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ABSTRACT one for each type of molecule. The two types of molecule are

. . . . N imaged separately, but simultaneously using a pair of dilter
This paper is concerned with assessing localization eerors ; . T
suitable for the fluorescents. A pair of monochromatic im-

anating from the image registration of two monochromatic . . .
) . ; ' ages are formed. It is often the case that the pair of images
fluorescence microscopy images. Assuming an affine trans- : :
: . . A o can not be considered to use the same coordinate system and

form exists between images, registration in this settinmg-ty

cally involves using control points to solve a multivariéite the goal is to register the images so that the positions of the

X ) : molecules can be viewed in unison, e.g. [3]. To do so we
ear regression problem; however with measurement errers ex

isting in both sets of variables the use of linear least segiar Consider an image to be a subset of the siRiceSuppose we

inappropriate. It is shown that image registration is anrser have two imagest, andZ,, say, and there is some mapping

in-variable problem and as such the correct method is to usjé + 1y — T, between the pair of images; the type of mapping

generalized least squares. Traditionally this requiresnba- assumed here is aifine transformation

surement errors to be independent and identically diggibu AN affine transformation between two vector spaces is a
(id); an assumption that is rarely satisfied in practical si linear transformation followed by a translation. When both

d . Td d; 7 i i
uations. An extension of the multivariate generalized tieasVeCtor spaces aie” thenT : R® — R is affine if there exists
R* (the linear transformation),

squares estimator that allows non-iid noise is applied. Th& matrix parameter < . _
distributional properties of the estimators are used tiveer 2nd a(;/ector parameterc R® (the translation) such that for
localization errors emanating from the image registragian ¢ € R% T": @ — Az + t. In this situation we are concerned

cess in terms of photon counts and experimental parameter¥/ith the casel = 2.
In practice the affine transformation that exists between a

pair of images is not known and needs to be estimated exper-
imentally. To do this it is necessary to have points of refer-
ence (control points) visible in both images. In fluoreseenc
1. INTRODUCTION microscopy this is achieved through fiduciary markers such
as small but bright fluorescent beads [2]. These objects emit
In its most general form, image registration is the procéss qhotons across the visible spectrum resulting in them being
transforming different data sets into a single coordingt s observed through both filters and appearing in both images.
tem. Itis of use in areas as diverse as computer vision,ttarge - gypposek” control points are located iff; at true lo-
trackmg, medlcgl imaging and in fluorescence MICroSCOPY, tions {xg)’k — 1,..,K}, and inZ, at true locations
the setting for this paper. (2) 2) ) )
Recent advances in fluorescence microscopy have madelits - & =1,... K}, suchthatr,™ = T(z) ") = Az " +1.

possible to detect single molecules in a cellular enviramme In rleallt)(/j the p93|t|ondoLthese bea%s cce:mnot be kTOV\;]n ex-
e.g. [1]. Atypical goal of a fluorescence microscopy experi—aCt yd{:m ‘ must mstte; t? mEasured. b f_ns?qugnty;be true
mental set-up is to observe the relative positions of a celle coordinates are not directly observed, but instead we weser

tion of two different protein molecules, for example to Seecoordinates that have been perturbed by some random addi-

) : ; ; ; (1) 4. _
whether they colocalize e.g. [2]. Two different fluoreseent t|ve2n0|se. That is to say we obser{ig, ", k = 1, ..., K'} and
that emit at different wavelengths are used to tag the prstei {y\>),k = 1, ..., K](» _\)/vherey,(j) =20 4D k=1, K,
C j 5
Supported in part by the National Institute of Health graf?1R j=12 Whereg’f € R_ is a random vector kn_own as
GMO085575. the measurement error with zero mean and covamiliﬁ)e

Index Terms— Image registration, Microscopy, Total
least squares methods




Through the work of Ober and Ram [4] [5], in practice columns ofX (") are known as thindependenvariables and
it is possible to determine the error covariance matriceshe columns ofX(?) are thedependenvariables. Linear re-
(=M k = 1,.,K} and {£*,k = 1,..,K}, with de-  gression problems where both the independent and dependent
pendency on the microscopy set up and the intensity of theariables contain measurement errors are knoverrass-in-
objects being imaged. It is assumed throughout this pavariable (EIV) models. LetE) denote theith column of £,
per that the localization errors are normally distributéthw then £y is 4-D multivariate normally distributed with mean
mean zero [6] [7]. zero and covariance

Given that we are able to construct estimatdrand ¢
of the transformation parametedsandt, registration of the
two images can commence. In the molecular fluorescence

microscopy setting we observe a molecul&jmt pomty( )

Whereyé ) = (1) + e(l) (again the covariance @ﬁ is es- for which we write d N2 (0,%).

timable from [4]). z$ is the true positional vector of the

molecule. We estimate its new coordinate (the registered po

sition) in Z, as Ay( ) +i A key question is; what is the 2.1. Image registration error

error associated with the registered positio@4f? Or equiv-

alently to determine the covariance of the image registnati Suppose we image a moleculeZinwith true pOSIUOﬂrg Ve

S =

sV o
0o =@

error (IRE) Z:. The true position of the molecule i, a:a € o will be
Vg = x@) - Ayél) —t, related tOxa 2 by the same affine transform, nameﬂﬁf)
M — 4 (D
wherez® = Az 4 ¢, Az + . Let Yo + ea be the measured position of

In Section 2 we formulate the image registration problenthe molecule ir;, wheree! £ Ny (0,£).
and show that parameter estimation is consistent with a mul-
tivariate errors-in-variable framework. This is followsy  Definition 2.1. The image registration error (IREy, =
a discussion on the image registration error. In Sectiona3 is [Va,1,Va,2)" associated with registering the moleculeZinis
discussion on the distributional properties of the measere ~ defined as
errors. Traditional linear least squares methods are thiase = x( Ay( ) _ 2)
errors-in-variable models so it is necessary to use thergene
alized least squares method to estimate the affine transforwhere A and{ are estimators of the matrid and vectort,
parameters. These estimators and their associated distritrespectively.
tional properties are presented in Section 4 and are used to

determine the image registration error in Section 5. Let us define the difference between the true and esti-
mated values of the transform parametergfdas = A — A
2. THE IMAGE REGISTRATION PROBLEM andAt = ¢ —t. It can be shown that
We define the followingR?** matrices forj = 1,2 ve = —Ael) — At — AAz() — AAel),
X0 = [mgj), _._’w%)] and hence
vo = [y ] E{va} = —B{At} — E{AA}2D),
O = [0 W _ _
= 1o tK | where E{-} is the expectation operator. Letv{v} denote

the covariance matrix of a vector
and further define thR**X matrices
¥ v Joh Lemma 2.2. If A and# are unbiased estimators aﬁl) is
[ Y@ } = { V(@) ] = [ 5 } independent of bothh A and At, thenE{v,} = 0 and

With this notation the system of equations can be conve- cov{v,} = ASM AT+ E{(At+AAz())(At+A Az T}
niently represented as the single matrix equation + E{AADDTAATY, (3)

Y =alk + AXY + E, (1)
To derive an expression for the second order moments of
wherea = [07,t7]7, A = [I,, AT]T and1k is a column the IRE it is necessary to understand the distributiongb{ro
vector of lengthK with every element taking the valde The  erties of the estimator& A and At.



3. MEASUREMENT ERRORS wherev, = y\? —t— Ay, & = US UT andU = [~ A, L.
In the statistics literature, the values#fandt that minimize
In [4] detailed analytical expressions for the localizat&c- ;- are known as theeneralized least squaré6LS) estima-
curacy of a light emitting point source in a microscopy imag-tors [8]. In the engineering and numerical analysis litemat
ing experiment are derived allowing reliable estimateshef t total least square§TLS) is the common approach where a
covariance matrices for the measurement errors. The &@ram different minimization problem is solved. Both estimatars
Rao lower bound (CRLB) theorem states: identical to one another. Here we generalize (4) for the case

. . . . where th lumn no longer have common covariance.
Theorem 3.1. The covariance matrix of any unbiased esti- ere the columns o7 no longer have common covariance

mator § of an unknown vector parametéris bounded from Definition 4.1. The generalized least squares estimatdrs
below by the inverse of the Fisher information matfi¥), = andt are the values ofA and¢, respectively, that minimize

i.e.cov(d) > I71(9). the weighted residual sum of squares
For the purposes of this paper we assume that the CRLB - EK: To- 1y )
is attained. We consider the most general and suitable oase f a P k5K Tk

application purposes, whereby the object being imagedsemit .
photons as a Poisson process, and there is an additional ba¥¥here®, = UL, U".

ground Poisson noise process and Gaussian read out noise. consider the multivariate EIV model (1), where the co-
Typically the beads have large photon emission rates in coMpriance ofE, is given by the SPD matriX,, = nkYo where
parison to the background and readout noise processes. (Ip/K) fol 77;;1 = 1. For the estimators that minimize (5)
such circumstances the Fisher information matrix for the esgng their a_ssymptotic statistical properties we state thevie
timator of the location parametér= ér?é;)) of an(;;bject ining two theorems. They are given full treatment in [9].
Z; can be considered to be of the fo = NZV) where i o K 1
N € Z* is the photon count associated with the imaged ob- "€0rem A;Z' Define the matn)SK: (115() A
jectandz() is aR?*2 symmetric positive definite (SPD) ma- ¥)(vx — )" wherey = (1/K) 3, ;. "yx- By considering
trix of known form. Vv ZGD_GT, the glgenvalue decomposition of mathix=
The photon count associated with thth bead inZ; is >0 V;'th DT: diag{dy, d, d3, ds} Whered, > ... > dy
labeledN”. The noise terms\’), k = 1,... K, j = 1,2, andGGT = G7G = Iy, then by making the partition

have covarianc&!’) = (1/N)S9) whereS{) = z()-1 = [ G G } ,

is a SPD matrix and universal for all imaged pointsZin Ga1 Gu

We now make the assumption that there is a linear relatiofhe GLS estimator ofl and¢ are given as

between the brightness of the bead in each image, i.e. a bead

thatis bright inZ; is also bright inZ,. Mathematically we say A= GGl
(2) (1) ; = G211l

N, =cN, 7 forallk =1,..., K, wherec > 0 is a constant

of proportionality, universal for all control points. Wefde _ K LW

NO = (1/K) Zszl N,ij), andzgj) — (1/N(j))iéj)' for  Theorem 4.3. DefineR? vecﬁora} = (11/K1) ;kzlnk‘ x,7,

j=1,2, thenN® = ¢N and we have the situation where R** matrix = = (1/K) Y1, 7 'z 2", matrix v =

the covariance of the measurement errors are scalar nesltipl= — 227 and matrix® = U=1(ATS 7 A) 1o~ + ¥,

K

t= nk_lUyk..
k=1

of a common matrix, i.e. then we have the following identities
s cov{Aty,, At,} = K '(1+z20z") 2, (6)
Xk = M 0 xn® cov{At;, Aap,y = K 10,0, @)
0
cov{Atmn, Ay = K 10 @ (8)

wheren, = NO /N ands{V ands!? are known.
5. IMAGE REGISTRATION ERROR ANALYSIS

4. GENERALIZED LEAST SQUARES WITH

COVARIANCE WEIGHTING We now consider the asymptotic form of the IRE covariance

matrix. Consider a molecule Iy, at pointy.", wherey'" =

Given the columns oF are iid with common covariancg, xf,,l) + ef,,l) with the measurement error having covariabze
say, EIV models of type (1) are traditionally solved by mini- estimable from [4], and:\") being the true positional vector.
mizing the normalized residual sum of squares We estimate its new coordinate (the registered positiof} in
K as Ay{" + #. The IRE is defined in (2) and its covariance
= Z T3y, (4) matrix given in (3). T_he individual elements afv{v,} can
Pt now be calculated using (6), (7) and (8).



5.1. Approximating the image registration error

6. CONCLUSION

Let us consider some simplifying assumptions. It is COMyyhen the control points have measurement error covariances
mon that the control points (beads) are randomly scatteregat are known and some scalar multiple of a common SPD
throughout the image and as such we will model their locamarix| then the second order moments of the IRE have been
derived. For microscopy applications we have shown there
exists inverse dependencies on the mean photon counts of
the control points, however there remains a theoreticaéfow
bound to the variance or the IRE in either dimensiomgtr2.
Examples and simulations are found in [9].

tion as a 2-D Gaussian distribution.

Lemma 5.1. Let control point positions{x](:), k=1,..,K}
be K realizations of a random variablg’ = [X}, X5]T € R?
where

X L Ny(p,T0),

then asymptoticallg = p and ¥ = II.

5.2. Assumptions

1. Consider the positionﬁr,ﬁl),k =1,.,K}tobeK
realizations of a random variabké = [, X»]T € R?
where

X L Ny (0, 521,).
From Lemma 5.1 we have = 0 and¥ = x215.

2. The affine transformation parametérepresents a ro-
tation R combined with a magnificatiod/. Conse-
quently A would be of the formM R where RRT =
RTR =1 andM = mls.

3. We model the measurement erroria,si N4(0,%g)

where
_ND /20
o N]gl) 0 U%IQ

2
_ 017k‘[2 0
Ek a ( 0 O'S’klg )
with the normalized variance ternﬁ inversely pro-
portional to the mean photon count! = () /N,

(1]

(2]

(3]

(4]
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