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Abstract—In this paper, we consider the problem of the
accuracy of estimating the location and other attributes of a
moving single molecule whose trajectory is acquired in a sequence
of time intervals by a pixelated detector. We present expressions
of the Fisher information matrices from which the benchmark
for the accuracy of the parameter estimates is obtained. In the
absence of extraneous noise, it is shown that time discretization of
the image acquisition process results in a limit of the accuracy of
the parameter estimates that is better than or at least as good as
that acquired without time discretization. This analytical result
is also illustrated by simulations. However, in the presence of
extraneous noise, simulations show that finer time discretization
may not always lead to better limit of the accuracy than that
acquired without time discretization of the image acquisition
process.

I. INTRODUCTION

In single-molecule fluorescence microscopy, one of the
ways to understand cell dynamics is to optically track the
fluorescent-labelled molecules as in single-particle tracking
experiments. From the acquired data, we can estimate the
locations and other attributes of the molecules of interest. [1]–
[5]. However, it has been known that the localization error due
to noise that is inherent to single-particle tracking experiments
may give rise to misinterpretation of the acquired data [4].
The molecular motion of the molecules also contributes to the
localization error [5]. Hence, it is important to have a bench-
mark from which the accuracy of the parameter estimates can
be measured against.

The problem of the accuracy of estimating the parameters
of a moving molecule has been addressed in our recent work
[6]. There, we have obtained the benchmark, which provides
the limit of the accuracy of the parameter estimates, from
the Fisher information matrix. Specifically, the limit of the
accuracy of the parameter estimates is obtained by taking the
square root of the diagonal elements of the inverse of the
Fisher information matrix for the underlying random process
that characterizes the acquired data. The results obtained in

[6] are based on the acquisition of the image of the moving
molecule in a single time interval spanning the total acquisi-
tion time and thus is inapplicable to single-particle tracking
experiments where the images are acquired in a sequence of
time intervals.
In this paper we investigate how time discretization of the
image acquisition process affects the limit of the accuracy
of the parameter estimates. We show that through time dis-
cretization of the image acquisition process, we can obtain
a limit of the accuracy that is better than or at least as
good as that acquired without time discretization. Specifically,
we consider the case where the object moves in the two-
dimensional (2D) object space and its images are acquired in
a sequence of time intervals by a pixelated detector of finite
size. We study both the noise-free and noisy (extraneous noise
corrupted) cases. The results obtained in this paper provide
insights which would enable the experimentalists to optimize
their experimental setups for tracking single molecules in order
to achieve the best possible accuracy.

The organization of this paper is as follows. In Section II,
we provide expressions of the Fisher information matrix for
two stochastic models from which the limit of the accuracy
of the parameter estimates is obtained: One for the noise-free
case and another for the noisy cases. For the noise-free case,
by working out an analytical expression for the difference in
the two Fisher information matrices for a single time interval
spanning the total acquisition time and for a sequence of time
intervals respectively, it is shown that time discretization of
the image acquisition process provides a limit of the accuracy
that is better than or at least as good as that acquired without
time discretization. In Section III, simulations are performed
to illustrate the analytical results obtained in Section II and
to understand how extraneous noise affects the limit of the
accuracy. Conclusions are presented in Section IV.



II. EFFECT OF TIME DISCRETIZATION ON THE LIMIT OF
THE ACCURACY

In single-molecule fluorescence microscopy, the detection
of photons is inherently a random phenomenon and thus
the recorded image of the molecules is stochastic in nature.
Following [8], the acquired data is modelled as a space-time
random process [9] which we will refer to as the image
detection process G. The temporal part describes the time
points of the photons detected by the detector and is modelled
as a temporal Poisson process with intensity function Λθ,
where θ denotes the parameters that describe the trajectory of
the object. The spatial part describes the spatial coordinates
of the arrival location of the detected photons and is modelled
as a family of mutually independent random variables with
probability densities given by {fθ,τ}τ≥t0 , where τ denotes the
time point of a detected photon. Throughout this paper, we let
t0 ∈ R and θ ∈ Θ, where Θ denotes the parameter space that
is an open subset of Rn with n being the dimension of θ. The
spatial and temporal parts of G are assumed to be mutually
independent of each other and the probability density function
fθ,τ satisfies certain regularity conditions that are necessary for
the calculation of the Fisher information matrix.

Consider a pixelated detector Cp which is a collection
{C1, . . . , CNp} of open, disjoint subsets of R2 such that⋃Np

k=1 Ck = Cp, where Np denotes the total number of
pixels that constitute the pixelated detector. The acquired data
comprises not only detected photons from the object of interest
and the background component but also the measurement
noise from the readout process. The detected photons from
the object of interest and the background component are
Poisson distributed while the measurement noise is Gaussian
distributed. We refer to the detected photons from the back-
ground component as the Poisson noise and the measurement
noise as the Gaussian noise. Since the acquired data is
modelled as a space-time random process, following [10], we
let G(1)(Λ(1)

θ , {f (1)
θ,τ }τ≥t0 , Cp) and G(2)(Λ(2), {f (2)

τ }τ≥t0 , Cp)
denote the image detection processes that model the detected
photons from the object of interest and background compo-
nent, respectively.

The images of the object of interest are assumed to be
acquired in N time intervals [ti−1, ti], i = 1, 2, . . . , N , over
the total acquisition time [t0, tN ]. Assuming that nk,i denotes
the total number of detected photons from the object of interest
in the pixel Ck for the time interval [ti−1, ti], then the total
number of detected photons from the object of interest for the
total acquisition time [t0, tN ] is given by

∑N
i=1

∑Np

k=1 nk,i. It
can be shown that nk,i is independently Poisson distributed
with mean

µθ,k,i =
∫ ti

ti−1

∫

Ck

Λ(1)
θ (τ)f (1)

θ,τ (r)drdτ,

k = 1, 2, . . . , Np, i = 1, 2, . . . , N, θ ∈ Θ. (1)

Similarly, the number of detected photons from the back-
ground component in the pixel Ck for the time interval

[ti−1, ti] is independently Poisson distributed with mean

βk,i =
∫ ti

ti−1

∫

Ck

Λ(2)(τ)f (2)
τ (r)drdτ,

k = 1, 2, . . . , Np, i = 1, 2, . . . , N. (2)

Since the images acquired during each time interval are
independent of one another, the Fisher information matrix of
G for the total acquisition time [t0, tN ] can be expressed as the
sum of the Fisher information matrices for each time interval
[7], i.e., I(θ) =

∑N
i=1 Ii(θ). In the case where there is no

extraneous noise, we simply let βk,i = 0 and the standard
expression for the Fisher information matrix of a Poisson
distribution [9] becomes

I(θ) =
Np∑

k=1

N∑

i=1

1
µθ,k,i

(
∂µθ,k,i

∂θ

)T (
∂µθ,k,i

∂θ

)
, θ ∈ Θ. (3)

However, when extraneous noise is present, we use (2) for
the Poisson noise and assume a mean ηk,i and variance σ2

k,i,
k = 1, 2, . . . , Np, i = 1, 2, . . . , N , for the Gaussian noise in
each pixel during each time interval [ti−1, ti]. Thus, the Fisher
information matrix corresponding to the total acquisition time
[t0, tN ] in [8] is re-formulated as

I(θ) =

Np∑

k=1

N∑

i=1

(
∂µθ,k,i

∂θ

)T (
∂µθ,k,i

∂θ

)

×




∫

R


∑∞

l=1
[υθ,k,i]

l−1e
−υθ,k,i

(l−1)!
1√

2πσk,i
e
− 1

2

(
z−l−ηk,i

σk,i

)2



2

pθ,k(z),i

dz − 1




(4)

where υθ,k,i = µθ,k,i+βk,i and the Poisson-Gaussian mixture
probability density function pθ,k(z),i is given by

pθ,k(z),i =
1√

2πσk,i

∞∑

l=0

[υθ,k,i]
l
e−υθ,k,i

l!
e
− 1

2

(
z−l−ηk,i

σk,i

)2

,

z ∈ R, k = 1, 2, . . . , Np, i = 1, 2, . . . , N. (5)

Numerical methods are used to compute the inverse of the
Fisher information matrix expressed in (3) and (4), from
which the respective limit of the accuracy of the parameter
estimates is obtained. With this limit of the accuracy,
the experimentalists can evaluate the extent to which the
experimental settings such as the detector array size, the
pixel size, extraneous noise, have on the experiments. In the
event where the accuracy of the parameter estimates obtained
from experiments surpasses the limit of the accuracy, the
validity of the results becomes questionable since according
to the Cramér-Rao inequality, the (co)variance (matrix) of
any unbiased estimator of an unknown vector parameter is
bounded from below by the inverse of the Fisher information
matrix [7].

To illustrate the effect of time discretization on the limit
of the accuracy of the parameter estimates, we consider the
case where an object moves in a 2D plane in the absence



of extraneous noise. Using (3) and assuming that the photon
detection rate of the object of interest is a constant, i.e.,
Λ(1)(τ) = Λ0 ∈ R+, we formulate the Fisher information
matrix I1(θ) for the case where the image is acquired in
a single time interval spanning the total acquisition time
[t0, tN ] and another IN (θ) where N (N > 1) time intervals
are used. Denote δIN−1(θ) as the difference of these two
Fisher information matrices, i.e., δIN−1(θ) := IN (θ)− I1(θ).

For k = 1, 2, . . . , Np, u = 0, 1, . . . , N − 1,
v = 1, 2, . . . , N , let ak,u,v :=

∫ tv

tu

∫
Ck

f
(1)
θ,τ (r)drdτ ∈ R+ and

Ak,u,v :=
∫ tv

tu

∫
Ck

∂f
(1)
θ,τ (r)

∂θ drdτ ∈ R1×n.

For k = 1, 2, . . . , Np, m, i = 1, 2, . . . , N − 1, let
Wk,m,i := ak,m,m+1 ·Ak,i−1,i − ak,i−1,i ·Ak,m,m+1 ∈ R1×n.

The expression of the difference matrix δIN−1(θ) for the
total acquisition time [t0, tN ] is given as follows

δIN−1(θ) = Λ0

Np∑

k=1

N−1∑
m=1

m∑

i=1

WT
k,m,i ·Wk,m,i

ak,i−1,i · ak,m,m+1 · ak,0,N
.

(6)
It can be seen from the above expression that δIN−1(θ)

is the sum of NpN(N − 1)/2 positive semidefinite matrices
and hence also positive semidefinite. The implication of this
is that the diagonal elements of the inverse of IN (θ) are
smaller than or at most the same as the corresponding elements
of the inverse of I1(θ). Thus, it implies that through time
discretization of the image detection process in the absence
of extraneous noise, we can obtain a limit of the accuracy
that is better than or at least as good as that without time
discretization.

III. SIMULATION RESULTS

We next conduct simulations for the noise-free and noisy
cases using (3) and (4), respectively, in order to gain insights
into how experimental conditions affect the limit of the accu-
racy of the parameter estimates. For the noise-free case, we
study the effect of pixelation without the confounding effect of
the extraneous noise. By comparing the results of (3) and (4),
we then study the effect of extraneous noise on the limit of
the accuracy of the parameter estimates. For the simulations,
we assume that the object is moving with a constant speed
v from an initial position (x0, y0) at a direction of movement
φ with respect to the x−axis. The photon detection rate of
the object of interest is assumed to be a known constant, i.e.,
Λ(1)(τ) = Λ(1)

0 ∈ R+, τ ≥ t0 and its image function is Gaus-
sian, i.e., q(1)(x, y) = 1/(2πσ2) exp(−((x/M − xθ(τ))2 +
(y/M − yθ(τ))2)/(2σ2)), (x, y) ∈ R2, τ ≥ t0, where
M > 0 denotes the lateral magnification and (xθ(τ), yθ(τ)),
τ ≥ t0, denotes the trajectory of the object. When detected
photons from the background component are present, we
assume its photon detection rate to be a known constant
Λ(2)(τ) = Λ(2)

0 ∈ R+, τ ≥ t0 and the detected photons
to be uniformly distributed.

From Fig. 1, it can be seen that in the absence of extraneous
noise, the limit of the accuracy of the parameter estimates im-
proves monotonically with increasing number of time intervals
used in acquiring the images. In other words, by acquiring the
images in N (N > 1) time intervals, the limit of the accuracy
of the parameter estimates is better than that acquired in a
single interval spanning the same total acquisition time. This
result corroborates the implication of (6).

To study the effect of extraneous noise on the limit of the
accuracy of the parameter estimates, we consider two different
levels of the Gaussian noise while maintaining a constant
Poisson noise. At low Gaussian noise, i.e., 2 e−/pixel, there
are several values of N (the number of time intervals for a
given acquisition time) that provide better limit of the accuracy
of the parameter estimates than that by acquiring the image in
a single interval spanning the same acquisition time. However,
the range of N corresponding to better limit of the accuracy
of the parameter estimates than that by acquiring the image in
a single interval spanning the same acquisition time reduces
when the Gaussian noise is doubled, i.e., 4 e−/pixel. The
results in the presence of extraneous noise in Fig. 1 is due
to the trade-off between the amount of acquired data and the
extraneous noise for each time interval. As the number of time
intervals used in acquiring the images increases for a fixed
total acquisition time, the time interval becomes shorter and
thus fewer photons from the object of interest are detected per
interval. As for the extraneous noise, specifically the Gaussian
noise, it is assumed to be constant per pixel. Thus, the amount
of Gaussian noise is dependent on the number of pixels that
constitute the pixelated detector and is independent of the time
interval. As such, the Gaussian noise eventually overwhelms
the detected photons as the time interval reduces and this
leads to the deterioration of the limit of the accuracy of
the parameter estimates. Comparing the results of the two
Gaussian noise levels, it can be seen that not only is the
limit of the accuracy of the parameter estimates poorer when
there is more Gaussian noise, it also deteriorates at a faster
rate. This rate of deterioration is evident from the diverging
trends between the results of the two Gaussian noise levels. An
interesting observation can also be made in Fig. 1 with regards
to the difference between the limit of the accuracy of x0 and
y0. As the number of time intervals increases, the difference
between the limit of the accuracy of x0 and y0 diminishes.
This phenomenon also occurs when the extraneous noise is
absent.

From the results of the simulation, it can be seen that
the Gaussian noise has an adverse effect on the limit of
the accuracy. Given the fact that the limit of the accuracy
becomes poorer with increasing amount of Gaussian noise,
deterioration of the limit of the accuracy also occurs at finer
time discretization of the image acquisition process.

IV. CONCLUSIONS

In this paper, we have presented the expressions of the
Fisher information matrix for both the noise-free and noisy
cases from which their respective limit of the accuracy of
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Fig. 1: Limits of the accuracy of the parameter estimates as
a function of the number of time intervals used in acquiring
the images of a linearly moving object. Panel (a) shows the
limit of the accuracy of x0 (—) and y0 (− · −). Panel (b)
shows the limit of the accuracy of φ. The marker (◦), (¤)
and (¦) correspond to the case where there is no extraneous
noise, where the Poisson noise (Λ(2)

0 ) is 2 photons/pixel/s
and the Gaussian noise (σk) is 2 e−/pixel are present, and
where the Poisson noise (Λ(2)

0 ) is 2 photons/pixel/s and the
Gaussian noise (σk) is 4 e−/pixel are present, respectively.
For the object, σ = 84 nm, its speed v = 1000 nm/s, its
direction of movement φ = 30o, its starting coordinates are
(x0, y0) = (−141.4,−141.4) nm with respect to the origin of
the x− y axes that passes through the center of the detector,
and the total acquisition time is 0.4 s. The photon detection
rate Λ(1)

0 = 1000 photons/s, magnification M = 100, pixel
size is 6.8 µm × 6.8 µm, and the array size is 19×19 pixels.

the parameter estimates can be obtained. We have shown that
through time discretization of the image acquisition process in
the noise-free case, a limit of the accuracy of the parameter
estimates that is better than or at least as good as that acquired
without time discretization can be obtained. Simulations have
been carried out to investigate the effect of time discretization
on the limit of the accuracy in parameter estimation for the
noise-free and noisy cases. In the absence of extraneous noise,
the limit of the accuracy of the parameter estimates improves
monotonically with increasing number of time intervals. How-
ever, in the presence of extraneous noise, time discretization

may not always improve the limit of the accuracy, especially
with the increase of Gaussian noise. Finally, it should be noted
that the expressions of the Fisher information matrix and the
insights gained from the simulation enable the experimental-
ists to optimize their experimental setups for tracking single
molecules in order to achieve the best possible accuracy.
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