,P is parameterized by θ through the function νθ , by Theorem 1 IP (θ) takes
the form of Eq. 1. To prove the result, we need only evaluate the expectation term of Eq. 1,
with pθ = pθ,P :

E

[(
∂

∂νθ

[
ln(pθ,P (z))

])2
]

= E

[(
∂

∂νθ

[
ln

(
e−νθ νz

θ

z!
)])2

]
= E

[(
z

νθ

− 1

)2
]

= 1

ν2
θ

E
[
z2]− 2

νθ

E[z] + 1 = νθ + ν2
θ

ν2
θ

− 2
νθ

νθ

+ 1 = 1

νθ

. ��

Note that Eq. 2 reduces to the familiar result of IP (θ) = 1
νθ

if the parameter to be estimated
happens to be the mean of the Poisson distribution (i.e., if θ = νθ ).
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The second corollary is of significance in that it gives the Fisher information matrix for
the practical scenario where measurement noise is added to a Poisson-distributed number
of detected particles when they are read out from a device. Measurement noise is typically
modeled as a Gaussian random variable, and is assumed to be such by this corollary (see
Appendix for the proof). This scenario importantly corresponds to the practical operation of
a CCD, which adds measurement noise when electrons are read out (e.g., Snyder et al. 1995).

Corollary 2 Let Zθ = Vθ + W , where Vθ is a Poisson random variable with mean νθ > 0,
and W is a Gaussian random variable with mean ηw and variance σ 2

w. Let Vθ and W be
stochastically independent of each other, and let W be not dependent on θ . The probabil-
ity density function of Zθ is then the convolution of the Poisson probability mass function
with mean νθ and the Gaussian probability density function with mean ηw and variance

σ 2
w, given by pθ,R(z) = 1√

2πσw

∑∞
j=0

e−νθ ν
j
θ

j ! e
− 1

2

(
z− j−ηw

σw

)2

, z ∈ R. The Fisher information

matrix IR(θ) of Zθ is given by

IR(θ) =
(

∂νθ

∂θ

)T
∂νθ

∂θ
·
⎛
⎜⎝

∞∫
−∞

1

pθ,R(z)
·
⎛
⎝ 1√

2πσw

∞∑
j=1

e−νθ ν
j−1
θ

( j − 1)! e
− 1

2

(
z− j−ηw

σw

)2
⎞
⎠

2

dz − 1

⎞
⎟⎠.

(3)

Note that the density function pθ,R in the above corollary can be found in Snyder et al. (1995).
According to Theorem 1 and demonstrated by Corollaries 1 and 2, different proba-

bility distributions of the random variable Zθ will result in Fisher information matrices
that differ from one another through the Fisher information of Zθ with respect to νθ

(i.e., the scalar expectation term of Eq. 1). We therefore introduce, for the purpose of com-
paring the Fisher information of different data models, a “noise coefficient” based on this
quantity. (We call it the “noise coefficient” because, as illustrated by Corollaries 1 and 2,
different data models will typically share the same signal, but differ by the type of noise that
corrupts the signal.) Since Eq. 2 represents the best case scenario (where we have Poisson-
distributed data that is not corrupted by measurement noise), we take its Fisher information
with respect to νθ (i.e., the quantity 1

νθ
) as the reference, and define the noise coefficient as

follows.

Definition 1 Let Zθ be a continuous (discrete) random variable with probability density
(mass) function pθ . Let pθ be parameterized by θ through the mean νθ > 0 of a Poisson-
distributed random variable. Then the noise coefficient (with respect to νθ ) of Zθ , denoted
by α, is given by

α = νθ · E

[(
∂

∂νθ

ln(pθ (z))

)2
]

. (4)

The noise coefficient of Eq. 4 is just the ratio of the Fisher information of Zθ to that
of the ideal, uncorrupted Poisson-distributed signal, both with respect to νθ . Using this
quantity, the Fisher information matrix I(θ) of a random variable which satisfies the con-
ditions of Definition 1 can be expressed as I(θ) = α · IP (θ), where IP (θ) is the Fisher
information matrix of Eq. 2. Note that the noise coefficient α as defined is a nonneg-
ative scalar, and that the larger its value, the larger the Fisher information matrix I(θ)

(i.e., the higher the amount of information I(θ) contains about the parameter vector θ , and
hence the better the accuracy with which θ can be estimated).
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For the ideal scenario of Corollary 1 where the data is Poisson-distributed, the noise coeffi-
cient is trivially αP = 1. For the practical scenario of Corollary 2 where Gaussian-distributed
measurement noise is added to the detected Poisson-distributed signal, the noise coefficient
αR is just

αR = νθ ·
⎛
⎜⎝

∞∫
−∞

1

pθ,R(z)
·
⎛
⎝ 1√

2πσw

∞∑
j=1

e−νθ ν
j−1
θ

( j − 1)! e
− 1

2

(
z− j−ηw

σw

)2
⎞
⎠

2

dz − 1

⎞
⎟⎠, (5)

and the Fisher information matrix IR(θ) can be written as IR(θ) = αR · IP (θ).
In this paper, most results will involve data that can be described as a Poisson-distributed

signal with mean νθ that is stochastically multiplied (i.e., amplified) by some random func-
tion M before being corrupted by some additive measurement noise W . Since neither the
stochasticity introduced by the multiplication nor the measurement noise is dependent on θ ,
they contribute no additional information about θ . If anything, they can deteriorate the Fisher
information. Therefore, the noise coefficient α for these data models can be expected to be
at most 1 (i.e., at most αP ). We state and prove this result formally in the following theorem.

Theorem 2 Let Θ be a parameter space and let Zθ = M(Vθ ) + W, θ ∈ Θ , where Vθ is a
Poisson random variable with mean νθ > 0, M is a random function, and W is a scalar-
valued random variable. We assume that Vθ , M, and W are stochastically independent. Then,
for the noise coefficient α of Zθ , 0 ≤ α ≤ 1.

Proof Trivially, we have α ≥ 0 because by Definition 1, it is the product of a positive value
νθ and the expectation of a squared expression. We next show that α ≤ 1.

For any random variable Uθ that depends on the parameter θ ∈ Θ , we denote by SUθ its

score function and by IUθ (θ) = E
[(

SUθ

)T
SUθ

]
its Fisher information matrix with respect

to the parameter θ . If we let Yθ = M(Vθ ), we first show that IYθ (θ) ≤ IVθ (θ).
We explicitly denote the dependence of the multiplication random function M on

the random event ω ∈ �, i.e., M : N × � → R; (n, ω) 
→ M(n, ω). For a fixed
ω0 ∈ �, M(·, ω0) can be considered as a constant statistic for the Poisson random vari-
able Vθ . Then by the monotonicity of the Fisher information matrix (e.g., Rao 1965), we
have that for each ω0 ∈ �, IM(Vθ ,ω0)(θ) ≤ IVθ (θ).

Using the identity E [E [A|B]] = E [A], where A and B are random variables, we con-
dition on the random events that yield constant (i.e., non-random) multiplication functions
to obtain the required inequality

IYθ (θ) = IM(Vθ )(θ) = E
[(

SM(Vθ )

)T
SM(Vθ )

]
= E

[
E
[(

SM(Vθ )

)T
SM(Vθ )|M

]]

= E
[

E
[(

SM(Vθ )

)T
SM(Vθ )|M(·, ·) = M(·, ω0)

]]

= E
[
IM(Vθ ,ω0)(θ)

] ≤ E
[
IVθ (θ)

] = IVθ (θ).

We next consider the addition of the random variable W to Yθ . Let F be the statistic
defined by F

([A B]T
) = [1 1][A B]T = A + B, where A and B are random variables.

We then have that Zθ = F
([Yθ W ]T

)
, and by the monotonicity of the Fisher information

matrix, we have IZθ (θ) ≤ I[Yθ W ]T (θ).
By the stochastic independence of Yθ and W , the joint probability density function of

[Yθ W ]T is the product of their respective density functions pYθ and pW . (Note that Yθ and
W can each be either discrete or continuous, but for ease of treatment, we consider them both
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to be characterized by density functions.) Then,

I[Yθ W ]T (θ) = E

[(
∂

∂θ
ln[pYθ (y)pW (w)]

)T
∂

∂θ
ln[pYθ (y)pW (w)]

]

= E

[(
∂

∂θ
ln[pYθ (y)] + ∂

∂θ
ln[pW (w)]

)T(
∂

∂θ
ln[pYθ (y)] + ∂

∂θ
ln[pW (w)]

)]

= E

[(
∂

∂θ
ln[pYθ (y)]

)T (
∂

∂θ
ln[pYθ (y)]

)]
= IYθ (θ).

Therefore, we have IZθ (θ) ≤ IYθ (θ) ≤ IVθ (θ). Since IVθ (θ) is just IP (θ) of Corollary 1, and
since IZθ (θ) = α · IP (θ), it follows that α ≤ 1. ��

Note that if the multiplication random function M in Theorem 2 is the identity func-
tion (i.e., M(Vθ ) = Vθ ), then we recover the signal plus measurement noise scenario of
Corollary 2. Hence, Theorem 2 immediately implies that the noise coefficient αR of Eq. 5 is
between 0 and 1, and that the Fisher information matrix IR(θ) is no greater than IP (θ) of the
ideal scenario of Corollary 1. For illustration, Fig. 1 plots, for ηw = 0 and different values of
σw corresponding to different levels of readout noise, the noise coefficient αR as a function
of the mean νθ of the Poisson-distributed signal. The plot shows that for all readout noise
levels and for all values of νθ , the value of the noise coefficient αR is no less than 0 and no
greater than 1.

For each value of νθ , Fig. 1 shows that the value of αR decreases with increasing levels of
the readout noise. This agrees with the expectation that the Fisher information deteriorates
in proportion to the amount of noise. Moreover, for each readout noise level, we see that the
value of αR increases with increasing values of νθ . This demonstrates that, by increasing the
signal to effectively drown out the readout noise, the Fisher information matrix IR(θ) can be
expected to approach IP (θ) of the ideal scenario. Practically, however, it may be impossible
to acquire the necessary amount of signal. In this case, the signal can be amplified before it
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Fig. 1 Noise coefficient αR (Eq. 5), for the scenario of a Poisson-distributed signal with Gaussian-distributed
measurement noise, as a function of the mean νθ of the signal. The values of νθ range from 0.27 to 201.28.
The different curves correspond to measurement noise with mean ηw = 0 and standard deviation σw =
1(∗), 2(◦), 4(×), 8(), 16(·), 24(�), 32(�), 64(+), and 128(�)
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is read out. Signal amplification that can be modeled as a branching process is the subject of
what follows.

3 Fisher information for signal multiplication

In a basic multiplication, or branching, process (e.g., Harris 1963; Athreya and Ney 2004), an
initial number of particles are fed into a series of stages where, in each stage, an input particle
can generate secondary particles of the same kind with certain probabilities. The particles at
the output of one stage become the input of the next, resulting in a cascading effect that can
produce a large number of particles, and hence an amplification of the initial particle count.
While motivated by electron multiplication in an EMCCD, the theory we present is general
and can be used for other multiplication applications. Therefore, consistent with the literature
on branching processes, we will use the generic term “particle” to refer to the physical entities
that are multiplied. We begin by giving the definition of a basic branching process, in a form
similar to that found in Kimmel and Axelrod (2002).

Definition 2 A branching process with an initial particle count probability distribution
(qk)k=0,1,... and an individual offspring count probability distribution (pk)k=0,1,... is a
sequence of nonnegative integer-valued random variables (Xn)n=0,1,..., given by

Xn =
{

U, n = 0,∑Xn−1
j=1 Y j , n = 1, 2, . . . ,

(6)

where the initial particle count random variable U is nonnegative and integer-valued with
probability distribution (qk)k=0,1,..., and for each Xn, n = 1, 2, . . ., the individual offspring
count random variables Y j , j = 1, . . . , Xn−1, are nonnegative and integer-valued, and are
mutually independent and identically distributed with probability distribution (pk)k=0,1,....

Note that if Xn−1 = 0, then
∑Xn−1

j=1 Y j = 0.

In Definition 2, the random variable Xn denotes the number of particles at the output of
the nth stage of multiplication, with X0 understood to be the initial number of particles
U prior to multiplication. In the definition of Xn for n = 1, 2, . . ., the random variable
Y j , j = 1, . . . , Xn−1, denotes the number of offspring particles due to the j th of the Xn−1

particles at the output (input) of the previous (current) stage. In this way, the cascading effect
of the multiplication process is captured. Note that the number of offspring particles Y j

includes the j th input particle itself.
For a branching process with N stages of multiplication, where N is a nonnegative integer,

the mean and variance of the number of particles X N at the output of the N th stage are well
known results (e.g., Harris 1963; Athreya and Ney 2004). For a general initial particle count
probability distribution (qk)k=0,1,... (which by Definition 2 has mean E[X0] and variance
V ar [X0]) and a general individual offspring count probability distribution (pk)k=0,1,... with
mean m and variance σ 2, the mean E[X N ] and variance V ar [X N ] of X N are as given in
Table 1. The table also gives expressions for E[X N ] and V ar [X N ] that correspond to combi-
nations of different definitions of (qk)k=0,1,... and (pk)k=0,1,.... These expressions are easily
verified by substituting E[X0] = V ar [X0] = νθ , and/or appropriate expressions for m and
σ 2 (see Sect. 4 for definitions of the standard and zero modified geometric distributions),
into the general expressions for E[X N ] and V ar [X N ].

From Table 1, we see that E[X N ] is the product of the mean initial particle count E[X0]
and the term m N , which is the mean of X N given a single initial particle (i.e., given that
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Table 1 The mean E[X N ] and variance V ar [X N ] of the number of particles X N at the output of an N -stage
branching process for various combinations of the initial particle count probability distribution (qk )k=0,1,...

and the individual offspring count probability distribution (pk )k=0,1,...

(qk )k=0,1,... (pk )k=0,1,... E[X N ] V ar [X N ]

General General m N E[X0] σ2m N−1(m N −1)
m−1 E[X0] + m2N V ar [X0]

Poisson(νθ ) General m N νθ νθ

(
σ2m N−1(m N −1)

m−1 + m2N
)

Poisson(νθ ) Geometric(b)
(

1
1−b

)N
νθ νθ

(
2
(

1
1−b

)2N −
(

1
1−b

)N
)

Poisson(νθ ) Zero modified geometric(a, b)
(

1−a
1−b

)N
νθ νθ

(
2b

b−d

(
1−a
1−b

)2N − b+d
b−d

(
1−a
1−b

)N
)

The mean and variance of a general (pk )k=0,1,... are denoted by m and σ 2, where m ≥ 0 for E[X N ], and
m > 0, m �= 1 for V ar [X N ]

X0 = 1). The term m N is commonly called the mean gain of the branching process, and is
an indicator of the amount of multiplication that can be expected from a branching process.

Definition 2 specifies a general branching process by leaving the initial particle count
probability distribution (qk)k=0,1,... and the individual offspring count probability distribu-
tion (pk)k=0,1,... to be defined. We are, however, interested in the scenario where the initial
particle count random variable is Poisson-distributed (e.g., photons detected as electrons by
an EMCCD according to a Poisson process). Using the Poisson distribution for (qk)k=0,1,...,
the next theorem gives the probability distribution, the noise coefficient, and the Fisher infor-
mation matrix of the particle count X N ,θ at the output of an N -stage branching process.

Theorem 3 Let X N ,θ , N ∈ {0, 1, . . .}, be the number of particles at the output of an N-stage

branching process with an initial particle count probability distribution qk = e−νθ νk
θ

k! , k =
0, 1, . . . and an individual offspring count probability distribution (pk)k=0,1,... that is not
dependent on θ .

1. The probability distribution of X N ,θ is given by the probability mass function

pθ,M (x) = P(X N ,θ = x) =
∞∑
j=0

P(X N ,θ = x |X0,θ = j) · e−νθ ν
j
θ

j ! , x = 0, 1, . . . . (7)

2. The noise coefficient corresponding to the probability mass function pθ,M is given by

αM = νθ ·
⎛
⎜⎝

∞∑
x=0

1

P(X N ,θ = x)

⎛
⎝∞∑

j=1

P(X N ,θ = x |X0,θ = j) · e−νθ ν
j−1
θ

( j − 1)!

⎞
⎠

2

− 1

⎞
⎟⎠, (8)

and the Fisher information matrix of X N ,θ is IM (θ) = αM · IP (θ), where IP (θ) is as
given in Eq. 2.
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Proof 1. By the law of total probability, for x = 0, 1, . . .,

pθ,M (x) = P(X N ,θ = x) =
∞∑
j=0

P(X N ,θ = x |X0,θ = j) · q j

=
∞∑
j=0

P(X N ,θ = x |X0,θ = j) · e−νθ ν
j
θ

j ! .

2. Since the individual offspring count probability distribution (pk)k=0,1,... is not dependent
on θ , the conditional probability P(X N ,θ = x |X0,θ = j), j = 0, 1, . . ., is not dependent
on θ . Hence, pθ,M is parameterized by θ through the mean νθ of a Poisson-distributed
random variable. By Definition 1, αM is then given by Eq. 4 with pθ = pθ,M , and the
resulting expectation term can be evaluated analogously in step-by-step fashion as in the
proof of Corollary 2. The matrix IM (θ) then follows directly from Definition 1. ��

Equations 7 and 8 are expressed in terms of P(X N ,θ = x |X0,θ = j), which is the general
probability mass function of the output particle count X N ,θ conditioned on the initial particle
count X0,θ . They therefore allow the straightforward realization of concrete expressions for
the probability mass function and the noise coefficient of X N ,θ once the conditional mass
function is determined. The conditional mass function, in turn, needs to be defined through a
specific individual offspring count probability distribution (pk)k=0,1,..., which specifies how
the particles are multiplied. Indeed, this approach is taken in Sect. 4 to arrive at the Fisher
information matrix for the case where (pk)k=0,1,... is a geometric probability distribution.

Theorem 3 assumes that the output particle count X N ,θ of the multiplication process is the
data from which θ is to be estimated. In a device such as an EMCCD, however, measurement
noise is added to X N ,θ during the readout process. In this case, the data Zθ is the sum of
X N ,θ and a Gaussian random variable W which models the noise. By the stochastic indepen-
dence of X N ,θ and W , the density function pθ,M R (Eq. 31) of Zθ is the convolution of the
mass function of X N ,θ (Eq. 7) and a Gaussian density function. Using pθ,M R , application
of Definition 1 and a calculation analogous to the proof of Corollary 2 will readily yield the
noise coefficient αM R (Eq. 32). These results are stated as Corollary 4 in the Appendix.

4 Fisher information for geometric multiplication

Theorem 3 and Corollary 4 provide general Fisher information expressions for a Poisson-
distributed initial particle count that has been stochastically multiplied according to some
individual offspring count probability distribution (pk)k=0,1,.... In this section, we consider
the case where (pk)k=0,1,... is a zero modified geometric distribution, which we define as
follows (Haccou et al. 2005).

Definition 3 A zero modified geometric distribution is a probability distribution (pk)k=0,1,...

given by

pk =
{

a, k = 0,

(1 − a)(1 − b)bk−1, k = 1, 2, . . . , 0 ≤ a < 1, 0 ≤ b < 1.
(9)

The zero modified geometric distribution has mean m = 1−a
1−b and variance σ 2 = (1−a)(b+a)

(1−b)2 ,
which can be easily verified. It has a probability generating function of linear fractional form.
Due to this special property, the probability distribution of the number of particles X N ,θ at
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the output of an N -stage branching process with a geometrically distributed individual off-
spring count can be expressed explicitly without recursion (e.g., Harris 1963; Athreya and
Ney 2004). From Eq. 9, it can be seen that the zero modified geometric distribution allows
the individual offspring count to take on increasing positive integer values with decreasing
probabilities, and if desired, the value zero with a non-zero probability. This makes it suitable
for modeling processes like electron multiplication in an EMCCD, where higher offspring
counts per input particle per stage can be assumed to become increasingly unlikely. (Note that
this assumption is inferred from Hynecek and Nishiwaki (2003), where it is suggested that
the generation of more than one secondary electron per input electron per stage in an EMCCD
multiplication register can be assumed to be an event that practically does not occur.) The
ability to define a non-zero probability for a zero individual offspring count also enables the
modeling of any particle loss mechanisms that may exist.

By setting the parameter a = 0, the zero modified geometric distribution of Eq. 9 reduces
to the standard geometric distribution pk = (1 − b)bk−1, k = 1,2,…. This distribution has
easily verifiable mean m = 1

1−b and variance σ 2 = b
(1−b)2 . We will use the more general zero

modified geometric distribution in the theory that follows. However, the standard geometric
distribution will be used for illustration purposes since it produces a branching process where
there is no possibility of losing a particle. The absence of particle loss is often assumed in
the modeling of, for example, electron multiplication in an EMCCD.

For an N -stage branching process with a Poisson-distributed initial particle count and a
geometrically distributed individual offspring count, the following theorem gives the prob-
ability distribution, the noise coefficient, and the Fisher information matrix of the output
particle count X N ,θ . In brief, the proof (see Appendix) for this theorem uses the theory of
probability generating functions to derive the conditional probability mass function of X N ,θ

given an initial particle count X0,θ (see Eq. 34). The results then follow by using the con-
ditional mass function in the general mass function and noise coefficient of Eqs. 7 and 8.

Theorem 4 Let X N ,θ , N ∈ {0, 1, . . .}, be the number of particles at the output of an N-stage

branching process with an initial particle count probability distribution qk = e−νθ νk
θ

k! , k =
0, 1, . . ., and a zero modified geometric individual offspring count probability distribution
(pk)k=0,1,... that is not dependent on θ .

1. The probability distribution of X N ,θ is given by the probability mass function

pθ,Geom(x) = P(X N ,θ = x) =
⎧⎨
⎩

e−νθ
A
B , x = 0,

e−νθ
A
B
∑x−1

j=0

(x−1
j

)Cx−1− j D j+1

B j+x+1
ν

j+1
θ

( j+1)! , x = 1, 2, . . . ,

(10)

where A = (1 −a)(m − 1)m N , B = b(m N − 1)m + (1 −a)(m − 1), C = b(m N − 1)m,

D = m N (1 − a)2(m − 1)2, m = 1−a
1−b �= 1, and

(x−1
j

)
denotes “x − 1 choose j”.

2. The noise coefficient corresponding to the probability mass function pθ,Geom is given by

αGeom = νθ ·
⎡
⎢⎣

∞∑
x=1

e−2νθ
A
B

pθ,Geom(x)

⎛
⎝x−1∑

j=0

(
x − 1

j

)
Cx−1− j D j+1

B j+x+1

ν
j
θ

j !

⎞
⎠

2

−
(

A

B

)2

⎤
⎥⎦, (11)

and the Fisher information matrix of X N ,θ is IGeom(θ) = αGeom · IP (θ), with IP (θ) as
given in Eq. 2.
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Fig. 2 Probability mass function (Eq. 12) of X536,θ , the particle count at the output of a 536-stage branching
process with a standard geometric (◦) individual offspring count probability distribution and a mean gain of
m536 = 1015.46, for six different values of the mean νθ of the Poisson-distributed initial particle count.
For each value of νθ , the probability density functions resulting from the high gain approximation (Eq. 21)
(red curve) and the Gaussian approximation (see discussion of Theorem 6) (blue curve) of the output of the
standard geometric multiplication are also shown

For the special case where we have a standard geometric individual offspring count probabil-
ity distribution, setting a = 0 in Eqs. 10 and 11 yields, for m = 1

1−b , the simpler expressions

pθ,Geom(x) =
{

e−νθ , x = 0,

e−νθ
∑x−1

j=0
(x−1

j )
( j+1)!

(
1 − 1

m N

)x−1− j (
νθ

m N

) j+1
, x = 1, 2, . . . ,

(12)

αGeom = νθ ·
⎡
⎢⎣

∞∑
x=1

e−2νθ

pθ,Geom(x)

⎛
⎝x−1∑

j=0

(
x − 1

j

)(
1 − 1

m N

)x−1− j ( 1

m N

) j+1 ν
j
θ

j !

⎞
⎠

2

− 1

⎤
⎥⎦.

(13)

Figure 2 plots, in open circles, the probability mass function pθ,Geom(x) of Eq. 12 for six
different values of the mean initial particle count νθ . For small values of νθ (1 and 5), the
shape of the function is characterized by a large value at x = 0. This is because the output
particle count of the multiplication will be 0 whenever the initial particle count is 0, a likely
event given the small νθ . However, as νθ becomes larger, the shape of the probability mass
function starts to resemble that of a Gaussian density function (see Sect. 5.2).

Multiplication is a random process, and hence adds stochasticity to the detected signal.
This is illustrated by Fig. 3a, which plots the noise coefficient αGeom of Eq. 13 as a function
of the mean νθ of the initial particle count. The figure shows curves for different values of
the mean gain m N of the multiplication process, with N set to 536 stages. (The value 536
is the number of multiplication stages in a CCD97 chip (E2V Technologies, Chelmsford,
UK), a sensor which is used in many EMCCD cameras.) In accordance with Theorem 2, the
stochasticity added by the multiplication is seen in the fact that the noise coefficient αGeom

is less than one for all values of the mean gain and νθ shown in the plot. This directly implies
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Fig. 3 a Noise coefficient αGeom (Eq. 13), for the scenario of a Poisson-distributed signal that is amplified by
multiplication, and b noise coefficient αGeom R (Eq. 38), for the scenario of a Poisson-distributed signal that is
amplified by multiplication and subsequently corrupted by measurement noise. In both a and b, the noise coeffi-
cient is shown as a function of the mean νθ of the signal, which ranges in value from 0.27 to 201.28. The signal is
amplified through N = 536 stages of standard geometric multiplication, and the different curves correspond to
mean gain values of m N = 1.01(∗), 1.03(◦), 1.06(×), 1.31(), 1.71(·), 4.98(�), 14.49(+), and1015.46(�).
In a, the red curve represents the noise coefficient αH (Eq. 22) of the high gain approximation, while the blue
and green curves represent the noise coefficient αGauss (Eq. 25) of the Gaussian approximation for mean gains
of 1015.46 and 4.98, respectively. In b, the measurement noise is Gaussian-distributed with mean ηw = 0 and
standard deviation σw = 8, and as a reference, the red curve represents the noise coefficient αR (Eq. 5) for
the scenario where there is no signal amplification

that the corresponding Fisher information matrix IGeom(θ) is smaller than IP (θ) of the ideal
scenario.

For each value of νθ , Fig. 3a shows that multiplication with a higher mean gain results
in a smaller value of αGeom , indicating that the amount of added stochasticity is propor-
tional to the mean gain. Moreover, for each mean gain value, we see that the value of αGeom

decreases with increasing values of νθ , suggesting that multiplication adds the least amounts
of stochasticity when the signal to be amplified is small.

Despite the fact that multiplication adds stochasticity to the data, it can be useful in the
practical scenario wherein measurement noise is introduced by the device. In this case, the
derivations of the probability density pθ,Geom R (Eq. 35) of the final data Zθ and the associ-
ated noise coefficient αGeom R (Eq. 36) will be analogous to the proof of Theorem 4 in the
Appendix, using instead the general expressions of Eqs. 31 and 32 of Corollary 4, which
account for the added Gaussian noise. The results are stated as Corollary 5 in the Appendix,
where expressions for the special case of standard geometric multiplication are also given.

To illustrate that multiplication can be beneficial when readout noise is present, Fig. 3b
plots the noise coefficient αGeom R of Eq. 38 as a function of the mean νθ of the initial par-
ticle count. Curves are shown for the same set of mean gain values as in Fig. 3a, and a zero
mean Gaussian readout noise with a standard deviation of σw = 8 is assumed. As a refer-
ence for comparison, the noise coefficient αR of Eq. 5, which corresponds to the absence of
multiplication, is shown for the same readout noise level as a red curve.

Figure 3b shows that, for the given set of mean gain values, multiplication yields a better
noise coefficient than no multiplication (i.e., αGeom R is greater than αR) for νθ values of
up to roughly 60 particles. In this range of νθ values, a higher mean gain generally yields a
larger αGeom R . Beyond roughly νθ = 60 particles, however, multiplication starts to produce,
in order of decreasing mean gain, a noise coefficient that is worse than no multiplication
(i.e., αGeom R starts to drop below αR). By roughly νθ = 130 particles, multiplication with
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any of the given mean gain values offers no benefit, with a higher mean gain yielding a
smaller αGeom R .

Figure 3b therefore demonstrates that multiplication, especially at high mean gain, is ben-
eficial when the signal level is relatively small (or equivalently, when the readout noise level
is relatively significant). On the other hand, when the signal level is relatively large such that
the readout noise level is already relatively insignificant, multiplication has the undesirable
net effect of introducing additional stochasticity.

5 Approximations of the output of multiplication

Though exact, the probability distributions and noise coefficients of Theorem 4 and Corol-
lary 5 can be difficult to analyze and time-consuming to compute. In this section, we present
two ways to approximate the output of geometric multiplication that yield expressions that are
relatively simple to analyze and/or compute. The first approximation is based on the behav-
ior of a branching process as its mean gain converges to infinity, and applies specifically
to geometric multiplication. The second approximation models the output of a branching
process as a Gaussian random variable, and can be used with any multiplication model. This
approximation allows for a relatively easy analytical demonstration of the behavior of the
noise coefficient.

5.1 High gain approximation

Let (Xn,θ )n=0,1,... be a branching process with initial particle count X0,θ = 1 and a zero mod-
ified geometric individual offspring count probability distribution with mean m = 1−a

1−b > 1.
Then it is shown in Harris (1963) that as the number of multiplication stages n converges to
infinity, the sequence of random variables (Yn = Xn,θ /mn)n=0,1,... converges, with probabil-
ity 1 and in mean square, to a random variable Y with a zero modified exponential distribution
given by

p(y) =
{ a

b , y = 0,(
1 − a

b

)2
e−(1− a

b )y, y > 0, 0 ≤ a < b < 1.
(14)

Based on this result, for a large N , the particle count X N ,θ at the output of an N -stage
branching process with initial particle count X0,θ = 1 and a zero modified geometric indi-
vidual offspring count probability distribution with mean m > 1, can be approximated by
the random variable m N Y , whose probability density function can be verified to be a scaled
version of Eq. 14:

p(x) =
{

a
b , x = 0,

1
m N

(
1 − a

b

)2
e
−(1− a

b )
x

m N , x > 0, 0 ≤ a < b < 1.
(15)

If instead the branching process has an initial particle count of X0,θ = j, j = 1, 2, . . .,
then the distribution of the output particle count X N ,θ can be approximated by the j-fold
convolution of p(x) of Eq. 15 with itself. The resulting density function can be shown to be,
for 0 ≤ a < b < 1,

p(x | j) =
⎧⎨
⎩
( a

b

) j
, x = 0,

1
m N

(
1 − a

b

)2
e
−(1− a

b )
x

m N
∑ j−1

l=0
( j−1

l ) j
(l+1)!

( a
b

) j−l−1 (1 − a
b

)2l
(

x
m N

)l
, x > 0.

(16)
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To obtain the approximating probability density function and noise coefficient for the case
where the initial particle count X0,θ is Poisson-distributed with parameter νθ , we note that
Eq. 16 is the approximating probability density function of the output particle count X N ,θ

conditioned on X0,θ . It is thus similar to the conditional probability mass function that is
required by the general expressions of Eqs. 7 and 8. However, since it is a density function,
continuous analogues of Eqs. 7 and 8 are needed. By proceeding in similar fashion as in the
proof of Theorem 3, the general expressions for the continuous case can be verified to be

p(x) =

⎧⎪⎨
⎪⎩

e−νθ

(
1 +∑∞

j=1
p(0| j)ν j

θ

j !
)

, x = 0,

e−νθ
∑∞

j=1
p(x | j)ν j

θ

j ! , x > 0,

(17)

α =
∞∫

0

1

p(x)

⎛
⎝e−νθ

∞∑
j=1

p(x | j)ν j−1
θ

( j − 1)!

⎞
⎠

2

dx + 1

p(0)

⎛
⎝e−νθ

∞∑
j=1

p(0| j)ν j−1
θ

( j − 1)!

⎞
⎠

2

− 1.

(18)

Substituting Eq. 16 into Eq. 17 gives the required density function, which we use in our next
theorem.

Theorem 5 Let Xθ be a random variable with probability density function

pθ,H (x) =

⎧⎪⎨
⎪⎩

e−νθ (1− a
b ), x = 0,

(1− a
b )2e

−(1− a
b ) x

m N −νθ

m N

∑∞
j=1

ν
j
θ

( j−1)!
∑ j−1

k=0
( j−1

k )( a
b )

j−k−1

(k+1)!
(
(1− a

b )
2 x

m N

)−k , x > 0,
(19)

where 0 ≤ a < b < 1 and m = 1−a
1−b . Then the noise coefficient corresponding to pθ,H is

αH = νθ ·

⎡
⎢⎢⎢⎢⎢⎣

∞∫
0

(
1 − a

b

)2 (∑∞
j=1

jν j−1
θ

( j−1)!
∑ j−1

k=0
( j−1

k )( a
b )

j−k−1

(k+1)!
(
(1− a

b )
2x
)−k

)2

e(1− a
b )x+νθ

∑∞
j=1

ν
j
θ

( j−1)!
∑ j−1

k=0
( j−1

k )( a
b )

j−k−1

(k+1)!
(
(1− a

b )
2x
)−k

dx

+ a2

b2eνθ (1− a
b )

− 1

⎤
⎥⎥⎥⎥⎥⎦

,

(20)

and the Fisher information matrix of Xθ is IH (θ) = αH · IP (θ), where IP (θ) is as given in
Eq. 2.

Proof The noise coefficient αH follows by substituting Eqs. 19 and 16 into Eq. 18 and sim-
plifying. The Fisher information matrix IH (θ) then follows directly from Definition 1. ��
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To approximate standard geometric multiplication, setting a = 0 in Eqs. 19 and 20 yields
the simpler expressions

pθ,H (x) =
⎧⎨
⎩

e−νθ , x = 0,

e
−
(

x
m N +νθ

)√
νθ x/m N I1

(
2
√

νθ x/m N
)

x , x > 0, m = 1
1−b , 0 < b < 1,

(21)

αH = νθ ·
⎡
⎣e−νθ

4ν2
θ

∞∫
0

x2e
− x2

4νθ I 2
0 (x)

I1(x)
dx − 1

⎤
⎦. (22)

The functions I1 and I0 are the first and zeroth order modified Bessel function of the first
kind, respectively, and they are obtained by applying the identity (Abramowitz and Stegun
1965)

Iv(u) =
(

1

2
u

)v ∞∑
j=0

( 1
4 u2

) j

j !(v + j)! , v ∈ {0, 1, . . .}, u ∈ R,

with v = 1 and v = 0 during the simplification. Note that Eq. 21 appears in an equivalent
form, without the jump at x = 0 and without the modified Bessel function representation,
in Basden et al. (2003). It can also be found, in identical form as presented here and along
with some associated Fisher information analysis, in Mortensen et al. (2010). Note also that
whereas the mean gain m N is present in the density functions of Eqs. 19 and 21, it disappears
by simple substitution in deriving the noise coefficients of Eqs. 20 and 22.

According to its derivation, the high gain approximation can be expected to apply only
in the case of a large mean gain. For illustration, the probability density function of Eq. 21
is shown, for a relatively large mean gain of m N = 1015.46, as a red curve in each plot of
Fig. 2. For each of the six values of the mean initial particle count νθ , a close agreement
can be seen between this density function and the probability mass function of Eq. 12 (◦).
Similarly, a close match can be seen in Fig. 3a between the noise coefficient αH of Eq. 22
(red curve) and the noise coefficient αGeom of Eq. 13 computed for m N = 1015.46 (�). As
expected, Fig. 3a also demonstrates that the agreement between αH (which again does not
depend on the mean gain m N ) and αGeom becomes increasingly poor with decreasing mean
gain values for αGeom .

When measurement noise is present, the approximating probability distribution of the
final data will be the convolution of the approximating distribution of Eq. 19 and a Gaussian
distribution. The resulting density function pθ,H R (Eq. 39) and the associated noise coeffi-
cient αH R (Eq. 40) are stated as Corollary 6 in the Appendix, where expressions pertaining
to standard geometric multiplication are also given.

The high gain approximation offers the important advantage of computational efficiency.
At least for the case of standard geometric multiplication, we have found that its associated
expressions can be evaluated in significantly less time than their exact counterparts in Sect. 4.
Importantly, as demonstrated above, they produce values which are similar to that of their
exact counterparts at high mean gain. In Sect. 6.2.2, we will make use of this approximation
when performing maximum likelihood estimations where the probability distribution of the
data is computed many times with different values of the estimated parameters.
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5.2 Gaussian approximation

In this section, we present a Gaussian approximation of the output of multiplication. Unlike
the high gain approximation, its applicability is not restricted to geometric multiplication. It
has been reported (e.g., Hynecek and Nishiwaki 2003; Basden et al. 2003) that given a large
initial particle count, the probability distribution of the output particle count Y of a branching
process can be approximated by a Gaussian distribution with the same mean and variance as
that of Y . For an N -stage branching process with a Poisson initial particle count probability
distribution and a general individual offspring count probability distribution (pk)k=0,1,...,
the mean and variance of the number of particles X N ,θ at its output are given in Table 1.
Taking this mean and variance to be that of a Gaussian random variable Xθ , the following
theorem gives the noise coefficient and the Fisher information matrix of the particle count
Zθ = Xθ + W , where W is a Gaussian random variable representing measurement noise. In
contrast to previous sections, here we are presenting the more general case first because the
case without measurement noise is a trivial special case of the more general result.

Theorem 6 Let Zθ = Xθ +W , where Xθ and W are Gaussian random variables that are sto-
chastically independent of each other, and W is not dependent on θ . Let Xθ have mean ηx,θ =
m N νθ and variance σ 2

x,θ = νθ

(
σ 2m N−1(m N −1)

m−1 + m2N
)

, where νθ > 0, m > 0, m �= 1,

σ 2 ≥ 0, and N ∈ {0, 1, . . .}. Let W have mean ηw and variance σ 2
w . Then the noise coeffi-

cient corresponding to the probability density function of Zθ , which is Gaussian with mean
ηz,θ = ηx,θ + ηw and variance σ 2

z,θ = σ 2
x,θ + σ 2

w, is given by

αGauss R = νθ ·

⎡
⎢⎢⎣
⎛
⎝νθ

⎛
⎝σ 2

(
1 − 1

m N

)
m(m − 1)

+ 1

⎞
⎠+ σ 2

w

m2N

⎞
⎠

−1

+ 1

2

⎛
⎜⎜⎝νθ + σ 2

wm−2N

σ 2
(

1− 1
m N

)
m(m−1)

+ 1

⎞
⎟⎟⎠

−2⎤
⎥⎥⎦,

(23)

and the Fisher information matrix of Zθ is IGauss R(θ) = αGauss R · IP (θ), with IP (θ) as
given in Eq. 2.

Proof By Definition 1,αGauss R is the product ofνθ and the Fisher information of the Gaussian
random variable Zθ with respect to νθ . The Fisher information of a Gaussian random variable
is well known (e.g., Kay 1993). For Zθ with mean ηz,θ and variance σ 2

z,θ , its Fisher informa-
tion with respect to νθ is

I(θ) = 1

σ 2
z,θ

(
∂ηz,θ

∂νθ

)2

+ 1

2σ 4
z,θ

(
∂σ 2

z,θ

∂νθ

)2

. (24)

By evaluating Eq. 24 and multiplying the result by νθ , we arrive at Eq. 23. ��
For the case where measurement noise is absent, the random variable Zθ of Theorem 6

reduces to the Gaussian random variable Xθ as defined in the theorem. By making this adjust-
ment in the proof of Theorem 6, one can easily verify the resulting noise coefficient to be,
for m > 0, m �= 1, and σ 2 ≥ 0,

αGauss =
⎛
⎝σ 2

(
1 − 1

m N

)
m(m − 1)

+ 1

⎞
⎠

−1

+ 1

2νθ

. (25)
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The Fisher information matrix of Xθ is then just IGauss(θ) = αGauss · IP (θ), with IP (θ) as
given in Eq. 2.

In electron multiplication literature (e.g., Matsuo et al. 1985; Hollenhorst 1990; Hynecek
and Nishiwaki 2003), the excess noise factor is defined as the ratio of the variance of the
output particle count of a multiplication process to the variance of the initial particle count,
normalized by the square of the mean gain. It is thus a measure of the increase in the stochas-

ticity of the data as a result of the multiplication. Interestingly, the expression σ 2(1−1/m N )
m(m−1)

+1
in Eqs. 23 and 25 is easily verifiable to be the excess noise factor for the case of a Poisson-
distributed initial particle count. We will revisit the excess noise factor later in this section.

By substituting m = 1
1−b and σ 2 = b

(1−b)2 for the standard geometric distribution into

the mean ηx,θ and the variance σ 2
x,θ of Xθ , the resulting Gaussian density function is plotted,

for a mean gain of m536 = 1015.46, as a blue curve in Fig. 2 for each of the six values of
the mean initial particle count νθ . We see that for small values of νθ , the Gaussian density
matches poorly with the probability mass function of Eq. 12 (◦). However, with increasing
values of νθ , the Gaussian density starts to coincide more and more with the mass function.
The same observation can be made with the noise coefficient αGauss of Eq. 25. Computed
for m = 1

1−b , σ 2 = b
(1−b)2 , and m536 = 1015.46, Fig. 3a shows that, for small values of

νθ , αGauss (blue curve) is in poor agreement with αGeom of Eq. 13 that has been computed for
the same mean gain (�). With increasing values of νθ , however, it becomes an increasingly
better match of αGeom . Hence, unlike the high gain approximation which applies for all val-
ues of νθ , the Gaussian approximation only applies for large νθ as indicated in Hynecek and
Nishiwaki (2003) and Basden et al. (2003). However, unlike the high gain approximation, the
Gaussian approximation also applies for low mean gain values. For example, Fig. 3a shows
that for a low mean gain of m536 = 4.98, αGauss (green curve) becomes an increasingly
better match of αGeom(�) with increasing values of νθ .

As is evident from Eq. 25 and its curves in Fig. 3a, the Gaussian approximation can pro-
duce noise coefficients that converge to infinity when νθ converges to 0. This might appear
to contradict Theorem 2, which states that the noise coefficient can be at most 1. However,
this is not the case since the Gaussian random variable does not fall under the category of
random variables to which the theorem applies. Specifically, it is not the sum of a random
function of a Poisson random variable and a scalar-valued random variable.

Besides being easy to compute, the expressions associated with the Gaussian approxima-
tion allow for relatively simple analytical studies. For example, it is easily verified that as
the mean gain m N converges to infinity in Eqs. 23 and 25, in both cases we obtain the same
noise coefficient

αGauss R = αGauss =
(

σ 2

m(m − 1)
+ 1

)−1

+ 1

2νθ

, m > 1. (26)

This shows that, in practice, we can drown out the measurement noise by using multiplication
with a large mean gain to amplify the signal. Furthermore, the dependence of the noise coef-
ficient on the inverse of νθ indicates that the high mean gain multiplication is more beneficial
when low signal levels are expected. This is consistent with what we observed from Fig. 3b.

Using mean m = 1
1−b and variance σ 2 = b

(1−b)2 for standard geometric multiplication,
Eq. 26 yields

αGauss R = αGauss = 1

2
+ 1

2νθ

. (27)
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The first summand in Eq. 27 is the inverse of the excess noise factor (see above) in the limit
that the mean gain converges to infinity. Therefore, in this limiting scenario, standard geo-
metric multiplication yields an excess noise factor of 2, indicating a two-fold increase in the
stochasticity of the data due to the amplification. Interestingly, for the Bernoulli multiplica-
tion model (see Sect. 1) which is commonly used to describe electron multiplication in an
EMCCD, the excess noise factor has been shown to also approach the value 2 as the mean
gain converges to infinity (e.g., Matsuo et al. 1985; Robbins and Hadwen 2003). However, the
convergence to 2 for Bernoulli multiplication is dependent on the probability of secondary
particle generation tending to 0.

If we further let the mean initial particle count νθ converge to infinity in Eq. 27, we obtain
αGauss R = αGauss = 0.5. This importantly suggests that when standard geometric multipli-
cation with a high mean gain is unnecessarily used to amplify an already large signal, the
Fisher information matrices IGauss R(θ) and IGauss(θ) will be no smaller than half of IP (θ)

of the ideal Poisson data scenario. This agrees with Figs. 3a and b, which suggest that αGeom

and αGeom R converge to 0.5 as the mean gain and νθ are increased.

6 Application to EMCCD imaging

When imaging with a CCD or an EMCCD, photons from the imaged object arrive, and hence
are detected, according to a Poisson process. In each pixel of the device, electrons accumulate
in proportion to the detected photons, and in the case of an EMCCD, are subsequently multi-
plied using a register consisting of several hundred stages. The readout process then converts
the electric charge to a digital count, during which time measurement noise is added. The
data in each pixel of a CCD (EMCCD) can therefore be modeled as a Poisson-distributed par-
ticle count (that is multiplied according to a branching process), plus a Gaussian-distributed
random variable that models the readout noise. As such, the Fisher information expressions
derived thus far will readily apply for a single CCD or EMCCD pixel. In this section, we first
build on our theory by deriving results pertaining to the Fisher information for a collection
of pixels (i.e., an image). We then give an example that applies the results to a concrete
estimation problem in single molecule microscopy.

6.1 Fisher information for an EMCCD image

An image acquired by a CCD or an EMCCD consists of a two-dimensional array of pixels.
Since the data in different pixels can be assumed to be independent measurements, the Fisher
information matrix for an image is the sum of the Fisher information matrices for its pixels.
For an image of K pixels, its Fisher information matrix is thus Iim(θ) = ∑K

k=1 Ik(θ), where
Ik(θ) is the Fisher information matrix for the kth pixel.

Moreover, since the theory from previous sections applies to the data in each pixel, we
can write Iim(θ) = ∑K

k=1 αk · IP,k(θ), where αk is the noise coefficient for the kth pixel,

and IP,k(θ) =
(

∂νθ,k
∂θ

)T ∂νθ,k
∂θ

· 1
νθ,k

is the Fisher information matrix for the kth pixel in the

ideal scenario where the data at that pixel is just the initial electron count which is Pois-
son-distributed with mean νθ,k . It follows that for the ideal K -pixel image, αk = 1 for
k = 1, . . . , K , and its Fisher information matrix is Iim,P (θ) = ∑K

k=1 IP,k(θ). We now give
an inequality which relates Iim(θ) for a practical image to Iim,P (θ) for its corresponding
ideal image.

123



Multidim Syst Sign Process (2012) 23:349–379 369

Theorem 7 Let Iim(θ) = ∑K
k=1 αk ·IP,k(θ), and let Iim,P (θ) = ∑K

k=1 IP,k(θ). Let αmin and
αmax denote, respectively, the smallest and the largest elements in the sequence (αk)k=1,...,K .
Then we have

αmin · Iim,P (θ) ≤ Iim(θ) ≤ αmax · Iim,P (θ).

Proof Let J = Iim(θ) − αmin · Iim,P (θ). Then for the left-hand side inequality, we need to
show that J ≥ 0. Writing out the matrices Iim(θ) and Iim,P (θ) explicitly as defined, we get

J =
K∑

k=1

αk · IP,k(θ) − αmin

K∑
k=1

IP,k(θ) =
K∑

k=1

(αk − αmin) · IP,k(θ).

Then, for any x ∈ R
n , where J is n × n, we have that

xT Jx =
K∑

k=1

xT [(αk − αmin) · IP,k(θ)
]

x =
K∑

k=1

(αk − αmin) · xT IP,k(θ)x ≥ 0.

Note that we have the inequality at the end since, for all k, (αk − αmin) ≥ 0 and xT IP,k(θ)x ≥
0. The latter is true because for each k, IP,k(θ) is a Fisher information matrix, and therefore
positive semidefinite. Since xT Jx ≥ 0 for all x ∈ R

n , we have that J ≥ 0. The proof for the
right-hand side inequality is analogous. ��

Theorem 7 is of importance in that it can be used to assess, in terms of the Fisher infor-
mation, how close a practical image is to its corresponding ideal image. If, for example, the
smallest noise coefficient for a practical image is close to 1, then the image contains nearly
the same amount of information about θ as the ideal image. On the other hand, if the larg-
est noise coefficient is small compared to 1, then the image contains very little information
about θ compared to the ideal image. In general, provided that suitable models are used to
compute Iim,P (θ) and the noise coefficients (αk)k=1,...,K , Theorem 7 can be used to obtain
a quantitative lower and upper bound of an image’s information content.

We now consider the case where the data in each pixel of a K -pixel EMCCD image
is modeled using the Gaussian approximation of Theorem 6. Specifically, we assume the
approximation of a standard geometric multiplication process with infinite mean gain, such
that the noise coefficient for each pixel is in the form of αGauss R of Eq. 27. For this special
scenario, we give a corollary which follows directly from Theorem 7.

Corollary 3 Let Iim,Gauss R(θ) = ∑K
k=1 αGauss R,k · IP,k(θ), where for k = 1, . . . , K ,

αGauss R,k = 1
2 + 1

2νθ,k
. Let Iim,P (θ) = ∑K

k=1 IP,k(θ), and let νθ,max and νθ,min denote,
respectively, the smallest and the largest elements in the sequence (νθ,k)k=1,...,K . Then we
have the inequality(

1

2
+ 1

2νθ,max

)
Iim,P (θ) ≤ Iim,Gauss R(θ) ≤

(
1

2
+ 1

2νθ,min

)
Iim,P (θ). (28)

Corollary 3 is a realization of Theorem 7 which, due to the simpler form of the noise coef-
ficient for the assumed conditions, gives an inequality that depends on just the maximum
and the minimum mean initial electron counts in the pixels comprising the image. Impor-
tantly, Eq. 28 shows that if we let νθ,k converge to infinity for all pixels k = 1, . . . , K , then
Iim,Gauss R(θ) = 1

2 Iim,P (θ). Practically, assuming that the data can be modeled using the
Gaussian approximation, this indicates that when standard geometric multiplication is used
at high mean gain to amplify an image with an already high signal level in every pixel, the
Fisher information of the amplified image will at worst be half of that of its corresponding
ideal image.
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6.2 Example: limit of the accuracy for localizing a point source

In this section, we apply our theory to an important estimation problem in single molecule
microscopy, namely the localization of a fluorescent molecule. We first compute and compare
the noise coefficients for three different data models of an image acquired of a single mol-
ecule. These data models consist of the ideal scenario of an image with Poisson-distributed
data, the practical scenario of a readout noise-corrupted CCD image, and the practical sce-
nario of a stochastically multiplied and readout noise-corrupted EMCCD image. We then
use the noise coefficients to compute Fisher information matrices for the estimation of the
location of the single molecule from its image. From the matrices, we readily obtain the
Cramer-Rao lower bound-based limits of the accuracy for the location estimation, which we
compare with the standard deviations of maximum likelihood location estimates obtained
with simulated image data sets. (For other studies involving point source parameter estima-
tion from EMCCD images, see, for example, DeSantis et al. (2010), Mortensen et al. (2010),
Quan et al. (2010), Thompson et al. (2010), and Wu et al. (2010).)

Note that in the material that follows, a standard geometric model of electron multiplica-
tion is assumed for the EMCCD. To perform the same analyses using a different model of
multiplication, the results presented in Sect. 3 for a general model of multiplication may be
used to obtain the necessary mathematical expressions.

6.2.1 Noise coefficient comparison

We consider the estimation of the location of an in-focus point source (e.g., single molecule)
from its image as observed through a fluorescence microscope and detected by a CCD or
EMCCD camera. For this problem, the mean of the Poisson-distributed photon count (or
equivalently, electron count) that is detected from the point source at the kth pixel of the
device can be shown to be

νθ,k = Nphoton

M2

∫
Ck

q(x/M − x0, y/M − y0)dxdy, (29)

where Nphoton is the expected number of photons detected from the point source, M is the
magnification of the microscope, Ck is the region in the xy-plane occupied by the pixel, x0

and y0 are the x and y coordinates of the point source in the object space where it resides, and
q is a function which describes the image formed from the detected photons. More specifi-
cally, q is called the “image function”, and gives the image at unit magnification of a point
source that is located at the origin of the object space coordinate system (Ram et al. 2006).
Equation 29 is a realization of a more general formula in Ram et al. (2006), as it assumes
the rate at which photons are detected from the point source to be a constant. In general, νθ,k

can also include as additional summands the means of Poisson-distributed components (e.g.,
photon count detected from something other than the point source) which are stochastically
independent of one another, and of the electron count due to the point source.

We assume that q is given by the Airy point spread function (Born and Wolf 1999), a
model which has classically been used to describe the image of an in-focus point source. The
Airy image function can be written as (Ram et al. 2006)

q(x, y) =
J 2

1

(
2πna

λ

√
x2 + y2

)
π
(
x2 + y2

) , (x, y) ∈ R
2, (30)
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Fig. 4 Noise coefficient (αR for a, αGeom R for b) profile for a a CCD image and b an EMCCD image of
an in-focus point source. The point source is assumed to emit photons of wavelength λ = 655 nm, which are
collected by an objective lens with magnification M = 100 and numerical aperture na = 1.3. The image of
the point source is given by the Airy image function, and is centered on an 11-by-11 array of 16μm by 16μm
pixels (i.e., x0 = y0 = 880 nm, assuming the upper left corner of the pixel array is (0, 0)). The expected
number of detected photons is set to Nphoton = 200, a reasonable number that could be detected from a single
fluorescent molecule. In a, readout noise with mean ηw = 0 e− and standard deviation σw = 8 e− is assumed
for every pixel. In b, the standard deviation is higher at σw = 24 e−, and standard geometric multiplication
with a mean gain of m536 = 1015.46 is assumed

where na is the numerical aperture of the objective lens, λ is the wavelength of the detected
photons, and J1 is the first order Bessel function of the first kind. The Airy image function
is circularly symmetric, with a strong central peak and ripples that increasingly diminish in
amplitude away from the center.

Noise coefficients are computed for an 11-by-11 pixel array (i.e., image), with the mean
initial electron count νθ,k (Eq. 29) at the kth pixel calculated with the point source attributes
and imaging parameters given in Fig. 4. Mirroring the shape of the Airy image function of
Eq. 30, and due to the centering of the point source image on the pixel array, the resulting
profile of νθ values over the pixel array is circularly symmetric, with the largest values in the
center region and a maximum value of 53.48 electrons at the center pixel.

For the ideal Poisson data model, the noise coefficient is, by definition, 1 for each pixel of
the image. For the two practical data models, the noise coefficients for all pixels in the image
are plotted in Fig. 4. For the CCD scenario, a Gaussian readout noise with mean ηw = 0 e−
and standard deviation σw = 8 e− in every pixel is assumed. The chosen standard deviation
represents a noise level that is typical of a CCD, and is the number specified, for example, for
the normal readout mode of our laboratory’s Hamamatsu C4742-95-12ER CCD camera. In
this case, Fig. 4a shows that αR of Eq. 5 is relatively small for every pixel. The center region
of the image has the largest αR values, with the center pixel having the maximum value of
only 0.456. This and the circular symmetry of the αR values correspond to the profile of
νθ values, which is in accordance with Fig. 1 showing the value of αR to be proportional
to the value of νθ . By Theorem 7, the maximum αR value of 0.456 implies that the Fisher
information for this scenario is less than half of that for the ideal scenario.

For the EMCCD scenario, standard geometric multiplication using a 536-stage register is
assumed. The mean gain is set to m536 = 1015.46, and a Gaussian readout noise with mean
ηw = 0 e− and standard deviation σw = 24 e− in every pixel is assumed. The higher readout
noise level of 24 e− is within the range of typical values for an EMCCD, and is representative
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of the noise level for the settings at which our laboratory’s Andor iXon EMCCD cameras are
often operated. In this case, Fig. 4b shows that the value of αGeom R of Eq. 38 is at least 0.5 in
every pixel. This demonstrates a significant increase in the information content of every pixel
due to the high mean gain multiplication. Moreover, the pixels in the center of the image have
αGeom R values that are closer to 0.5, while the rest have αGeom R values that are closer to 1.
This is in accordance with the curve with the same high mean gain in Fig. 3b which, though
shown for σw = 8 e−, indicates that the value of αGeom R decreases with increasing values
of νθ . The minimum αGeom R value in this case is 0.503, which implies, by Theorem 7, that
the Fisher information for this scenario is greater than half of that for the ideal scenario.

6.2.2 Limit of the localization accuracy comparison

To arrive at the limit of the localization accuracy for each data model, the estimated param-
eters are defined as the coordinates of the point source, i.e., θ = (x0, y0). Given θ and the
noise coefficients computed above, we readily obtain the Fisher information matrix for each
data model as described in Sect. 6.1. The limit of the localization accuracy for x0 (y0) is then
defined as the square root of the Cramer-Rao lower bound on the variance of the estimates
of x0 (y0), and is thus a lower bound on the standard deviation of any unbiased estimator of
x0 (y0). Due to the centering of the circularly symmetric Airy image function on a square
pixel array, the accuracy limits for x0 and y0 are the same. Hence, we give only a single limit
for each data model.

The limits of the localization accuracy for the three data models are shown in Table 2. As
expected, the ideal scenario of Poisson-distributed data has the best (i.e., the smallest) accu-
racy limit of 8.50 nm. In comparison, the CCD scenario has a significantly higher accuracy
limit of 21.14 nm due to the readout noise of standard deviation σw = 8 e− in every pixel. In
contrast, by using high mean gain multiplication to drown out the readout noise, the EMCCD
scenario has an accuracy limit of 11.58 nm that is only a little higher than that of the ideal
scenario. Note that this is despite a larger readout noise standard deviation of σw = 24 e−
per pixel, which for the CCD scenario would more than double its accuracy limit to 57.27
nm.

Table 2 also shows, for each data model, the mean and standard deviation of the estimates of
the x0 coordinate from maximum likelihood estimations carried out on 1000 simulated images
of the point source. The image simulation and the estimation are performed in MATLAB
(The MathWorks, Inc., Natick, MA). For an ideal image, the kth pixel value, with mean νθ,k

Table 2 Limits of the localization accuracy and results of maximum likelihood estimations for the ideal
Poisson-distributed data model and the practical CCD and EMCCD image models

Data No. of x0 True x0 (nm) Mean Limit of the Standard
model estimates of x0 localization deviation of x0

estimates (nm) accuracy (nm) estimates (nm)

Ideal 1000 880 880.16 8.50 8.69

CCD 998a 880 880.47 21.14 20.94

EMCCD 1000 880 879.74 11.58 11.75

Attributes of the imaged point source and all imaging-related parameters are as in Fig. 4. For each data model,
the positional coordinates (x0, y0) of the point source are estimated from 1000 simulated images, and the
results for x0 are shown
a Two outlier estimates which place the center of the point source’s image outside the pixel array have been
removed
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of Eq. 29, is generated using MATLAB’s poissrnd function. For a CCD image, the kth pixel
value is the sum of a similarly generated Poisson random number and a Gaussian random
number with mean 0 and standard deviation 8 generated using MATLAB’s randn function.
For an EMCCD image, the kth pixel value is the sum of a number generated from the stan-
dard geometric multiplication probability mass function of Eq. 12 (with mN = 1015.46 and
νθ = νθ,k) using the inverse transform method, and a Gaussian random number with mean
0 and standard deviation 24.

By the independence of the pixels, the log-likelihood function that is maximized for a
given image is the sum of the log-likelihood functions of its individual pixels. For an ideal
and a CCD image, the log-likelihood function of the kth pixel is the logarithm of, respectively,
the Poisson mass function with mean νθ,k of Eq. 29 and the density function given in the
statement of Corollary 2 with νθ = νθ,k, ηw = 0, and σw = 8. For an EMCCD image, the
kth pixel’s log-likelihood function is approximated by the density function of Eq. 41 with
m N = 1015.46, νθ = νθ,k, ηw = 0, and σw = 24. The high gain approximation is used
(as opposed to the standard geometric multiplication density function of Eq. 37) because it
computes significantly faster while, as the results will show, retaining reasonable accuracy. In
all cases, the maximization is realized by minimizing the negative of the log-likelihood func-
tion using MATLAB’s fminunc function. Also, initial estimates for x0 and y0 are randomly
generated per image to be within 20% of the true value of 880 nm.

For each data scenario, Table 2 shows that the standard deviation of the maximum like-
lihood estimates of x0 comes reasonably close to the corresponding limit of the localization
accuracy. In each case, the mean of the estimates also recovers reasonably closely the true
value of x0. (For the results of maximum likelihood estimations performed on additional
simulated EMCCD data sets that differ in the expected number of detected photons Nphoton ,
see Table 3 in the Appendix. As in the case of the results of Table 2, the mean values and the
standard deviations of the x0 estimates of these data sets reasonably recover, respectively,
the true value of x0 and their corresponding limits of the localization accuracy.)

7 Conclusion

We have derived various Fisher information expressions pertaining to data that can be
described as the output of a branching process with potentially added measurement noise.
All expressions assume a Poisson-distributed initial signal which is characteristic of many
physical processes. General expressions which make no assumptions about the model of
signal amplification allow the straightforward derivation of specific expressions once the
probability distribution of the amplified signal is known. On the other hand, specific results
which assume the geometric model of amplification can readily be applied to, for exam-
ple, imaging with an EMCCD. Meanwhile, expressions based on two approximations of an
amplified signal offer computational efficiency and/or ease of analysis. Throughout the pre-
sentation, illustration and comparison of different data models have been performed using a
noise coefficient that has been defined based on the common form taken by the data mod-
els. As demonstrated with a point source localization example, the developed theory has
applications in the Fisher information analysis of practically important problems.
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Appendix

Proof of Corollary 2: Since pθ,R is parameterized by θ through νθ , by Theorem 1 IR(θ)

takes the form of Eq. 1. To prove the result, we need only evaluate the expectation term of
Eq. 1 with pθ = pθ,R :
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√
2πσw

∞∑
j=1

ν
j−1
θ

( j − 1)!e
− 1

2

(
z− j−ηw

σw

)2
⎞
⎠

2

dz

− 2 · e−νθ

√
2πσw

∞∑
j=1

⎛
⎝ ν

j−1
θ

( j − 1)!
∞∫

−∞
e
− 1

2

(
z− j−ηw

σw

)2

dz

⎞
⎠+ 1

=
∞∫

−∞

1

pθ,R(z)

⎛
⎝ e−νθ

√
2πσw

∞∑
j=1

ν
j−1
θ

( j − 1)!e
− 1

2

(
z− j−ηw

σw

)2
⎞
⎠

2

dz − 1. ��

Corollary 4 Let Zθ = X N ,θ + W , where X N ,θ is as defined in Theorem 3, and W is a
Gaussian random variable with mean ηw and variance σ 2

w . Let X N ,θ and W be stochasti-
cally independent of each other, and let W be not dependent on θ .

1. The probability distribution of Zθ is given by the probability density function

pθ,M R(z) = 1√
2πσw

∞∑
l=0

e
−
(

z−l−ηw√
2σw

)2
⎡
⎣ ∞∑

j=0

P(X N ,θ = l|X0,θ = j) · e−νθ ν
j
θ

j !

⎤
⎦, z ∈ R.

(31)

2. The noise coefficient corresponding to the probability density pθ,M R is given by

αM R =
∞∫

−∞

νθ · e−2νθ

pθ,M R(z)

⎛
⎜⎝

∞∑
l=0

e
−
(

z−l−ηw√
2σw

)2

√
2πσw

∞∑
j=1

P(X N ,θ = l|X0,θ = j) · ν
j−1
θ

( j − 1)!

⎞
⎟⎠

2

dz − νθ .

(32)

The Fisher information matrix of Zθ is given by IM R(θ) = αM R · IP (θ), with IP (θ) as
given in Eq. 2.
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Proof of Theorem 4 1. Let f be the probability generating function of the zero modified
geometric distribution (pk)k=0,1,... of Eq. 9. By the definition of the generating function,
for s ∈ C and |s| ≤ 1,

f (s) =
∞∑

k=0

pksk = p0s0 +
∞∑

k=1

pksk = a +
∞∑

k=1

(1 − a)(1 − b)bk−1sk

= a − (a − (1 − b))s

1 − bs
.

Given an N -stage branching process with initial particle count 1 (i.e., U = 1 in Def-
inition 2) and an individual offspring count probability distribution (pk)k=0,1,..., the
probability generating function of the probability distribution of the particle count X N ,θ

at the output of the branching process is well known to be the N th iterate of the prob-
ability generating function of (pk)k=0,1,... (e.g., Harris 1963; Athreya and Ney 2004;
Grimmett and Stirzaker 2001). Denoted by fN (s), the N th iterate of f (s) can be shown
by induction to be, for m = 1−a

1−b �= 1,

fN (s) = 1 − (1 − a)(m − 1)mN (1 − s)

b(m N − 1)m(1 − s) + (1 − a)(m − 1)
, N = 0, 1, . . . , s ∈ C, |s| ≤ 1.

(33)

According to Definition 2, each initial particle of a branching process multiplies inde-
pendently of the other initial particles, but according to a common stochastic model.
Therefore, if the initial particle count is a positive integer j , then the probability mass
function of the output particle count X N ,θ will be the j-fold convolution of, in this case,
the probability mass function corresponding to Eq. 33 with itself. By a well known result
from the theory of generating functions, the generating function of X N ,θ is then just
[ fN (s)] j (e.g., Grimmett and Stirzaker 2001).
Using this generating function, the conditional probability that the output particle count
X N ,θ = x given j ∈ {1, 2, . . .} initial particles can be obtained based on the definition
of the generating function. For x = 0, it is given by [ fN (s)] j evaluated at s = 0, and for
x = 1, 2, . . ., it is given by the x th derivative of [ fN (s)] j evaluated at s = 0 and divided
by x ! (e.g., Grimmett and Stirzaker 2001). This can be shown to yield, for A, B, C , and
D as given for Eq. 10,

P(X N ,θ = x |X0,θ = j)

=

⎧⎪⎨
⎪⎩
[
1 − A

B

] j
, x = 0,∑x−1

l=0
(x−1

l )Cx−1−l Dl+1

(l+1)!Bx+l+1
∂l+1

∂
(

1− A
B

)l+1

([
1 − A

B

] j
)

, x = 1, 2, . . . .

(34)

Note that Eq. 34 also applies for j = 0, since P(X N ,θ = x |X0,θ = 0) is 1 for x = 0, and
is 0 otherwise. Finally, for an initial particle count that is Poisson-distributed with mean
νθ , using the conditional mass function of Eq. 34 in the general expression of Eq. 7 gives
the desired probability mass function of X N ,θ .

2. The noise coefficient αGeom follows by substituting Eqs. 34 and 10 into Eq. 8 and simpli-
fying. The Fisher information matrix IGeom(θ) then follows directly from Definition 1.

��
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Corollary 5 Let Zθ = X N ,θ + W , where X N ,θ is as defined in Theorem 4, and W is a
Gaussian random variable with mean ηw and variance σ 2

w . Let X N ,θ and W be stochasti-
cally independent of each other, and let W be not dependent on θ .

1. The probability density function of Zθ is, for z ∈ R, given by

pθ,Geom R(z) = e−νθ
A
B√

2πσw

⎡
⎣e

−
(

z−ηw√
2σw

)2

+
∞∑

l=1

e
−
(

z−l−ηw√
2σw

)2 l−1∑
j=0

(l−1
j

)
Cl−1− j (Dνθ )

j+1

( j + 1)!B j+l+1

⎤
⎦ .

(35)

2. The noise coefficient corresponding to the probability density pθ,Geom R is given by

αGeom R =
∞∫

−∞

νθ D2e−2νθ
A
B

pθ,Geom R(z)

⎛
⎜⎝

∞∑
l=1

e
−
(

z−l−ηw√
2σw

)2

√
2πσw

l−1∑
j=0

(l−1
j

)
Cl−1− j

j !B j+l+1 (Dνθ)
− j

⎞
⎟⎠

2

dz − νθ

A2

B2 .

(36)

The Fisher information matrix of Zθ is IGeom R(θ) = αGeom R ·IP (θ), with IP (θ) as given
in Eq. 2.

For standard geometric multiplication, setting a = 0 in Eqs. 35 and 36 yields, for m = 1
1−b ,

pθ,Geom R(z) = e−νθ

√
2πσw

[
e
−
(

z−ηw√
2σw

)2

+
∞∑

l=1

e
−
(

z−l−ηw√
2σw

)2

×
l−1∑
j=0

(l−1
j

) (
1 − 1

m N

)l− j−1

( j + 1)!
(

m N

νθ

) j+1

⎤
⎥⎦ , z ∈ R, (37)

αGeom R =
∞∫

−∞

νθ · e−2νθ

pθ,Geom R(z)

⎛
⎜⎝

∞∑
l=1

e
−
(

z−l−ηw√
2σw

)2

√
2πσwm N

l−1∑
j=0

(l−1
j

) (
1 − 1

m N

)l− j−1

j !
(

m N

νθ

) j

⎞
⎟⎠

2

dz − νθ .

(38)

Corollary 6 Let Zθ = Xθ + W , where Xθ is as defined in Theorem 5, and W is a Gaussian
random variable with mean ηw and variance σ 2

w. Let Xθ and W be stochastically independent
of each other, and let W be not dependent on θ .

1. The probability density function of Zθ is, for 0 ≤ a < b < 1 and m = 1−a
1−b ,

pθ,H R(z) = 1√
2πσw

⎡
⎢⎣e

−
(

z−ηw√
2σw

)2

eνθ (1− a
b )

+
(
1 − a

b

)2
m N

×
∞∫

0

e
−
(

z−u−ηw√
2σw

)2

e(
1− a

b )
u

m N +νθ

∞∑
j=1

ν
j
θ

( j − 1)!
j−1∑
k=0

( j−1
k

) ( a
b

) j−k−1

(k + 1)!
((

1 − a
b

)2 u
m N

)−k
du

⎤
⎥⎦ .

(39)
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Table 3 Limits of the localization accuracy and results of maximum likelihood estimations for four simulated
data sets of the EMCCD image model

Expected True Mean Limit of the Standard Ideal limit of CCD limit of
photon count x0 (nm) of x0 localization deviation of x0 the localization the localization
Nphoton estimates (nm) accuracy (nm) estimates (nm) accuracy (nm) accuracy (nm)

150 880 879.56 13.28 13.19 9.82 27.44

100 880 879.80 16.07 16.18 12.02 39.99

50 880 880.45 21.98 22.23 17.00 77.53

25 880 879.35 29.61 31.32 24.04 152.53

Except for the expected number of detected photons Nphoton , for each data set the attributes of the imaged
point source and all imaging-related parameters are as in Fig. 4b. For each data set, the positional coordinates
(x0, y0) of the point source are estimated from 1000 simulated images, and the results obtained from the 1000
x0 estimates are shown. In addition, limits of the localization accuracy for the corresponding ideal Poisson-
distributed data model and CCD image model (with readout noise parameters as given in Fig. 4a) are provided
for comparison

2. The noise coefficient corresponding to the probability density pθ,H R is given by

αH R =
∞∫

−∞

νθ

2πσ 2
w · pθ,H R(z)

⎛
⎜⎝a · e

−
(

z−ηw√
2σw

)2

b · eνθ (1− a
b )

+
(
1 − a

b

)2
m N

×
∞∫

0

e
−
(

z−u−ηw√
2σw

)2

e(
1− a

b )
u

m N +νθ

∞∑
j=1

jν j−1
θ

( j − 1)!
j−1∑
k=0

( j−1
k

) ( a
b

) j−k−1

(k + 1)!
((

1 − a
b

)2 u
m N

)−k
du

⎞
⎟⎠

2

dz − νθ .

(40)

The Fisher information matrix of Zθ is given by IH R(θ) = αH R · IP (θ), where IP (θ) is
as in Eq. 2.

To approximate standard geometric multiplication, setting a = 0 in Eqs. 39 and 40 yields,
for m = 1

1−b , 0 < b < 1,

pθ,H R(z) = e−νθ√
2πσw

⎡
⎢⎣e

−
(

z−ηw√
2σw

)2

+
∞∫

0

e
−
(

z−u−ηw√
2σw

)2
− u

m N

√
νθ u
m N I1

(
2
√

νθ u
m N

)
u

du

⎤
⎥⎦ , z ∈ R, (41)

αH R = νθ ·

⎡
⎢⎢⎣

∞∫
−∞

1

pθ,H R(z)

⎛
⎜⎝ e−νθ√

2πσw

∞∫
0

e
− 1

2

(
z−u−ηw

σw

)2− u
m N

m N
I0

(
2

√
νθ u

m N

)
du

⎞
⎟⎠

2

dz − 1

⎤
⎥⎥⎦ .

(42)
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