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Abstract—Image registration is an important processing step
in fluorescence microscopy, for example in tracking or super-
resolution methods. Precision localization of single fluorescent
molecules from a quantum limited photon detection process,
subject to Gaussian readout noise, is key to the use of single
molecule microscopy. It is therefore important to know the
effect that registration has on the accuracy of localizing a single
molecule. Here we demonstrate a suitable approach to image
registration that accounts for point-wise errors in localizing the
control points typically used in fluorescence microscopy. This
allows expressions for the localization errors caused by the
registration process to be derived, showing dependence on the
number of control points and their associated photon counts.

I. INTRODUCTION

Image registration is the process of overlaying two or more
images of the same scene [1], or equivalently is the process
of establishing the geometric transformations between two
or more data sets such that they can be viewed in a single
coordinate system. These images could arise from different
times (multitemporal), different viewpoints (multiview), or
different sensors (multimodal).

In the fluorescence microscopy setting we are concerned
with feature-based registration where the features used for
matching are points in the image where pair correspondence
is certain. In this case they are known as control points (CPs).
It is common that these points are created with the use of
fiduciary markers, e.g. fluorescent beads [2]. Using fiduciary
markers to perform image registration is an important pre-
processing step when correcting for drift between successive
frames (multitemporal) e.g. [2], or combining a pair of differ-
ent colored monochromatic images captured through different
sensors (multimodal) e.g. [3], [4]. Here we review some results
from [5] and [6] and include some new results related to an
approximation made on the distributional properties of CP
measurement errors.

We consider an image to capture a subset of the space
Rd, d = 2 or 3. Given two image spaces I1 ⊆ Rd and
I2 ⊆ Rd, say, registration is concerned with estimating the
mapping T : I1 → I2. It is typical to consider T to be an
affine transformation e.g. [7], [8]. In this circumstance, for
x ∈ I1, T (x) = Ax+s where A ∈ Rd×d is a square invertible
matrix and s ∈ Rd is a translation vector. Registration involves

using the CP locations in I1 and their corresponding mapped
positions in I2 to find T .

In general, due to noisy signals, the location of the fiduciary
markers in both images can not be measured exactly and
instead are perturbed by random errors. Traditional least
squares estimators are therefore inappropriate [9] and we are
instead presented with an errors-in-variables (EIV) problem.
Further to this localization accuracy depends on the brightness
of the light emitting object (see [10], [11], [12], [13], [14]) and
hence each fiduciary marker is localized with varying degrees
of accuracy. This presents us with a heteroscedastic EIV
model and the traditional EIV methods of total least squares
(TLS) [15] and the equivalent generalized least squares (GLS)
[16] give inconsistent estimators. With this problem in mind,
two key questions arise. Firstly; what is the procedure for
estimating A and s that correctly accounts for the measurement
errors in localizing the CPs? Secondly; how accurately can we
determine the transformation and hence what are the effects of
registration on the localization accuracy of a single molecule?

For the second of these questions it becomes useful to define
a new measure of registration error called the localization
registration error (LRE) [5], [6]. Localizing a single molecule
in I1 typically has its own errors associated with it. The
LRE measures the combined effect of this localization error
and the registration error to give the localization error of the
feature registered in the second image, and is of importance
to researchers [3], [4].

The paper proceeds as follows. In Section 2 we formulate
the image registration problem and take time to consider
the distributional properties of the measurement errors in
localizing a fiduciary marker in a microscopy experiment.
In Section 3 we show how this form can be used with
previously published results to give an expression for the loss
in localization accuracy of a single molecule induced by the
image registration process, which is shown to be a function of
the number of control points and the photon counts associated
with them.

II. FORMULATING THE PROBLEM

Suppose K CPs are located in I1 ⊆ Rd at true locations
{x1,k ∈ I1, k = 1, ...,K}, and in I2 ⊆ Rd at true locations
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{x2,k ∈ I2, k = 1, ...,K}, such that x2,k = T (x1,k) =
Ax1,k + s, k = 1, ...,K, where A ∈ Rd×d and s ∈ Rd.
In reality the positions of the CPs cannot be known exactly
and must instead be measured. Consequently we observe the
CP locations as {y1,k ∈ I1, k = 1, ...,K} and {y2,k ∈
I2, k = 1, ...,K}, where yj,k = xj,k + εj,k, k = 1, ...,K,
j = 1, 2. The term εj,k ∈ Rd is a random variable known as
the measurement error. Each measurement error is assumed
zero mean and to have individual symmetric positive definite
covariance matrix Ωj,k. It is assumed that all measurement
errors are pairwise independent across the CPs.

We define the Rd×K matrices Xj ≡ [xj,1, ..., xj,K ], Yj ≡
[yj,1, ..., yj,K ] and Ej ≡ [εj,1, ..., εj,K ], j = 1, 2, and fur-
ther define the stacked R2d×K matrices X ≡

[
XT

1 , X
T
2

]T
,

Y ≡
[
Y T1 , Y

T
2

]T
and E ≡

[
ET1 , ET2

]T
. With this notation the

system of equations can be conveniently represented as the
single matrix equation

Y = ΛX1 + α1TK + E , (1)

where T is the matrix transpose, α = [0T , sT ]T , Λ =
[Id, A

T ]T and 1K is a column vector of length K with
every element taking the value 1. Maximum likelihood (ML)
estimators for parameters A and s are considered in the iid
case in [16] and in the general heteroscedastic case in [17].

Given estimators Â and ŝ it is important to know the effect
the registration procedure will have on the localization of a
single molecule. In [5] and [6] is defined the localization reg-
istration error (LRE). First let us define the difference between
the estimated and true values of the transform parameters as
∆A ≡ Â − A and ∆s ≡ ŝ − s. Suppose we are interested
in registering a single molecule in I1 with true position
x1,F ∈ I1, in the second image the true position of this feature
is x2,F ∈ I2, with x2,F = Ax1,F + s. However, as with the
CPs, the position of the feature in I1 is actually measured to
be at y1,F = x1,F + ε1,F , where ε1,F is a measurement error
with zero mean and covariance Ω1,F . Therefore our estimator
for the position of the feature in I2 is Ây1,F + ŝ. The error
associated with localizing the feature (single molecule) in I2
is given by the LRE.

Definition II.1. For a feature in I1 with true and measured
locations x1,F and y1,F = x1,F + ε1,F respectively, the local-
ization registration error (LRE) `F is defined as the difference
between the true position and the registered position, i.e.

`F ≡ x2,F − (Ây1,F + ŝ)

= Ax1,F + s− (Ây1,F + ŝ)

= −Aε1,F −∆Aε1,F −∆Ax1,F −∆s.

A. Measurement errors

To use the results in [5] it is necessary to show that the
covariance matrices for the errors in localizing the fiduciary
markers (the columns of E in (1)), while different, can all be
treated as scalar multiples of a common matrix.

Let C ⊂ R represent the detector and let the pixel array
{C1, ..., CNP } be a collection of NP disjoint sets such that

C =
⋃NP
m=1 Cm. Let θ = (u, v) be the object space location of

a light emitting source in a microscopy imaging experiment,
emitting photons as an inhomogeneous Poisson process with
time dependent rate Λ(·). Taking into account the effects of
noise, the photon count during an interval of [t0, t0+t] at each
pixel is the sum of the number of photons due to the imaged
object and the number of photons introduced by background
noise and the readout noise. Let Pθ,m denote the total photon
count at the mth pixel during the interval [t0, t0 + t]. We write

Pθ,m = Sθ,m +Bm +Wm,

where Sθ,m is the photon count at the mth pixel due to the
object located in the object space at positional vector θ. We
have Sθ,m

d
= Poisson(µθ,m,t) (where d

= means “equal in
distribution”), with

µθ,m,t =

∫ t0+t

t0

∫
Cm

Λθ(τ)fθ(r)drdτ, m = 1, ..., NP , (2)

where the coordinates on the detector of the detected photons
are assumed to be iid with known distribution fθ(r), r ∈ R2.
Random variable Bm

d
= Poisson(βm,t) is the count at the

mth pixel due to scattering, and Wm
d
= N(ϕm, σ

2
m) is the

count at the mth pixel due to readout noise. We can write
(2) as µθ,m,t = λthθ(m, t) where λt =

∫ t0+t
t0

Λθ(τ)dτ is the
time average Poisson rate for the light emitting object and
hθ(m, t) =

∫
Cm

fθ(r)dr is the probability that an emitted
photon will be collected in pixel m = 1, ..., NP . We assume
that the Poisson background noise and Gaussian readout noise
is homogeneous across all pixels and the distributions known.

In [10] the following is given for the Fisher information
matrix for the location parameter θ of a light emitting object
in a microscopy setup

I(θ) =

NP∑
m=1

[
∂µθ,m,t
∂u

] [
∂µθ,m,t
∂v

]T
×

∫
R

(∑∞
l=1

[νθ(m)]l−1e−νθ(m)

(l−1)!
1√

2πσm
e−

1
2 ( z−l−ηmσm

)
2)2

pθ,m(z)
dz− 1

(3)

where for z ∈ R

pθ,m(z) ≡ 1√
2πσm

e−
1
2 ( z−l−ηmσm

)
2
∞∑
l=0

[νθ(m)]l × e−νθ(m)

l!

with νθ,m ≡ µθ,m+bmt. The inverse of the Fisher information
matrix, I−1(θ), is the Cramér-Rao lower bound [18] for the
covariance matrix of the error in object space of localizing an
isolated point source emitting photons as an inhomogeneous
Poisson process in the presence of background and readout
noise, which in turn is shown in [10] to be a reasonable
estimate for the true covariance matrix. We now consider an
approximation to (3) that will be valid for fiduciary markers.

The sum of two Poisson distributed random variables is
itself Poisson and hence

Sθ,m +Bm
d
= Poisson(µθ(m, t) + β(m, t)).
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Fiduciary markers used in fluorescence microscopy experi-
ments typically have a high signal to noise ratio, hence we
consider µθ(m, t) to be large enough such that the normal
approximation to the Poisson distribution is valid. We approx-
imate

Sθ,m +Bm
d
= N(µθ(m, t) + β(m, t), µθ(m, t) + β(m, t)).

Using the fact that if X d
= N(µX , σ

2
X) and Y d

= N(µY , σ
2
Y ),

then X + Y
d
= N(µX + µY , σ

2
X + σ2

Y ), we make the suitable
approximation that

Sθ,m +Bm +Wm
d
= N(ρθ,m, ς

2
θ,m).

where ρθ,m = µθ(m, t)+β(m, t)+ηm and ς2θ,m = µθ(m, t)+
β(m, t)+σ2

m. The probability mass function (pmf) for the total
photon count Pθ,m in the mth pixel is therefore approximated
by

pθ,m(z) =
1√

2πςθ,m
e
− 1

2ς2
θ,m

(z−ρθ,m)2

.

By the mutual independence of Pθ,1, ...,Pθ,NP , the pmf
of the pixelated image Iθ = {Iθ,1, ..., Iθ,NP } is just the
product of the pmf for Pθ,m, m = 1, ..., NP , that is,
pPθ =

∏NP
m=1 pθ,m(zm). Therefore if {z1, ..., zNP } is a real-

ization of {Pθ,1, ...,Pθ,NP }, then the log-likelihood function
L(θ|z1, ..., zNP ) is given by

L(θ|z1, ..., zNP ) = ln(pIθ (z1, ..., zNp))

=

NP∑
m=1

ln(pθ,m(zm)),

and its partial derivative with respect to θ is given by

∂L(θ|z1, ..., zNP )

∂θ
=

NP∑
m=1

[
1

pθ,m(zm)

∂pθ,m(zm)

∂θ

]
.

By chain-rule

∂pθ,m(zm)

∂θ
=
∂pθ,m(zm)

∂ρθ,m

∂ρθ,m
∂θ

+
∂pθ,m(zm)

∂ςθ,m

∂ςθ,m
∂θ

,

and it follows that

∂L(θ|z1, ..., zNP )

∂θ
=

NP∑
m=1

∂µθ(m, t)

∂θ
ζθ,m(zm)

where ζθ,m(zm) =
(zm−ρθ,m)

ς +
(zm−ρθ,m)2

2ς4θ,m
− 1

2ς2θ,m
. We

now give two important results. Using the identities for the
moments of a normally distributed random variable then

E{ζθ,m(zm)} = 0 (4)

E{[ζθ,m(zm)]2} =
1

2
ς−4θ,m + ς−2θ,m. (5)

From definition the Fisher information matrix I(θ) for location
parameter θ is equal to

NP∑
m=1

NP∑
n=1

[
∂µθ(m, t)

∂θ

]T [
∂µθ(n, t)

∂θ

]
× E{ζθ,m(zm)ζθ,n(zn)}.

Making use of the results (4) and (5), and the pairwise
independence of {ζθ,m(zm),m = 1, ..., NP } we conclude

E{ζθ,m(zm)ζθ,n(zn)} = (
1

2
ς−4θ,m + ς−2θ,m)δmn

and thus

I(θ) =

NP∑
m=1

[
∂µθ(m, t)

∂θ

]T [
∂µθ(m, t)

∂θ

](
1

2
ς−4θ,m + ς−2θ,m

)
.

We are concerned with the 2D spacial parameter θ = (u, v).
Using the identity µθ(m, t) = λthθ(m) then ∂µθ(m,t)

∂u =

λt
∂hθ(m,t)

∂u and ∂µθ(m,t)
∂v = λt

∂hθ(m,t)
∂v , giving

I(θ) = λ2t

NP∑
m=1

[
∂hθ(m, t)

∂θ

]T [
∂hθ(m, t)

∂θ

]
×
(

1

2
ς−4θ,m + ς−2θ,m

)
.

Reminding ourselves that ς2θ,m = µθ(m, t) + β(m, t) + σ2
m,

then
1

2
ς−4θ,m + ς−2θ,m =

1

2[µθ(m, t)]2

(
1− 2

β(m, t) + σ2
m

µθ(m, t)
+ ...

)
+

1

µθ(m, t)

(
1− β(m, t) + σ2

m

µθ(m, t)
+ ...

)
.

Let qm,t ≡ β(m,t)+σ2
m

µθ(m,t)
then

1

2
ς−4θ,m + ς−2θ,m ≈

1

µθ(m, t)
(1 + qm,t +O(q2m,t))

for large µθ(m, t).
If µθ(m, t)� β(m, t) +σ2

m, i.e. the signal to noise ratio is
high, then 1

2 ς
−4
θ,m + ς−2θ,m ≈

1
µθ(m,t)

= 1
λthθ(m,t)

giving

I(θ) = λt

NP∑
m=1

1

hθ(m)

[
∂hθ(m, t)

∂θ

]T [
∂hθ(m, t)

∂θ

]
.

Therefore N−1M2J is a suitable approximation to the covari-
ance matrix for image space errors in localizing the fiduciary
markers, where N is the number of photons collected at the
detector for that object (an estimate of λt), M is the system
magnification and

J =

[
NP∑
m=1

1

hθ(m)

[
∂hθ(m, t)

∂θ

]T [
∂hθ(m, t)

∂θ

]]−1
is a symmetric positive definite matrix that can be computed
from experimental parameters including photon wavelength,
numerical aperture and the point spread function of the optical
system.

We assume the image registration formulation of Section II
and model (1) with the use of K fiduciary markers for the CPs.
The matrix J and system magnification M are specific to the
image and hence labeled Jj and Mj , respectively, j = 1, 2.
Suppose Nj,k photons are detected at the detector for fiduciary
marker k in Ij , k = 1, ...,K, j = 1, 2. The measurement
errors εj,k, k = 1, ...,K, j = 1, 2, are therefore assumed
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to have covariance Ωj,k of the form Ωj,k = (1/Nj,k)Ωj,0,
where Ωj,0 ≡ M2

jJj is a symmetric positive definite matrix
and universal for all CPs in Ij . This gives the covariance
matrix of εk ≡ [εT1,k, ε

T
2,k]T as the block diagonal matrix Ωk =

diag{(1/N1,k)Ω1,0, (1/N2,k)Ω2,0}.
Consider performing drift correction for tracking or super-

resolution purposes by registering two images taken by the
same sensor at different times (multitemporal). In this case,
provided the brightness of the marker remains constant in the
time between captures, then we assume N1,k ≈ N2,k. With
this assumption we have the situation where the covariance
matrices Ωk k = 1, ...,K are scalar multiples of

Ω0 =

[
Ω1,0 0

0 Ω2,0

]
(6)

with 1/N1,k providing the scaling factor.
The ML estimators Â and ŝ of A and s, respectively, for

models of type (1) where the covariance matrices Ωk, k =
1, ...,K are of form (6) are considered in [5] and dealt with
in full in [6]. Further to this distributional results are derived
for the ML estimators Â and ŝ.

III. LOCALIZATION REGISTRATION ERROR RESULTS

In [5] and [6] the following 2D model was considered.
Assumption (i). We model the CP measurement errors
εk

d
= N4(0,Ωk) with Ωj,k = σ2

j,kI2 = (1/Nj,k)M2
jζjI2

where Nj,k is the photon count at the detector associated
with CP k in Ij , k = 1, ...,K, j = 1, 2. Mj is the known
system magnification associated with Ij . Scalar ζj is a known
function of the point spread function, photon wavelength and
numerical aperture. In multimodal registrationMj and ζj will
be different for each image, while in multitemporal registration
they will be identical for both images. Ω0 is of form (6) where
Ωj,0 =M2

jζjI2.
Assumption (ii). Consider the CP true positions {x1,k, k =
1, ...,K} to be K realizations of a random variable X ∈ R2

with mean zero and covariance κ2I2, and let associated photon
counts be non-zero, finite and independent of CP positions.
Assumption (iii). The affine transformation parameter A =
SR represents a scaling S = ςI2, ς ∈ R+, combined with a
unitary rotation or reflection (or a combination of both) R, i.e.
RTR = RRT = I2.

Assuming the localization error of the feature (single
molecule) has covariance Ω1,F = (M2

1ζ1/N1,F )I2, where
N1,F is the photon count associated with the feature
(molecule) imaged in I1, the expression for the (m,n)th
element of the LRE covariance in [5] is corrected in [6] to

[Ω`]mn ≈ ς
M2

1ζ1
N1,F

+

K−1
(
ς2
M2

1ζ1
N̄1

+
M2

2ζ2
N̄2

)(
1 +

(rF
κ

)2)
δmn. (7)

where rF is the radial distance of the feature (single molecule)
to the center of the image and N̄j = (1/K)

∑K
k=1Nj,k is the

mean photon count for the CPs in Ij , j = 1, 2. The covariance

matrix Ω` is given with respect to image space I2. To express
LRE covariance with respect to the object space coordinates
we use M−22 Ω`.

IV. CONCLUSION

The first term in (7) is just the localization accuracy of
the single molecule in the first image (scaled by ς). The
second term is the contribution from the registration process.
This shows that we always lose localization accuracy in the
registration process, however asymptotically we approach the
localization accuracy in the first image. Hence, by increasing
the number of control points and/or the number of photons
captured for each control point we are able to manage the
localization loss and confine it to a quantifiable amount. [6]
gives an in depth analysis along with simulations verifying the
results.
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