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ABSTRACT

This paper is concerned with assessing localization errorsem-
anating from the image registration of two monochromatic
fluorescence microscopy images. Assuming an affine trans-
form exists between images, registration in this setting typi-
cally involves using control points to solve a multivariatelin-
ear regression problem; however with measurement errors ex-
isting in both sets of variables the use of linear least squares is
inappropriate. It is shown that image registration is an errors-
in-variable problem and as such the correct method is to use
generalized least squares. Traditionally this requires the mea-
surement errors to be independent and identically distributed
(iid); an assumption that is rarely satisfied in practical sit-
uations. An extension of the multivariate generalized least
squares estimator that allows non-iid noise is applied. The
distributional properties of the estimators are used to derive
localization errors emanating from the image registrationpro-
cess in terms of photon counts and experimental parameters.

Index Terms— Image registration, Microscopy, Total
least squares methods

1. INTRODUCTION

In its most general form, image registration is the process of
transforming different data sets into a single coordinate sys-
tem. It is of use in areas as diverse as computer vision, target
tracking, medical imaging and in fluorescence microscopy,
the setting for this paper.

Recent advances in fluorescence microscopy have made it
possible to detect single molecules in a cellular environment,
e.g. [1]. A typical goal of a fluorescence microscopy experi-
mental set-up is to observe the relative positions of a collec-
tion of two different protein molecules, for example to see
whether they colocalize e.g. [2]. Two different fluorescents
that emit at different wavelengths are used to tag the proteins,
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one for each type of molecule. The two types of molecule are
imaged separately, but simultaneously using a pair of filters
suitable for the fluorescents. A pair of monochromatic im-
ages are formed. It is often the case that the pair of images
can not be considered to use the same coordinate system and
the goal is to register the images so that the positions of the
molecules can be viewed in unison, e.g. [3]. To do so we
consider an image to be a subset of the spaceR

2. Suppose we
have two images,I1 andI2, say, and there is some mapping
T : I1 → I2 between the pair of images; the type of mapping
assumed here is anaffine transformation.

An affine transformation between two vector spaces is a
linear transformation followed by a translation. When both
vector spaces areRd thenT : Rd → R

d is affine if there exists
a matrix parameterA ∈ R

d×d (the linear transformation),
and a vector parametert ∈ R

d (the translation) such that for
x ∈ R

d, T : x → Ax + t. In this situation we are concerned
with the cased = 2.

In practice the affine transformation that exists between a
pair of images is not known and needs to be estimated exper-
imentally. To do this it is necessary to have points of refer-
ence (control points) visible in both images. In fluorescence
microscopy this is achieved through fiduciary markers such
as small but bright fluorescent beads [2]. These objects emit
photons across the visible spectrum resulting in them being
observed through both filters and appearing in both images.

SupposeK control points are located inI1 at true lo-
cations{x(1)

k , k = 1, ...,K}, and in I2 at true locations

{x
(2)
k , k = 1, ...,K}, such thatx(2)

k = T (x
(1)
k ) = Ax

(1)
k + t.

In reality the position of these beads cannot be known ex-
actly and must instead be measured. Consequently the true
coordinates are not directly observed, but instead we observe
coordinates that have been perturbed by some random addi-
tive noise. That is to say we observe{y(1)k , k = 1, ...,K} and

{y
(2)
k , k = 1, ...,K} wherey(j)k = x

(j)
k + ǫ

(j)
k , k = 1, ...,K,

j = 1, 2, whereǫ(j)k ∈ R
2 is a random vector known as

the measurement error with zero mean and covarianceΣ
(j)
k .



Through the work of Ober and Ram [4] [5], in practice
it is possible to determine the error covariance matrices
{Σ

(1)
k , k = 1, ...,K} and {Σ

(2)
k , k = 1, ...,K}, with de-

pendency on the microscopy set up and the intensity of the
objects being imaged. It is assumed throughout this pa-
per that the localization errors are normally distributed with
mean zero [6] [7].

Given that we are able to construct estimatorsÂ and t̂
of the transformation parametersA andt, registration of the
two images can commence. In the molecular fluorescence
microscopy setting we observe a molecule inI1 at pointy(1)a ,
wherey(1)a = x

(1)
a + ǫ

(1)
a (again the covariance ofǫ(1)a is es-

timable from [4]). x
(1)
a is the true positional vector of the

molecule. We estimate its new coordinate (the registered po-
sition) in I2 as Ây(1)a + t̂. A key question is; what is the
error associated with the registered position inI2? Or equiv-
alently to determine the covariance of the image registration
error (IRE)

νa ≡ x(2)
a − Ây(1)a − t̂,

wherex(2)
a = Ax

(1)
a + t.

In Section 2 we formulate the image registration problem
and show that parameter estimation is consistent with a mul-
tivariate errors-in-variable framework. This is followedby
a discussion on the image registration error. In Section 3 isa
discussion on the distributional properties of the measurement
errors. Traditional linear least squares methods are biased for
errors-in-variable models so it is necessary to use the gener-
alized least squares method to estimate the affine transform
parameters. These estimators and their associated distribu-
tional properties are presented in Section 4 and are used to
determine the image registration error in Section 5.

2. THE IMAGE REGISTRATION PROBLEM

We define the followingR2×K matrices forj = 1, 2

X(j) ≡
[

x
(j)
1 , ..., x

(j)
K

]

Y (j) ≡
[

y
(j)
1 , ..., y

(j)
K

]

E(j) ≡
[

ǫ
(j)
1 , ..., ǫ

(j)
K

]

,

and further define theR4×K matrices

X =

[

X(1)

X(2)

]

, Y =

[

Y (1)

Y (2)

]

, E =

[

E(1)

E(2)

]

.

With this notation the system of equations can be conve-
niently represented as the single matrix equation

Y = α1T
K + ΛX(1) + E, (1)

whereα = [0T , tT ]T , Λ = [I2, A
T ]T and1K is a column

vector of lengthK with every element taking the value1. The

columns ofX(1) are known as theindependentvariables and
the columns ofX(2) are thedependentvariables. Linear re-
gression problems where both the independent and dependent
variables contain measurement errors are known aserrors-in-
variable (EIV) models. LetEk denote thekth column ofE,
thenEk is 4-D multivariate normally distributed with mean
zero and covariance

Σk =

[

Σ
(1)
k 0

0 Σ
(2)
k

]

,

for which we writeEk
d
= N2(0,Σk).

2.1. Image registration error

Suppose we image a molecule inI1 with true positionx(1)
a ∈

I1. The true position of the molecule inI2, x(2)
a ∈ I2 will be

related tox(1)
a by the same affine transform, namelyx(2)

a =

Ax
(1)
a + t. Let y(1)a = x

(1)
a + ǫ

(1)
a be the measured position of

the molecule inI1, whereǫ(1)a
d
= N2(0,Σ

(1)
a ).

Definition 2.1. The image registration error (IRE)νa =
[νa,1, νa,2]

T associated with registering the molecule inI2 is
defined as

νa ≡ x(2)
a − Ây(1)a − t̂, (2)

whereÂ and t̂ are estimators of the matrixA and vectort,
respectively.

Let us define the difference between the true and esti-
mated values of the transform parameters as∆A ≡ Â − A
and∆t ≡ t̂− t. It can be shown that

νa = −Aǫ(1)a −∆t−∆Ax(1)
a −∆Aǫ(1)a ,

and hence

E{νa} = −E{∆t} − E{∆A}x(1)
a ,

whereE{·} is the expectation operator. Letcov{v} denote
the covariance matrix of a vectorv.

Lemma 2.2. If Â and t̂ are unbiased estimators andǫ(1)a is
independent of both∆A and∆t, thenE{νa} = 0 and

cov{νa} = AΣ(1)
a AT+E{(∆t+∆Ax(1)

a )(∆t+∆Ax(1)
a )T }

+ E{∆Aǫ(1)ǫ(1)T∆AT }. (3)

To derive an expression for the second order moments of
the IRE it is necessary to understand the distributional prop-
erties of the estimators∆A and∆t.



3. MEASUREMENT ERRORS

In [4] detailed analytical expressions for the localization ac-
curacy of a light emitting point source in a microscopy imag-
ing experiment are derived allowing reliable estimates of the
covariance matrices for the measurement errors. The Cramér-
Rao lower bound (CRLB) theorem states:

Theorem 3.1. The covariance matrix of any unbiased esti-
mator θ̂ of an unknown vector parameterθ is bounded from
below by the inverse of the Fisher information matrixI(θ),
i.e. cov(θ̂) ≥ I−1(θ).

For the purposes of this paper we assume that the CRLB
is attained. We consider the most general and suitable case for
application purposes, whereby the object being imaged emits
photons as a Poisson process, and there is an additional back-
ground Poisson noise process and Gaussian read out noise.
Typically the beads have large photon emission rates in com-
parison to the background and readout noise processes. In
such circumstances the Fisher information matrix for the es-
timator of the location parameterθ = (u, v) of an object in
Ij can be considered to be of the formI(θ) = NZ(j) where
N ∈ Z

+ is the photon count associated with the imaged ob-
ject andZ(j) is aR2×2 symmetric positive definite (SPD) ma-
trix of known form.

The photon count associated with thekth bead inIj is

labeledN (j)
k . The noise termsǫ(j)k , k = 1, ...,K, j = 1, 2,

have covarianceΣ(j)
k = (1/N

(j)
k )Σ̃

(j)
0 whereΣ̃(j)

0 = Z(j)−1

is a SPD matrix and universal for all imaged points inIj .
We now make the assumption that there is a linear relation
between the brightness of the bead in each image, i.e. a bead
that is bright inI1 is also bright inI2. Mathematically we say
N

(2)
k = cN

(1)
k for all k = 1, ...,K, wherec > 0 is a constant

of proportionality, universal for all control points. We define
N̄ (j) ≡ (1/K)

∑K

k=1 N
(j)
k , andΣ(j)

0 ≡ (1/N̄ (j))Σ̃
(j)
0 , for

j = 1, 2, thenN̄ (2) = cN̄ (1) and we have the situation where
the covariance of the measurement errors are scalar multiples
of a common matrix, i.e.

Σk = ηk

[

Σ
(1)
0 0

0 Σ
(2)
0

]

whereηk = N̄ (1)/N
(1)
k andΣ(1)

0 andΣ(2)
0 are known.

4. GENERALIZED LEAST SQUARES WITH
COVARIANCE WEIGHTING

Given the columns ofE are iid with common covarianceΣ0

say, EIV models of type (1) are traditionally solved by mini-
mizing the normalized residual sum of squares

r =
K
∑

k=1

vTk Φ
−1vk (4)

wherevk = y
(2)
k −t−Ay

(1)
k ,Φ = UΣ0U

T andU = [−A, I2].
In the statistics literature, the values ofA andt that minimize
r are known as thegeneralized least squares(GLS) estima-
tors [8]. In the engineering and numerical analysis literature
total least squares(TLS) is the common approach where a
different minimization problem is solved. Both estimatorsare
identical to one another. Here we generalize (4) for the case
where the columns ofE no longer have common covariance.

Definition 4.1. The generalized least squares estimatorsÂ
and t̂ are the values ofA and t, respectively, that minimize
the weighted residual sum of squares

r =

K
∑

k=1

vTk Φ
−1
k vk, (5)

whereΦk = UΣkU
T .

Consider the multivariate EIV model (1), where the co-
variance ofEk is given by the SPD matrixΣk = ηkΣ0 where
(1/K)

∑K

k=1 η
−1
k = 1. For the estimators that minimize (5)

and their asymptotic statistical properties we state the follow-
ing two theorems. They are given full treatment in [9].

Theorem 4.2. Define the matrixS ≡ (1/K)
∑K

k=1 η
−1
k (yk−

ȳ)(yk − ȳ)T whereȳ ≡ (1/K)
∑K

k=1 η
−1
k yk. By considering

V = GDGT , the eigenvalue decomposition of matrixV ≡
SΣ−1

0 , with D = diag{d1, d2, d3, d4} whered1 ≥ ... ≥ d4
andGGT = GTG = I4, then by making the partition

G =

[

G11 G12

G21 G11

]

,

the GLS estimator ofA andt are given as

Â = G21G
−1
11 , t̂ =

K
∑

k=1

η−1
k Uyk.

Theorem 4.3. DefineR2 vectorx̄ ≡ (1/K)
∑K

k=1 η
−1
k x

(1)
k ,

R
2×2 matrix Ξ ≡ (1/K)

∑K

k=1 η
−1
k x

(1)
k x

(1)T
k , matrix Ψ =

Ξ − x̄x̄T and matrixΘ = Ψ−1(ΛTΣ−1
0 Λ)−1Ψ−1 + Ψ−1,

then we have the following identities

cov{∆tm,∆tn} = K−1
(

1 + x̄Θx̄T
)

Φmn (6)

cov{∆tl,∆amn} = K−1[Θx̄]nΦml (7)

cov{∆amn,∆am′n′} = K−1Θmm′Φnn′ . (8)

5. IMAGE REGISTRATION ERROR ANALYSIS

We now consider the asymptotic form of the IRE covariance
matrix. Consider a molecule inI1 at pointy(1)a , wherey(1)a =

x
(1)
a + ǫ

(1)
a with the measurement error having covarianceΣa

estimable from [4], andx(1)
a being the true positional vector.

We estimate its new coordinate (the registered position) inI2
as Ây(1)a + t̂. The IRE is defined in (2) and its covariance
matrix given in (3). The individual elements ofcov{νa} can
now be calculated using (6), (7) and (8).



5.1. Approximating the image registration error

Let us consider some simplifying assumptions. It is com-
mon that the control points (beads) are randomly scattered
throughout the image and as such we will model their loca-
tion as a 2-D Gaussian distribution.

Lemma 5.1. Let control point positions{x(1)
k , k = 1, ...,K}

beK realizations of a random variableX = [X1,X2]
T ∈ R

2

where
X

d
= N2(µ,Π),

then asymptoticallȳx = µ andΨ = Π.

5.2. Assumptions

1. Consider the positions{x(1)
k , k = 1, ...,K} to beK

realizations of a random variableX = [X1,X2]
T ∈ R

2

where
X

d
= N2(0, κ

2I2).

From Lemma 5.1 we havēx = 0 andΨ = κ2I2.

2. The affine transformation parameterA represents a ro-
tation R combined with a magnificationM . Conse-
quentlyA would be of the formMR whereRRT =
RTR = I2 andM = mI2.

3. We model the measurement errors asEk
d
= N4(0,Σk)

where

Σk =

(

σ2
1,kI2 0

0 σ2
2,kI2

)

=
N̄ (1)

N
(1)
k

(

σ2
1I2 0
0 σ2

2I2

)

with the normalized variance termsσ2
j inversely pro-

portional to the mean photon count,σ2
j = ζ(j)/N̄ (j),

j = 1, 2. The termsζ(j) are known functions of the ex-
perimental parameters, including the Airy profile and
photon wavelength [4].

Assumptions 1 – 3 give the identitiesx = 0, Φ = (m2σ2
1 +

σ2
2)I2 andΘ = κ−4(σ2

1+m2σ2
2)I2+κ−2I2. We immediately

concludecov{∆tl,∆aij} = 0 for l, i, j = 1, 2. Further to
this cov{∆ti,∆tj} = K−1(m2σ2

1 + σ2
2)δij , whereδij is the

Kronecker delta.cov{∆aij ,∆ai′j′} = 0 if i 6= i′ and/or
j 6= j′. If i = i′ andj = j′, then givenκ2 ≫ (σ2

1 +m2σ2
2)

we can treatcov{∆aij ,∆ai′j′} ≈ 0. This is equivalent to
stating that the spread of the control points is much greater
than the individual measurement errors, a valid assumptionin
a microscopy setting.

Theorem 5.2. The covariance terms of the IRE can be ap-
proximated as

cov{νa,i, νa,j} ≈
[

AΣaA
T
]

ij
+K−1

(

σ2
1m

2δij + σ2
2

)

.

If the covarianceΣa is itself representable asσ2
aI2 then in

terms of photon count the covariance terms become

cov{νa,i, νa,j} ≈ m2σ2
aδij +K−1

(

m2 ζ(1)

N̄ (1)
δij +

ζ(2)

N̄ (2)

)

.

6. CONCLUSION

When the control points have measurement error covariances
that are known and some scalar multiple of a common SPD
matrix, then the second order moments of the IRE have been
derived. For microscopy applications we have shown there
exists inverse dependencies on the mean photon counts of
the control points, however there remains a theoretical lower
bound to the variance or the IRE in either dimension ofm2σ2

a.
Examples and simulations are found in [9].
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