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Abstract Optical microscopy is an invaluable tool to visualize biological processes at the
cellular scale. In the recent past, there has been significant interest in studying these processes
at the single molecule level. An important question that arises in single molecule experiments
concerns the estimation of the distance of separation between two closely spaced molecules.
Presently, there exists different experimental approaches to estimate the distance between
two single molecules. However, it is not clear as to which of these approaches provides
the best accuracy for estimating the distance. Here, we address this problem rigorously by
using tools of statistical estimation theory. We derive formulations of the Fisher information
matrix for the underlying estimation problem of determining the distance of separation from
the acquired data for the different approaches. Through the Cramer-Rao inequality, we derive
a lower bound to the accuracy with which the distance of separation can be estimated. We
show through Monte-Carlo simulations that the bound can be attained by the maximum like-
lihood estimator. Our analysis shows that the distance estimation problem is in fact related
to the localization accuracy problem, the latter being a distinct problem that deals with how
accurately the location of an object can be determined. We have carried out a detailed inves-
tigation of the relationship between the Fisher information matrices of the two problems for
the different experimental approaches considered here. The paper also addresses the issue of
a singular Fisher information matrix, which presents a significant complication when calcu-
lating the Cramer-Rao lower bound. Here, we show how experimental design can overcome
the singularity. Throughout the paper, we illustrate our results by considering a specific image
profile that describe the image of a single molecule.
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1 Introduction

The study of biomolecular interactions that occur within a cell is fundamental to all areas of
basic biomedical research. The optical microscope is one of the most preferred tools to study
biomolecular interactions, as it enables the direct visualization of these processes in real time.
For instance, several technological advances in the past decade have made it possible to image
individual biomolecules with an optical microscope even in live biological cells (Moerner
2007; Ober et al. 2004a). In many concrete applications, it is important to know the distance
of separation between the biomolecules, as this has significant biological implications. The
resolution limit of the optical microscope plays a crucial role in determining the ability to
measure the distance of separation between biomolecules. Classical resolution criteria such
as Rayleigh’s criterion, although extensively used, are well known to be based on heuristic
notions that render them inadequate for present day microscopy systems. Therefore quan-
tifying the resolution limit is a very important problem with significant implications on the
nature and type of studies that can be carried out with an optical microscope.

Current experimental approaches to studying single molecule interactions can be broadly
classified into two categories. In one set of approaches, which we refer to as the simultaneous
detection approach (Fig. 1a), photon emission from the point sources occurs simultaneously
during image acquisition and hence the acquired images contain signal from both point
sources (Santos and Young 2000; Ram et al. 2006a; Chao et al. 2009a,b). In the other set of
approaches, which we refer to as the separate detection approach (Fig. 1c), photon emis-
sion from the point sources are temporally separated (e.g. stochastic photoactivation (Betzig
et al. 2006; Rust et al. 2006; Hess et al. 2006) and blinking (Lidke et al. 2005; Lagerholm
et al. 2006)). Hence the acquired images typically contain signal from only one of the point
sources. For both types of approaches, the analysis of the acquired data is carried out using

Fig. 1 Different experimental approaches to determine the distance of separation between two identical point
sources. a illustrates the simultaneous detection approach in which photon emission from both point sources
occurs during image acquisition. In this approach, the data consists of a single image that contains signal from
both point sources. b illustrates the special case of the simultaneous detection approach, where the image of
one of the point sources is additionally available. Here, the data consists of a pair of images where one of
the images contains signal from only one point source, whereas the other image contains signal from both
point sources. c illustrates the separate detection approach, where photon emission from the point sources are
temporally separated. Here, the data consists of a pair of images, where each image contains signal from either
of the point sources
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a parameter estimation framework. For example, in the case of the simultaneous detection
approach the distance between the point sources is determined by fitting a pair of suitably
parameterized image profiles to the acquired data. In the case of the separation detection
approach, the analysis involves independently localizing the point sources and then deducing
the distance. It has been reported that both approaches are capable of accurately measuring
nanometer scale distances, well below the classical resolution criteria. However, an important
question arises as to what are the fundamental performance limits of the two experimental
approaches to measure the distance of separation.

In this paper, we use the tools of statistical signal processing to investigate this question in
a rigorous manner. We formulate the resolution problem as a parameter estimation problem
of determining the distance between two closely spaced point sources. The issue of resolv-
ability of the two point sources then becomes a question of how accurately the distance can be
estimated, i.e., how large is the standard deviation of the distance estimator. In this context, it
is important to know what is the lowest possible standard deviation with which the distance
can be estimated, as this can be used as a benchmark for the resolvability of the point sources.
For this, we make use of the Cramer-Rao inequality (Rao 1965) which, through the inverse
Fisher information matrix, provides a lower bound to the variance of any unbiased estimator
of an unknown parameter. Thus, in the present context we interpret the Cramer-Rao lower
bound of the distance parameter as a measure of resolvability of the two point sources.

Here, we derive formulations of the Fisher information matrix for the parameter estima-
tion problem that underlies the data analysis for the two approaches. Our analysis shows that
the Fisher information matrices for the two techniques exhibit very distinct behaviors. For
instance, in the simultaneous detection approach the Fisher information matrix depends on
the distance of separation between the point sources. In contrast, for the separate detection
approach the Fisher information matrix is independent of the distance of separation. As we
will see, the distance dependence of the Fisher information matrix has several implications.
In particular, for the simultaneous detection approach the Fisher information matrix becomes
singular when the distance goes to zero assuming that the two point sources have identical
image profiles and photon detection rates, which is typically the case in most imaging appli-
cations. An immediate implication is that for very small distances, the Cramer-Rao lower
bound of the distance will be numerically very large, thereby predicting poor resolvability of
the point sources. On the other hand, the Fisher information matrix for the separate detection
approach is invertible for all values of the distance including when the distance is equal to zero.

Another problem that is of significance in the present context is the localization accu-
racy problem, which deals with how accurately the location of an object can be determined
(Wong et al. 2011; Ram et al. 2006b; Ober et al. 2004b; Rohr 2007). For the separate detection
approach, the localization accuracy problem naturally arises as part of the data analysis pro-
cedure. For the simultaneous detection approach, the localization accuracy problem arises as
a special case where in some applications the image of one of the point sources is additionally
available (e.g. photobleaching (Ram et al. 2006a; Gordon et al. 2004; Qu et al. 2004), which,
in turn, can be used as a priori information (Fig. 1b). Here, we investigate the relationship
between the Fisher information matrix of the two approaches and that of the localization accu-
racy problem. Our analysis shows that for the separate detection approach, the expression
for the Fisher information matrix is equivalent to that of the localization accuracy problem,
whereas for the simultaneous detection approach the equivalence is attained only when the
distance of separation between the point sources becomes very large (i.e., d → ∞). In this
context, we also investigate the singularity of the Fisher information matrix for the simulta-
neous detection approach. In particular we show that the singularity can be removed when
the location coordinates of one of the point sources is known a priori.
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Previously, we have examined the distance estimation problem for optical microscopes,
where we derived analytical expressions for the Fisher information matrix. In Ram et al.
(2006a), we investigated the 2D imaging scenario for the simultaneous detection approach,
where the point sources were assumed to be located on the x axis of the plane of focus in
the object space. In Chao et al. (2009a,b), we considered the 3D imaging scenario for the
simultaneous detection approach, where the point sources were assumed to be located any-
where in the object space. In Chao et al. (2009c), we reported numerical calculations of the
Cramer-Rao lower bound for the two detection approaches considered here. In the present
work, we rigorously analyze the relationship between the Fisher information matrices of the
two experimental approaches considered here and that of the localization accuracy problem.

In the past, other groups have investigated the distance estimation problem by adopting
a simplified data model, where the acquired data is described as a deterministic signal
corrupted by additive noise (Helstrom 1964; Smith 2005; Shahram and Milanfar 2004).
Because photon/light emission from a point source is inherently a random phenomenon
(Young 1996), it is important to take into account the stochastic nature of the signal (i.e.,
the photon statistics) from the point sources especially when dealing with photon-limited
imaging systems (O’Sullivan et al. 1998). In our (prior and current) work, we have adopted
a stochastic framework and model the acquired data as a spatio-temporal random process
(marked Poisson process). In this way we explicitly take into account the photon statistics.
Thus our results and analyses presented in this paper provide a broad framework to investigate
the resolution limits for a wide variety of low light level imaging applications.

The paper is organized as follows. In Sect. 3, we derive general expressions of the Fisher
information matrix for the estimation problem that underlies the simultaneous detection
approach. We also derive the Fisher information matrix for a concrete scenario in optical
microscopy where the image of an object is considered to be spatially invariant. In Sect. 4,
we discuss the relationship between the Fisher information matrix for the simultaneous detec-
tion approach and that of the localization accuracy problem. In Sect. 5, we consider a special
case of the simultaneous detection approach, where we assume that the location coordinates
of one of the point sources is known and derive the Fisher information matrix. As we will see,
the analysis of this special case provides important insights into the relationship between the
two approaches considered here. In Sect. 6, we derive the Fisher information matrix for the
separate detection approach. Finally, in Sect. 7 we validate our results by demonstrating that
the maximum likelihood estimator of the distance attains the Cramer-Rao lower bound for
the different experimental approaches considered here. Throughout the paper, we illustrate
our results with examples relevant to single molecule microscopy.

2 Stochastic framework

We assume an acquired image to consist of the time points and the spatial coordinates of the
detected photons and model it as a spatio-temporal random process. We refer to this process
as the image detection process G (see Ram et al. 2006b for details). The parameter space Θ

is assumed to be an open subset of R
n and the detector that is used to capture the photons is

denoted as C, where C ⊆ R
2 is open. The temporal part of G is modeled as an inhomogeneous

Poisson process with intensity Λθ called the photon detection rate and the spatial part of G is
modeled as a sequence of mutually independent random variables with densities { fθ,τ }τ≥t0
called the photon distribution profile. It is assumed that the spatial and temporal compo-
nents are mutually independent of each other and that fθ,τ satisfies the regularity conditions
necessary for the calculation of the Fisher information matrix (Ram et al. 2006b; Kay 1993).
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The general expression of the Fisher information matrix for the image detection process
G is given by (Ram et al. 2006b)

I(θ) =
t∫

t0

∫

C

1

Λθ(τ) fθ,τ (r)

(
∂[Λθ(τ) fθ,τ (r)]

∂θ

)T
∂[Λθ(τ) fθ,τ (r)]

∂θ
drdτ, θ ∈ Θ, (1)

where [t0, t] denotes the time interval during which the data is acquired and the integration
variable r denotes the 2D Cartesian coordinates (x, y). In the above equation, no specific
assumptions have been made regarding the functional form of fθ,τ or Λθ . Therefore, the
above expression of I(θ) is applicable to a wide variety of imaging conditions, such as coher-
ent/incoherent/partially-coherent light sources, polarized illumination and detection, etc. We
note that the above equation is applicable to both stationary and moving objects, since we
allow the density fθ,τ , which describes the image profile of the object, to vary in time.

In order to quantify and compare the performance of the various experimental approaches
considered in this paper, we make use of the Cramer-Rao inequality (Rao 1965), which states
that for any unbiased estimator θ̂ of a n × 1 vector parameter θ, Cov(θ̂) ≥ I−1(θ), θ ∈ Θ ,
where I(θ) denotes the Fisher information matrix and it is assumed that the inverse exists.
From this inequality, it immediately follows that the i th leading diagonal entry of the inverse
Fisher information matrix ([I−1(θ)]i i ) provides a lower bound to the variance of the estimates
of the i th component of the parameter vector (θi ), i = 1, . . . , n.

Throughout the paper, we adopt a parameterization in which the location of the two point
sources are specified in terms of their Cartesian coordinates, i.e., (x01, y01) and (x02, y02).
Hence the expressions for the Fisher information matrix will be given in terms of this parame-
terization. As we will see in subsequent sections, this parameterization not only simplifies the
derivation of the Fisher information matrix for the different experimental approaches consid-
ered here, but it also helps in the analysis of the relationship between the distance estimation
problem and the localization accuracy problem. To derive the Cramer-Rao lower bound for
the distance parameter d , we require the analytical expression for the (inverse) Fisher infor-
mation matrix of d . For this, we make use of the following coordinate transformation formula
(Kay 1993)

I−1(d) =
(

∂d

∂θ

)
I−1(θ)

(
∂d

∂θ

)T

, d ∈ [0,∞), (2)

where θ = (x01, y01, x02, y02), I−1(θ) denotes the inverse Fisher information matrix corre-
sponding to θ , and

(
∂d

∂θ

)T

:= 1

d

⎛
⎜⎜⎝

−(x02 − x01)

−(y02 − y01)

(x02 − x01)

(y02 − y01)

⎞
⎟⎟⎠ , θ ∈ Θ.

3 Fisher information matrix for the simultaneous detection approach

In the simultaneous detection approach, the acquired image is assumed to contain the signal
from both objects. Hence the photon detection rate Λθ and the photon distribution profile
fθ,τ can be written as

Λθ(τ) = Λθ,1(τ ) + Λθ,2(τ ), θ ∈ Θ, τ ≥ t0, (3)
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fθ,τ (r)=εθ,1(τ ) fθ,τ,1(r) + εθ,2(τ ) fθ,τ,2(r), r =(x, y) ∈ C, θ ∈ Θ, τ ≥ t0, (4)

where C denotes the detector, Λθ,1,Λθ,2 and fθ,τ,1, fθ,τ,2 denote the photon detection
rates and the photon distribution profiles of the two objects, respectively, and εθ,i (τ ) :=
Λθ,i (τ )/(Λθ,1(τ ) + Λθ,2(τ )), θ ∈ Θ, τ ≥ t0, i = 1, 2.

The results in this section are divided into two parts. In Sect. 3.1, we first derive general
expressions of the Fisher information matrix for the simultaneous detection approach (The-
orem 1). Here, we make no assumptions regarding the specific functional form of the photon
detection rates Λθ,i or the photon distribution profiles fθ,τ,i , i = 1, 2. Hence these results
provide a general framework that is applicable to a wide variety of imaging scenarios.

In Sect. 3.2, we consider a concrete scenario (spatially invariant case) in optical microscopy
where we assume a specific functional form for the photon distribution profiles fθ,τ,i , i =
1, 2, which are expressed as a scaled and shifted version of the image of the objects. We then
derive the Fisher information matrix for this functional form of fθ,τ,i , i = 1, 2 (Theorem 2).
As will be shown, the resulting Fisher information matrix can be expressed as a product
decomposition of the form DC DT , where D is an orthogonal matrix and C is a positive
semidefinite matrix. Under weak assumptions of spatial symmetry for the image of the
objects (which are typically satisfied in most situations), the product decomposition greatly
simplifies the calculation of the Fisher information matrix and also facilitates the derivation
of an analytical expression for the inverse Fisher information matrix (Corollary 1).

3.1 General expression of the Fisher information matrix

In many imaging applications, the unknown parameter vector θ can be expressed as θ =
(θ f , θΛ), where θ f denotes the spatial component and θΛ denotes the temporal component.
The spatial component θ f typically consists of parameters that specify the location of one or
more objects and the temporal component θΛ consists of parameters that specify the photon
detection rates of the objects.

In the following theorem, we express the Fisher information matrix as a 2 × 2 block
matrix. The terms in the leading diagonal (i.e., Ssim and Tsim) correspond to the Fisher
information matrix of the spatial θ f and temporal θΛ components while the terms in the
off-diagonal (i.e., Rsim and RT

sim) correspond to the coupling between the spatial and tem-
poral components. We derive expressions for three practical scenarios. In the first scenario,
we derive a general expression for the Fisher information matrix. In the second scenario, we
consider the case where the photon detection rates are related to one another by a known
scalar function β, i.e., β(τ)Λθ,1(τ ) = Λθ,2(τ ) for τ ≥ t0 and θ ∈ Θ , where β(τ) ≥ 0.
In some applications, the photon detection rates of the objects are assumed to be the same,
i.e., Λθ,1(τ ) = Λθ,2(τ ), τ ≥ t0. We note that this condition is a special case of the second
scenario considered here with β(τ) = 1, τ ≥ t0. For this scenario we show that the Fisher
information matrix becomes block diagonal, which implies that the spatial θ f and temporal
θΛ components become decoupled. We note that this decoupling simplifies the subsequent
analysis of the Fisher information matrix. In the third scenario, we assume that the photon
distribution profiles of the objects are equal, i.e., fθ,τ,1(r) = fθ,τ,2(r) for r ∈ C, θ ∈ Θ and
τ ≥ t0. This scenario arises in many applications, where the image profiles of the objects are
assumed to be identical. For this scenario also we show that the Fisher information matrix
becomes block diagonal.

Theorem 1 Let Θ ⊆ R
n. For θ := (θ f , θΛ) ∈ Θ , let G(Λθ , { fθ,τ }τ≥t0 , C) be an image

detection process, where Λθ and fθ,τ are defined in Eqs. 3 and 4, respectively. Assume that
for θ ∈ Θ, τ ≥ t0 and i = 1, 2,
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A1 (∂ fθ,τ,i (r)/∂θΛ) = 0, r ∈ C,
A2 (∂Λθ,i (τ )/∂θ f ) = 0.

1. Then the Fisher information matrix of G corresponding to the acquisition time interval
[t0, t] for the simultaneous detection approach is given by

Isim(θ) =
⎡
⎣ Ssim(θ) Rsim(θ)

RT
sim(θ) Tsim(θ)

⎤
⎦, θ ∈ Θ,

where for θ ∈ Θ ,

Ssim(θ) :=
t∫

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂ fθ,τ (r)

∂θ f

)T
∂ fθ,τ (r)

∂θ f
drdτ, (5)

Rsim(θ) :=
t∫

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂ fθ,τ (r)

∂θ f

)T
∂ fθ,τ (r)

∂θΛ

drdτ, (6)

Tsim(θ) :=
t∫

t0

1

Λθ(τ)

(
∂Λθ(τ)

∂θΛ

)T
∂Λθ (τ)

∂θΛ

dτ

+
t∫

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂ fθ,τ (r)

∂θΛ

)T
∂ fθ,τ (r)

∂θΛ

drdτ. (7)

2. For β(τ) ≥ 0, τ ≥ t0, assume, in addition to A1 and A2, that

A3 β(τ)Λθ,1(τ ) = Λθ,2(τ ), τ ≥ t0 and θ ∈ Θ .

Then the Fisher information matrix of G corresponding to the acquisition time interval
[t0, t] for the simultaneous detection approach is given by

Isim(θ) =
[

S̃sim(θ) 0
0 T̃sim(θ)

]
, θ ∈ Θ,

where for θ ∈ Θ ,

S̃sim(θ) :=
t∫

t0

∫

C

Λθ,1(τ )

fθ,τ,1(r) + β(τ) fθ,τ,2(r)

(
∂[ fθ,τ,1(r) + β(τ) fθ,τ,2(r)]

∂θ f

)T

×∂[ fθ,τ,1(r) + β(τ) fθ,τ,2(r)]
∂θ f

drdτ,

T̃sim(θ) :=
t∫

t0

1 + β(τ)

Λθ,1(τ )

(
∂Λθ,1(τ )

∂θΛ

)T
∂Λθ,1(τ )

∂θΛ

dτ.

3. For θ ∈ Θ and τ ≥ t0, assume, in addition to A1 and A2, that

A4 fθ,τ,1(r) = fθ,τ,2(r) for r ∈ C.

Then the Fisher information matrix of G corresponding to the acquisition time interval
[t0, t] for the simultaneous detection approach is given by
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Isim(θ) =
[

S̄sim(θ) 0
0 T̄sim(θ)

]
, θ ∈ Θ,

where for θ ∈ Θ ,

S̄sim(θ) :=
t∫

t0

Λθ(τ)dτ

∫

C

1

fθ,τ,1(r)

(
∂ fθ,τ,1(r)

∂θ f

)T
∂ fθ,τ,1(r)

∂θ f
dr,

T̄sim(θ) :=
t∫

t0

1

Λθ(τ)

(
∂Λθ (τ)

∂θΛ

)T
∂Λθ(τ)

∂θΛ

dτ.

Proof See Sect. A.1 in Appendix for proof. ��
In many applications it is important to know whether the Fisher information matrix I(θ)

is (block) diagonal. For instance, it is well known that under certain conditions the max-
imum likelihood estimator of a vector parameter θ is asymptotically Gaussian distributed
with mean θ and covariance I−1(θ) (see Van des Bos 2007). From the above Theorem, we
see that if the photon detection rates can be expressed as a scalar function of one another or if
the photon distribution profiles are identical, then I(θ) becomes block diagonal. This implies
that the maximum likelihood estimates of the spatial (θ f ) and temporal (θΛ) components of
the unknown vector parameter θ are asymptotically independent. Moreover, if an efficient
estimator of θ exists (i.e., an estimator whose covariance matrix is equal to I−1(θ), θ ∈ Θ),
then the estimates of θ f and θΛ are uncorrelated. Another implication of block diagonality is
that the Cramer-Rao lower bound of the spatial component θ f is independent of the number
of unknown parameters in the temporal component θΛ, and vice versa.

Remark 1 In result 2 of Theorem 1, we showed that the Fisher information matrix Isim(θ)

is block diagonal if β(τ)Λθ,1(τ ) = Λθ,2(τ ) for τ ≥ t0 and θ ∈ Θ , where β(τ) ≥ 0, τ ≥ t0,
is a known scalar function. We note that Isim(θ) will be block diagonal when Λθ,1(τ ) =
β(τ)Λθ,2(τ ), τ ≥ t0 and θ ∈ Θ for β(τ) ≥ 0, τ ≥ t0.

3.2 Fisher information matrix for the spatially invariant case

We next investigate a concrete scenario in optical microscopy where the image of the objects
is spatially invariant, and we derive the Fisher information matrix for the simultaneous detec-
tion approach. Here, we introduce a specific parameterization of the spatial component θ f

of the parameter vector θ given by θ f = θc = (x01, y01, x02, y02) ∈ Θc, where (x01, y01)

and (x02, y02) denote the Cartesian coordinates of the two objects, and Θc is the parameter
space that is an open subset of R

4. We consider the infinitely large detector C = R
2. For any

given imaging condition, this infinite detector provides the best case scenario, where all the
photons that reach the detector plane are detected.

In many microscopy applications, the image of an object can be considered to be invariant
with respect to shifts in the object location (Young 1996). In the present context, the photon
distribution profile fθc,τ,i , i = 1, 2, can be expressed as a scaled and shifted version of the
image of the object and is given by

fθc,τ,i (r) = 1

M2 qi

( x

M
− x0i ,

y

M
− y0i

)
, r = (x, y) ∈ R

2, (8)

where θc ∈ Θc, τ ≥ t0, i = 1, 2, M denotes the total lateral magnification of the optical
system, and qi denotes the image function of the i th object, i = 1, 2. An image function q is
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defined as the image of an object at unit magnification when the object is located at the origin
of the coordinate axes. By definition, fθc,τ,i , i = 1, 2, is assumed to satisfy the regularity
conditions that are necessary for the calculation of the Fisher information matrix. Hence we
impose appropriate conditions on the image functions, which are given in Definition 6 (see
Appendix).

In many imaging experiments, the temporal component θΛ of the vector parameter θ is
either assumed to be known or the photon detection rates are unknown but assumed to be
equal (Λθ,1(τ ) = Λθ,2(τ ), τ ≥ t0). In the former case, the Fisher information matrix of the
simultaneous detection approach Isim(θ) trivially reduces to that of the spatial component
θ f i.e., Isim(θ) = Ssim(θ), θ ∈ Θ . In the latter case, the Fisher information matrices of the
spatial and temporal components are decoupled as shown in Result 2 of Theorem 1. There-
fore in this section, we focus our analysis on the Fisher information matrix for the spatial
component θ f .

Without loss of generality, we assume that the photon detection rates of the objects are
known, and hence we have

Λθc (τ ) = Λ1(τ ) + Λ2(τ ), τ ≥ t0, θc ∈ Θc, (9)

where Λ1 and Λ2 denote the photon detection rates of the two objects. Further, the photon
distribution profile fθ,τ is given by

fθc,τ (r) := ε1(τ ) fθc,τ,1(r) + ε2(τ ) fθc,τ,2(r), r ∈ R
2, θc ∈ Θc, τ ≥ t0, (10)

where εi (τ ) = Λi (τ )/(Λ1(τ ) + Λ2(τ )), and fθc,τ,i is given by Eq. 8 for i = 1, 2, τ ≥ t0
and θc ∈ Θc.

In the next Theorem we derive an analytical expression of the Fisher information matrix
for the spatial component θc pertaining to the specific parameterization of the photon detec-
tion rate Λθc and the photon distribution profile fθc,τ given in Eqs. 9 and 10, respectively.
Here, we express the Fisher information matrix Ssim(θc) as a 2×2 block matrix. As we shall
see in Sect. 4, this expression will be used to analyze its relationship with the Fisher informa-
tion matrix for the localization accuracy problem. We also derive a product decomposition
for Ssim(θc). This decomposition simplifies the calculation of the inverse of Ssim(θc) and
enables us to obtain an analytical expression for the same (Corollary 1).

Theorem 2 Let Θc ⊆ R
4. For θc = (x01, y01, x02, y02) ∈ Θc, let G(Λθc , { fθc,τ }τ≥t0 , C) be

an image detection process, where Λθ and fθ,τ are given by Eqs. 9 and 10, respectively.

1. For θc ∈ Θc, the Fisher information matrix of the spatial component corresponding to
the acquisition time interval [t0, t] for the simultaneous detection approach is given by

Ssim(θc) =
(

K11(θc) K12(θc)

KT
12(θc) K22(θc)

)
, (11)

where for θc ∈ Θc and i, j = 1, 2,

Ki j (θc) :=
t∫

t0

∫

R
2

Λi (τ )Λ j (τ )

Λ1(τ )q1(x − x01, y − y01) + Λ2(τ )q2(x − x02, y − y02)

×
(

∂qi (x−x0i ,y−y0i )
∂x

∂q j (x−x0 j ,y−y0 j )

∂x
∂qi (x−x0i ,y−y0i )

∂x
∂q j (x−x0 j ,y−y0 j )

∂y
∂qi (x−x0i ,y−y0i )

∂y
∂q j (x−x0 j ,y−y0 j )

∂x
∂qi (x−x0i ,y−y0i )

∂y
∂q j (x−x0 j ,y−y0 j )

∂y

)
dxdydτ.

(12)
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2. Let d = √
(x02 − x01)2 + (y02 − y01)2 and define Θ0

c = {(x01, y01, x02, y02) |
(x01, y01) = (x02, y02)}. Then for θc ∈ Θc\Θ0

c , the Fisher information matrix Ssim(θc)

given in result 1 of this Theorem can be written as

Ssim(θc) = D(θc)C(θc)DT (θc),

where for θc ∈ Θc\Θ0
c

D(θc) :=
(

D̃(θc) 0
0 D̃(θc)

)
, D̃(θc) := 1

d

(
x02 − x01 −(y02 − y01)

y02 − y01 x02 − x01

)
, (13)

C(θc) :=
(

C11(θc) C12(θc)

CT
12(θc) C22(θc)

)
, (14)

Ci j (θc) :=
t∫

t0

∫

R
2

Λi (τ )Λ j (τ )

Λ1(τ )q1(x + d
2 , y) + Λ2(τ )q2(x − d

2 , y)

×
(

q ′
i,x (x, y)q ′

j,x (x, y) q ′
i,x (x, y)q ′

j,y(x, y)

q ′
i,x (x, y)q ′

j,y(x, y) q ′
i,y(x, y)q ′

j,y(x, y)

)
dxdydτ, i, j =1, 2, (15)

with

q ′
i,ζ (x, y) :=

⎧⎨
⎩

∂q1(x+ d
2 ,y)

∂ζ
, i = 1, (x, y) ∈ R

2,

∂q2(x− d
2 ,y)

∂ζ
, i = 2, (x, y) ∈ R

2,
ζ ∈ {x, y}. (16)

3. Assume that q1 and q2 are symmetric along the y axis with respect to y = 0,
i.e., qi (x, y) = qi (x,−y), (x, y) ∈ R

2 and i = 1, 2. Then for θc ∈ Θc\Θ0
c and

i = 1, 2, Ci j (θc) is given by

Ci j (θc) :=
t∫

t0

∫

R
2

Λi (τ )Λ j (τ )

Λ1(τ )q1(x + d
2 , y) + Λ2(τ )q2(x − d

2 , y)

×
(

q ′
i,x (x, y)q ′

j,x (x, y) 0
0 q ′

i,y(x, y)q ′
j,y(x, y)

)
dxdydτ. (17)

Proof Substituting for fθc,τ and Λθc in the expression for I f f (θ) given by Eq. 5 (see result
1 of Theorem 1) and using Lemma 2, we obtain result 1. For proof of results 2 and 3, please
see Sect. A.2 in Appendix. ��

In result 1 of the above Theorem, we obtained a block matrix representation of the Fisher
information matrix Ssim(θc). The leading diagonal terms correspond to the individual contri-
butions from the two objects and the off-diagonal terms correspond to the coupling between
the two objects. As we will show in the next Section, the coupling plays an important role in
the analysis of the relationship between the Fisher information matrix for the simultaneous
detection approach and that for the localization accuracy problem.

The product decomposition D(θc)C(θc)DT (θc) of Ssim(θc) that we obtained in result 2 of
the above Theorem has an interesting structure. The matrix C(θc) is a special case of Ssim(θc)

where the y coordinates of the two objects are assumed to be the same, i.e., y02 = y01, and the
x coordinates of the two objects are equidistant from the origin. Note that the matrix D(θc) is
orthogonal (i.e., D−1(θc) = DT (θc)). It should be pointed out that the product decomposition
holds only when (x01, y01) 
= (x02, y02), i.e., when the distance d is not equal to zero, since
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at (x01, y01) = (x02, y02) the matrix D(θc) is not defined. An implication of this product
decomposition is that for a given θ s

c = (xs
01, ys

01, xs
02, ys

02) such that (xs
01, ys

01) 
= (xs
02, ys

02),
the Fisher information matrix for θ s

c can be obtained by first computing the Fisher informa-
tion matrix for (− d

2 , 0, d
2 , 0) and then pre- and post-multiplying it with D(θ s

c ) and DT (θ s
c ),

respectively, where d denotes the distance between the two objects. In many practical situa-
tions, the image of the objects is symmetric along the y (and the x) axis. As shown in result
3 of Theorem 2, when this condition is satisfied, several entries of the matrix C(θc) become
zero, which in turn simplifies the calculation of C(θc).

Remark 2 Consider the scenario when the distance between the two objects is zero, i.e.
x01 = x02 and y01 = y02. For this scenario, the Fisher information matrix Ssim(θc) given in
result 1 of Theorem 2 is singular, if the photon detection rates and the image functions of
the two objects are identical, i.e., Λ1 = Λ2 and q1 = q2 (also see Sect. 4.1). However, for
distinct photon detection rates and image functions, Ssim(θc) will, in general, be invertible
even when the distance between the objects is zero.

In the following Corollary, we make use of the product decomposition of the Fisher infor-
mation matrix Ssim(θc) and the orthogonality of D(θc) to obtain an analytical expression for
the inverse of Ssim(θc) when the distance d between the objects is non-zero.

Corollary 1 Define Θ0
c = {(x01, y01, x02, y02) | (x01, y01) = (x02, y02)}. For θc ∈ Θc\Θ0

c ,
let Ssim(θc)be given by result 2 of Theorem 2, D(θc)be given by Eq. 13 and Ci j (θc), i = 1, 2,
be given by Eq. 17. Assume that q1 and q2 are symmetric along the y axis with respect to
y = 0, i.e., qi (x, y) = qi (x,−y), (x, y) ∈ R

2, i = 1, 2. Then for θc ∈ Θc\Θ0
c , we have

S−1
sim(θc) = D(θc)H(θc)DT (θc),

where for θc ∈ Θc\Θ0
c ,

H(θc) =
(

Γ (θc) 0
0 Γ (θc)

)(
C22(θc) −C12(θc)

−C12(θc) C11(θ)

)(
Γ (θc) 0

0 Γ (θc)

)
,

Γ (θc) :=
(

1√
Σ11(θc)

0

0 1√
Σ22(θc)

)
, (18)

with

Σi i (θc) := [C11(θc)]i i [C22(θc)]i i − ([C12(θc)]i i )
2, i = 1, 2, θc ∈ Θc\Θ0

c . (19)

Proof The expression for S−1
sim(θc) is obtained by making use of the product decomposition

of Ssim(θc) and using the expression for the inverse of a block matrix (Zhang 1999). ��

4 Simultaneous detection approach and the localization accuracy problem

In many optical microscopy applications, one of the central questions concerns the accuracy
with which the location of a microscopic object (e.g., single molecule, biological sub-
cellular structure such as a vesicle) can be determined, since this has several implications
on the nature and type of studies that can be carried out (see Wong et al. 2011; Ober et al.
2004b). The Fisher information matrix for the problem of estimating the location of the i th
object from its image is given by (see Ram et al. 2006b; Ober et al. 2004b)
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Qi :=
t∫

t0

Λi (τ )dτ

∫

R
2

1

qi (x, y)

⎛
⎜⎝

(
∂qi (x,y)

∂x

)2
∂qi (x,y)

∂x
∂qi (x,y)

∂y

∂qi (x,y)
∂x

∂qi (x,y)
∂y

(
∂qi (x,y)

∂y

)2

⎞
⎟⎠ dxdy, (20)

where i = 1, 2 and qi and Λi denote the image function and the photon detection rate of
the i th object, respectively, for i = 1, 2. The above equation was derived using the same
stochastic framework used in this paper and it is assumed that the image contains signal from
only the i th object, i = 1, 2.

In the following theorem we show how the Fisher information matrix Ssim(θc) for the
spatially invariant case of the simultaneous detection approach (Theorem 2) is related to
the Fisher information matrix for the localization accuracy problem. Specifically, we show
that when the distance tends to infinity, the Fisher information matrix Ssim(θc) becomes
equivalent to that of two independent localization accuracy problems.

Theorem 3 For θc = (x01, y01, x02, y02) ∈ Θc, let Ssim(θc) be given by result 1 of Theo-
rem 2. For i = 1, 2, let Qi be given by Eq. 20. Let Λ1 and Λ2, and q1 and q2 denote the
photon detection rates and the image functions of the two objects, respectively. Assume that
for i = 1, 2, ζ ∈ {x, y} and y ∈ R,

A1 limx→±∞ qi (x, y) = 0,
A2 limx→±∞ ∂q2(x,y)

∂ζ
= 0.

Then

Sin f
sim := lim

x02→∞ Ssim(θc) = lim
x02→∞

(
K11(θc) K12(θc)

KT
12(θc) K22(θc)

)
=

⎛
⎝Q1 0

0 Q2

⎞
⎠,

where Ki j (θc), i, j = 1, 2 is given by Eq. 12.

Proof See Sect. A.3 in Appendix for proof. ��
We would like to point out that in deriving the above result we assumed x02 to go to

infinity. In general, the above result will hold when any one of the coordinates i.e., x01, y01

or y02 is assumed to go to infinity. From the above Theorem we see that as the distance of
separation becomes sufficiently large, the leading diagonal terms (K11(θc) and K22(θc)) of
the Fisher information matrix Ssim(θc) for the simultaneous detection approach reduce to
that of the localization accuracy problem for the two point sources (i.e., Q1 and Q2), and
the off-diagonal term K12(θc) goes to zero. Note that the off-diagonal term represents the
coupling between the two point sources.

From a practical standpoint, the knowledge of the behavior of the off-diagonal term as a
function of the distance would enable the experimenter to determine whether it is necessary
to calculate the full Fisher information matrix for the simultaneous detection approach or to
only calculate the Fisher information matrix for the localization accuracy problem. As we
will see in the next section the latter is typically much easier to calculate, since a closed form
analytical expression can be obtained.

4.1 Example 1

We next illustrate the results derived in the prior sections by considering a specific image
function and calculate the Fisher information matrix for the simultaneous detection approach
and for the localization accuracy problem. Here, we make use of the Cramer-Rao inequal-
ity to obtain a lower limit to the accuracy (i.e., standard deviation) of the estimates of the
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parameters of interest (see below). We assume the photon detection rates to be constant and
equal i.e., Λ1(τ ) = Λ2(τ ) = Λ0, τ ≥ t0. We also assume the image functions to be identical
and be given by the Airy profile, which, according to optical diffraction theory describes the
image of an in-focus point source that is illuminated by incoherent, unpolarized light (Born
and Wolf 1999). The analytical expression for the image functions can be written as

q1(x, y) = q2(x, y) :=
J 2

1

(
2πna

λ

√
x2 + y2

)

π(x2 + y2)
, (x, y) ∈ R

2, (21)

where J1 denotes the first order Bessel function of the first kind, na > 0 denotes the numerical
aperture of the objective lens used to image the point source and λ > 0 denotes wavelength
of the detected photons.

By making use of the Cramer-Rao inequality, we define three different quantities, namely
the 2D fundamental resolution measure (FREM) for the simultaneous detection approach,
the limit to the accuracy of the location coordinates for the simultaneous detection approach,
and the fundamental limit to the localization accuracy. Then in Corollary 2, we consider two
limiting cases of the distance parameter d , i.e., d → 0 and d → ∞, and derive analyti-
cal expressions of the 2D FREM for the simultaneous detection approach. In Sect. 4.1.1,
we numerically calculate the above quantities for different values of d and discuss their
implications.

Definition 1 The 2D FREM for the simultaneous detection approach is defined as δsim
d :=√

I−1
sim(d), d ∈ [0,∞), where I−1

sim(d) is obtained by substituting S−1
sim(θc) (Corollary 1) in

the transformation formula given by Eq. 2.

Definition 2 The limit to the accuracy of the location coordinates x0i and y0 j for the simul-

taneous detection approach are defined as δsim
x0i

:=
√

[S−1
sim(θc)](2i−1)(2i−1) and δsim

y0i
:=√

[S−1
sim(θc)](2 j)(2 j), respectively, where i, j = 1, 2 and S−1

sim(θc) denotes the inverse Fisher
information matrix given by Corollary 1 for θc = (x01, y01, x02, y02) ∈ Θc.

Definition 3 The fundamental limit to the localization accuracy of the x-coordinate of the

i th object is defined as δ
loc,i
x :=

√
[Q−1

i ]11, i = 1, 2, and for the y-coordinate it is defined

as δ
loc,i
y :=

√
[Q−1

i ]22, i = 1, 2, where Qi is given by Eq. 20, for i = 1, 2.

For the specific image functions and photon detection rates considered in this example, it
can be shown that (see Ober et al. 2004b).

δloc = δloc,i
x = δloc,i

y := λ

2πna
√

Λ0(t − t0)
, i = 1, 2. (22)

Corollary 2 For d ∈ [0,∞), let δsim
d denote the 2D FREM for the simultaneous detection

approach. For i = 1, 2, let Λi and qi denote the photon detection rate and the image function
of the i th object, respectively.

1. Assume that q1(x, y) = q2(x, y), (x, y) ∈ R
2 and Λ1(τ ) = λ2(τ ), τ ≥ t0. Then

limd→0δ
sim
d = ∞.

2. For i = 1, 2, assume that qi is radially symmetric, i.e., there exists a qi such that
qi (x, y) := qi (

√
x2 + y2), (x, y) ∈ R

2 and i = 1, 2. Then

lim
d→∞ δsim

d =
√(

δloc
rs,1

)2 +
(
δloc

rs,2

)2
,

123



516 Multidim Syst Sign Process (2013) 24:503–542

where for i = 1, 2,

δloc
rs,i := 1√

πκi
∫ t

t0
Λi (τ )dτ

with κi :=
∞∫

0

1

qi (r)

(
∂qi (r)

∂r

)2

rdr. (23)

1. Let δloc be given by Eq. 22. For i = 1, 2, let qi be an Airy profile that is given by Eq. 21
and Λ1(τ ) = Λ2(τ ) = Λ0, τ ≥ t0. Then limd→∞δsim

d = √
2δloc.

Proof 1. By definition δsim
d =

√
I−1

sim(d), where I−1
sim(d) is obtained by substituting S−1

sim(θc)

(Corollary 1) in the transformation formula in Eq. 2. When d → 0 then x01 → x02 and
y02 → y02, and from Remark 2 it immediately follows that Ssim(θc) is singular, where
θc = (x01, y01, x02, y02) ∈ Θc and Ssim(θc) is given by Eq. 5. From this the result
follows.

2. Without loss of generality, we assume that d → ∞ implies x02 → ∞. For θc =
(x01, y01, x02, y02) ∈ Θc, consider the term Ssim(θc) which is given by Eq. 5. Using
Theorem 3 and Lemma 3 (see Appendix), we have

lim
x02→∞ Ssim(θc) =

[
Q1 0
0 Q2

]
=

⎡
⎢⎣

1(
δloc

rs,1

)2 12×2 0

0 1(
δloc

rs,2

)2 I2×2

⎤
⎥⎦, (24)

where Qi , i = 1, 2, denotes the Fisher information matrix for the localization accuracy
problem (Eq. 20) and 12×2 denotes the 2 × 2 identity matrix. Define Δx := x02 − x01

and Δy := y02 − y01. Consider the term

lim
x02→∞

(
∂d

∂θc

)T

= lim
x02→∞

1

d

⎛
⎜⎜⎝

−(x02 − x01)

−(y02 − y01)

(x02 − x01)

(y02 − y01)

⎞
⎟⎟⎠ = lim

x02→∞
1√

Δ2
x + Δ2

y

⎛
⎜⎜⎝

−Δx

−Δy

Δx

Δy

⎞
⎟⎟⎠

= lim
x02→∞

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1√
1+ Δ2

y

Δ2
x

− 1√
Δ2

x
Δ2

y
+1

1√
1+ Δ2

y

Δ2
x

1√
Δ2

x
Δ2

y
+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

−1
0
1
0

⎞
⎟⎟⎠. (25)

Using Eqs. 24 and 25 in Eq. 2 and taking the limit x02 → ∞, we have

lim
x02→∞ I−1

sim(d) = (−1 0 1 0
)
⎡
⎢⎣

1(
δloc

rs,1

)2 12×2 0

0 1(
δloc

rs,2

)2 I2×2

⎤
⎥⎦

⎛
⎜⎜⎝

−1
0
1
0

⎞
⎟⎟⎠

=
(
δloc

rs,1

)2 +
(
δloc

rs,2

)2
.

From this the result follows.
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3. The Airy profile given in Eq. 21 is radially symmetric. Hence substituting for qi and
Λi , i = 1, 2, in Eq. 23, we have δloc

rs,1 = δloc
rs,2 = δloc and from this the result immedi-

ately follows. ��

4.1.1 Results

Here we numerically calculate the various quantities defined in Definitions 1–3. For this
purpose, we assume the two point sources to be equidistant from the origin and to lie on a
line segment that passes through the origin and subtends an angle of 45◦ with respect to the x-
axis. We choose this specific configuration, since some of the calculated values (i.e., particular
δsim

x0i
and δsim

y0i
, i = 1, 2) become equal, which simplifies the presentation of the results.

Figure 2 shows the behavior of the 2D FREM δsim
d as a function of the distance of sep-

aration. The figure also shows the limit to the accuracy of x01 and x02 for the simultaneous
detection approach, i.e., δsim

x01
and δsim

x02
, respectively, (the result for y01 and y02 are analo-

gous) as well as the fundamental limit to the localization accuracy δloc (Eq. 22). According to
Rayleigh’s resolution criterion, two identical point sources are said to be resolved in a micro-
scope if their distance of separation is greater than or equal to 0.61λ/na , where na denotes
the numerical aperture of the microscope and λ denotes the wavelength of light emitted by the
point sources. For the specific numerical values considered in Fig. 2, Rayleigh’s resolution
limit is ≈219 nm, and according to this criterion distances below 219 nm cannot resolved.
In contrast, in Fig. 2 we see that the numerical value of the 2D FREM δsim

d is relatively
small for a range of distances below the classical resolution limit of 219 nm. An immediate
implication of this result is that if there exists an efficient estimator, then these distances can
be determined with an accuracy as predicted by δsim

d .
Note that as the distance of separation becomes very small, δsim

d becomes numerically large
thereby predicting poor accuracy in estimating the distance of separation. This is expected
since under the assumptions of identical photon detection rates and image functions, when
the distance d goes to zero the corresponding Fisher information matrix becomes singular
and the 2D FREM δsim

d becomes infinitely large (result 1 of Corollary 2). As the distance of
separation increases, δsim

d becomes smaller thereby predicting a relatively high accuracy in
determining the distance between the two point sources. In particular, for large distances δsim

d
approaches the fundamental limit to the localization accuracy δloc. This is expected, as it was
shown in Theorem 3 that when d → ∞, the Fisher information matrix for the simultaneous
detection approach reduces to an expression that is equivalent to two independent localization
accuracy problems. For the specific image functions considered here, δsim

d = √
2δloc in the

limit d → ∞ (result 2 of Corollary 2).
The results for δsim

x01
and δsim

x02
are also analogous to that of δsim

d . Note that although δsim
x01

(δsim
x02

) and δloc provide lower bounds to the accuracy with which the x-coordinate of a point
source can be determined, their behaviors are very different. In particular, δsim

x01
and δsim

x02
depend on the distance and become infinitely large in the limit d → 0 (see Remark 2),
whereas δloc is independent of the distance and remains finite for all values of d .

The above discussion raises the question that under what conditions δsim
x01

and δsim
x02

, and
more importantly δsim

d will remain finite as the distance goes to zero. In the next Section, we
investigate this problem by considering a specical case of the simultaneous detection approach
where we assume that one of the location coordinates is known. As we will see in Sect. 5.1,
for this special case the limit to the accuracy of the distance d remains finite as d → 0 for
the specific image profiles and photon detection rates considered in the present example.
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Fig. 2 Behavior of the 2D FREM δsim
d and the limit to the accuracy of x01 and x02, i.e., δsim

x01
and δsim

x02
,

respectively, for the simultaneous detection approach. a shows δsim
d (open diamond) and δsim

x01
(open circle)

(the results for δsim
y01

are similar) for a distance range of 1–300 nm, while b shows the same for a distance

range of 1–50 nm. c shows δsim
d (open diamond) and δsim

x02
(open circle) (the results for δsim

y02
are similar) for a

distance range of 1–300 nm, while d shows the same for a distance range of 1–50 nm. In all the panels, solid
line denotes the fundamental limit to the localization accuracy δloc (Eq. 22). In a, c, the vertical dashed line
denotes the classical Rayleigh’s resolution limit, which is given by 0.61λ/na . For all the plots, the numerical
aperture is set to na = 1.45, the wavelength of the detected photons is set to λ = 520 nm, the photon detection
rate for both point sources is set to Λ0 = 3000 photons/s and the acquisition time interval is set to [0,1]
s. For each value of distance, the location coordinates are set to (x01, y01) = −(0.5d cos φ, 0.5d sin φ) and
(x02, y02) = (0.5d cos φ, 0.5d sin φ), with φ = π/4 for all values of d. For the above numerical values, the
Rayleigh’s resolution limit is ≈219 nm

5 Special case of the simultaneous detection approach - location of one of the objects is
known

It has been shown experimentally that distances well below the classical resolution criteria
(e.g., Rayleigh’s resolution criterion) can be resolved in a regular optical microscope when
the location coordinates of one of the point sources is known a priori (Ram et al. 2006a;
Gordon et al. 2004; Qu et al. 2004). For example, in a concrete experimental setting such
a scenario arises when one wishes to study the interaction between a stationary object and
a slow moving object. In many cases, the location coordinates of the stationary object can
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be determined a priori (for instance from an image that only contains the stationary object)
and therefore can be assumed to be known. Thus an important question then arises as to how
accurately the distance between the two objects can be determined when the location of one
of the objects is known. Here we address this problem by deriving the Fisher information
matrix for this specific scenario.

For the present discussion, we assume that the acquired data consists of a pair of images,
where one of the images contains photons from only one of the objects (for example, the
stationary one) and the other image contains photons from both objects. Here, we assume
that the location coordinates (x01, y01) of object 1 is determined from the first image and the
location coordinates (x02, y02) of object 2 is determined from the second image. In the fol-
lowing Theorem, we derive the expression for the Fisher information matrix for the problem
of estimating the location coordinates of the objects from such a pair of images. We assume
that the photon detection rate of the objects is known. Further, we also assume the spatially
invariant case (analogous to Sect. 3.2), where the photon distribution profile of the i th object
fθ,τ,i , i = 1, 2, is expressed as a scaled and shifted version of the image of that object (see
Eq. 8).

As we will show, the Fisher information matrix reduces to that of two independent locali-
zation accuracy problems. We also show that the Fisher information matrix is invertible for all
values of the location coordinates of the two objects including when the location coordinates
are the same (i.e., when the distance equals zero).

Theorem 4 Let Θc ⊆ R
4 be open. For θc = (x01, y01, x02, y02) ∈ Θc, τ ≥ t0 and i = 1,2,

let fθc,τ,i and Λi denote the photon distribution profile and the photon detection rate of the
i th object, respectively, where fθ,τ,i is given by Eq. 8. For θc ∈ Θ and τ ≥ t0, let Λ(τ) :=
Λ1(τ )+Λ2(τ ), and fθc,τ be given by Eq. 10. For θc ∈ Θc, let G1(Λ1, { fθc,τ,1}τ≥t0 , R

2) and
G2(Λ, { fθc,τ }τ≥t0 , R

2) denote two independent image detection processes.

1. Then for the two independent image detection processes G1 and G2, the Fisher informa-
tion matrix of the spatial component corresponding to the acquisition time interval [t0, t]
for the special case of the simultaneous detection approach is given by

Ssim,sp(θc) :=
[

Q1 0
0 K22(θc)

]
, θc ∈ Θc, (26)

where Q1 is given by Eq. 20 and K22(θc), θc ∈ Θc, is given by Eq. 12.
2. For θc ∈ Θc, Ssim,sp(θc) is invertible including when (x01, y01) = (x02, y02).

Proof See Sect. A.4 in Appendix for proof. ��
From result 1 of the above Theorem we see that the Fisher information matrix for the

special case of the simultaneous detection approach is a block diagonal matrix. The first
term Q1 (Eq. 20) in the leading diagonal pertains to the Fisher information matrix for the
localization accuracy problem corresponding to the location coordinates (x01, y01) of object
1. The second term K22(θc) (Eq. 12) in the leading diagonal is a component of the Fisher
information matrix for the spatially invariant case of the simultaneous detection approach
in which both location coordinates are unknown and are determined from a single image
(Theorem 2). Importantly, this component K22(θc) is equivalent to the Fisher information
matrix of the localization accuracy problem for the location coordinates (x02, y02) of object
2 in the presence of an extraneous background signal given by Λ1q1, where Λ1 and q1 denote
the photon detection rate and the image function of object 1, respectively. In this context,
we would like to note that the effect of an extraneous background term on the localization
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accuracy problem has been extensively investigated before (Ram et al. 2006b; Ober et al.
2004b).

In result 2 of the above Theorem, we showed that the Fisher information matrix is, in
general, invertible for all values of the location coordinates of the two objects including
when (x01, y01) = (x02, y02), i.e., when the distance between the two objects is zero. This
is in contrast to the result obtained in Sect. 3.2, where we saw that the Fisher information
matrix for the simultaneous detection approach becomes singular and therefore non-invert-
ible when the distance is zero (assuming identical image profiles and photon detection rates;
see Remark 2).

This brings out a very important aspect of the analyses carried out here. Specifically,
the a priori knowledge of the location coordinates of one of the objects reduces the Fisher
information matrix of the distance estimation problem to that of two independent localization
accuracy problems. More importantly, it also removes the singularity of the Fisher informa-
tion matrix when the distance is zero. The above result also explains the prior experimental
observations of measuring nanometer scale distances well below the classical resolution
criteria in a regular optical microscope when a priori information regarding the location
coordinates of one of the objects is known (Gordon et al. 2004; Qu et al. 2004). In the next
section, we further illustrate this through a specific example where we show that the CRLB
of the distance parameter remains finite when the distance goes to zero.

We note that in the derivation of the above theorem, the Fisher information matrix for the
second image only depends on the location coordinates of object 2, since it is assumed that
the location of object 1 is known. However, since the second image contains signal from both
objects, it also provides information about the location of object 1. Hence this can be used to
improve the location estimates of object 1. A detailed analysis of such a scenario has been
previously carried out by us, where, analogous to Theorem 4, we derived the Fisher infor-
mation matrix for a pair of images but considered the case where both location coordinates
were estimated from the second image (Ram et al. 2006a).

Remark 3 The results derived in the above Theorem pertains to the Fisher information matrix
for the spatial component θ f (=θc) of the unknown parameter vector θ , and we have assumed
the temporal component θΛ of θ (and in turn the the photon detection rates of the objects)
to be known. The above results will hold even if the temporal component θΛ is unknown
provided the photon detection rates of the objects are related to one another through a scalar
function β, i.e. Λθ,1(τ ) = β(τ)Λθ,2(τ ), θ ∈ Θ and τ ≥ t0. This is due to the fact that under
this condition, the Fisher information matrix for the spatial θ f and temporal components
θΛ are decoupled (see result 2 of Theorem 1). It should be pointed out that the assumption
Λθ,1 = βΛθ,2, θ ∈ Θ is satisfied in many practical situations since the photon detection
rates of the objects are typically assumed to be the same (i.e., β = 1).

5.1 Example 2

We now illustrate the results derived in the previous section by considering a specific image
profile. Analogous to Sect. 4.1, we assume the image functions q1 and q2 to be identical
Airy profiles given by Eq. 21 and set the photon detection rates to be constant and equal,
i.e., Λ1(τ ) = Λ2(τ ) = Λ0, τ ≥ t0. We also define the 2D FREM for the special case of the
simultaneous detection approach, which we denote as δ

sim,sp
d . In Corollary 3, we consider

two limiting cases of the distance parameter d , i.e., d → 0 and d → ∞ and derive analytical
expressions for δ

sim,sp
d for the specific image functions and photon detection rates considered

here.
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Definition 4 The 2D FREM for the special case of the simultaneous detection approach is

defined as δ
sim,sp
d :=

√
I−1

sim,sp(d), d ∈ [0,∞), where Isim,sp(d) is obtained by substituting

S−1
sim,sp(θc) (result 2 of Theorem 4) in the transformation formula given by Eq. 2.

Corollary 3 For d ∈ [0,∞), let δ
sim,sp
d denote the 2D FREM for the special case of the

simultaneous detection approach. For i = 1, 2, let Λi and qi denote the photon detection
rate and the image function of the i th object, respectively. Assume that Λ1(τ ) = Λ2(τ ), τ ≥
t0, q1(x, y) = q2(x, y), (x, y) ∈ R

2, and that q1 is radially symmetric, i.e., there exists a q1

such that q1(x, y) = q1(
√

x2 + y2) for (x, y) ∈ R
2.

Then

1. limd→0 δ
sim,sp
d = √

3δloc
rs,1,

2. limd→∞ δ
sim,sp
d = √

2δloc
rs,1,

where δloc
rs,1 is given by Eq. 23.

3. Let q1 be an Airy profile that is given by Eq. 21 and Λ1(τ ) = Λ0, τ ≥ t0. Then

lim
d→0

δ
sim,sp
d = √

3δloc, lim
d→∞ δ

sim,sp
d = √

2δloc,

where δloc is given by Eq. 22.

Proof 1. By definition, q1 is radially symmetric and hence from Lemma 3 it follows that
Q−1

1 = (δloc
rs,1)

212×2, where Q1 denotes the Fisher information matrix for the localization
accuracy problem of object 1 (Eq. 20) and 12×2 denotes the 2 × 2 identity matrix. Using
this and Eq. 2, we get

(δ
sim,sp
d )2 = I−1

sim,sp(d) := ∂d

∂θc
S−1

sim,sp(θc)

(
∂d

∂θc

)T

= 1

d2

⎛
⎜⎜⎝

−(x02 − x01)

−(y02 − y01)

(x02 − x01)

(y02 − y01)

⎞
⎟⎟⎠

T (
Q−1

1 0
0 K−1

22 (θc)

)
⎛
⎜⎜⎝

−(x02 − x01)

−(y02 − y01)

(x02 − x01)

(y02 − y01)

⎞
⎟⎟⎠ (27)

= (δloc
rs,1)

2+ 1

d2

(
x02−x01 y02−y01

)
K−1

22 (θc)

(
x02 − x01

y02 − y01

)
, d ∈ [0,∞),

where Ssim,sp(θc) is given by Eq. 26 and K22(θc) is given by Eq. 12. Because the photon
detection rates and the image functions of the objects are assumed to be identical, we
have Q1 = Q2, where Qi , i = 1, 2, is given by Eq. 20. Using this, we have

lim
x01→x02,y01→y02

K22(θc)

= lim
x01→x02,y01→y02

t∫

t0

∫

R
2

Λ2
2(τ )

Λ1(τ )q1(x − x01, y − y01) + Λ2(τ )q2(x − x02, y − y02)

×
⎛
⎜⎝

(
∂q2(x−x02,y−y02)

∂x

)2
∂q2(x−x02,y−y02)

∂x
∂q2(x−x02,y−y02)

∂y

∂q2(x−x02,y−y02)
∂y

∂q2(x−x02,y−y02)
∂x

(
∂q2(x−x02,y−y02)

∂y

)2

⎞
⎟⎠ dxdydτ

= Λ0(t − t0)

2

∫

R
2

1

q2(x − x02, y − y02)
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×
⎛
⎜⎝

(
∂q2(x−x02,y−y02)

∂x

)2
∂q2(x−x02,y−y02)

∂x
∂q2(x−x02,y−y02)

∂y

∂q2(x−x02,y−y02)
∂y

∂q2(x−x02,y−y02)
∂x

(
∂q2(x−x02,y−y02)

∂y

)2

⎞
⎟⎠ dxdydτ

= 1

2
Q2 = 1

2
Q1 = 1

2(δloc
rs,1)

2
12×2, (28)

where we have used the shift-invariant property of Lebesgue integrals in the penultimate
step. Define Δx := x02 − x01 and Δy := y02 − y01. Consider the term

lim
x01→x02,y01→y02

1

d

(
x02 − x01

y02 − y01

)
= lim

x01→x02
lim

y01→y02

⎛
⎜⎜⎜⎜⎝

1√
1+ Δ2

y

Δ2
x

1√
Δ2

x
Δ2

y
+1

⎞
⎟⎟⎟⎟⎠ =

(
1
0

)
. (29)

Substituting Eqs. 28 and 29 in Eq. 27 and taking the limit d → 0, we get

lim
d→0

(
δ

sim,sp
d

)2 = lim
d→0

I−1
sim,sp(d) = lim

x01→x02,y01→y02
I−1

sim,sp(d) =
(
δloc

rs,1

)2

+ lim
x01→x02,y01→y02

1

d2 ( x02 − x01 y02 − y01 )K−1
22 (θc)

(
x02 − x01

y02 − y01

)

=
(
δloc

rs,1

)2 + 2
(
δloc

rs,1

)2
(1 0) 12×2

(
1
0

)
= 3

(
δloc

rs,1

)2
.

From this the result immediately follows.
2. Proof is analogous to that of result 2 of Corollary 2.
3. The Airy profile given in Eq. 21 is radially symmetric. Substituting for q1 and Λ1 in

results 1 and 2 of this Corollary, we get the desired results. ��

Figure 3 shows the 2D FREM δ
sim,sp
d as a function of the distance for the special case of

the simultaneous detection approach when the location coordinates (x01, y01) of one of the
objects is assumed to be known. The figure also shows the 2D FREM for the simultaneous
detection approach δsim

d when both location coordinates are assumed to be unknown (Sect. 1),
and as a reference the fundamental limit to the localization accuracy δloc (Eq. 22). From the
figure we see that as the distance of separation decreases, the δsim

d becomes infinitely large

as d → 0. In contrast, δ
sim,sp
d first increases but then decreases and then remains finite even

when d = 0. In particular, for the specific image functions and photon detection rates consid-
ered here, δsim,sp

d = √
3δloc when d = 0 (result 1 of Corollary 3). An immediate implication

of this result is that if the location coordinates of one of the objects is known, then it is possible
to determine very small (nanometer scale) distances with relatively very high accuracy in an
optical microscope. As the distance of separation increases, the 2D FREM δ

sim,sp
d behaves

analogous to δsim
d . In particular, δsim,sp

d = √
2δloc when the distance becomes infinitely large.

This implies that for very large distances of separation, the limit to the accuracy of estimating
the distance is independent of the distance and is a constant.

We would like to point out that the analyses carried out in this Section have implications
in a broader context of dealing with a singular Fisher information matrix, which represents
a significant complication in the analysis of parameter estimation problems (e.g., see Stoica
and Marzetta 2001). In particular our results illustrate how a priori information can be used
to eliminate the singularity of the Fisher information matrix. It is important to note that
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Fig. 3 Behavior of the 2D FREM δ
sim,sp
d for the special case of the simultaneous detection approach.

a shows δ
sim,sp
d for a distance range of 10–300 nm for the special case of the simultaneous detection approach

when the location coordinates (x01, y01) of object 1 is known (pointing left triangle). The panel also shows
the 2D FREM δsim

d for the simultaneous detection approach when both location coordinates are unknown
(open circle). b shows the same as a for a distance range of 1–50 nm. In all the panels, solid line denotes
the fundamental limit to the localization accuracy δloc (Eq. 22), and in a the vertical dashed line denotes the
Rayleigh’s resolution limit. The numerical values used to generate the above plots are identical to those used
in Fig. 2

the choice of a priori information intimately depends on the specifics of the experimental
design, i.e., how the data is captured. This further underscores the importance of carrying out
a rigorous analysis of the Fisher information matrix, as it provides the necessary insight into
choosing the most appropriate experimental approach from the point of view of obtaining
the best accuracy in estimating the parameters of interest.

6 Fisher information matrix for the separate detection approach

We next consider the case where the location coordinates of the two objects are indepen-
dently estimated from two separate images. Such a scenario arises in a class of experi-
mental techniques in which the photon emission from the objects are temporally separated
(e.g., stochastic photoactivation (Betzig et al. 2006; Rust et al. 2006; Hess et al. 2006) and
blinking (Lidke et al. 2005; Lagerholm et al. 2006)). In the following Theorem, we derive an
analytical expression of the Fisher information matrix for the separate detection approach.
Here, we assume the acquired data to consist of a pair of images, where the first image con-
tains signal from only object 1 and the the second image contains signal from only object 2.
As we will see, the Fisher information matrix for the separate detection approach will reduce
to two independent localization accuracy problems.

Theorem 5 Let Θc ⊆ R
4 be open. For θc ∈ Θc, τ ≥ t0 and i = 1, 2, let Λi and

fθc,τ,i denote the photon detection rate and the photon distribution profile of the ith object,
respectively, where fθc,τ,i is given by Eq. 8. For θc ∈ Θc, let G1(Λ1, { fθc,τ,1}τ≥t0 , R

2) and
G2(Λ2, { fθc,τ,2}τ≥t0 , R

2) denote two independent image detection processes.

1. Then for the two independent image detection processes G1 and G2, the Fisher informa-
tion matrix of the spatial component corresponding to the acquisition time interval [t0, t]
for the separate detection approach is given by
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Ssep(θc) =
[

Q1 0
0 Q2

]
, θc ∈ Θc, (30)

where Qi , i = 1,2, is given in Eq. 20
2. For θc ∈ Θc, Ssep(θc) is invertible including when (x01, y01) = (x02, y02).

Proof Proof is analogous to that of Theorem 4. ��
From the above Theorem, we see that the Fisher information matrix for the separate detec-

tion approach is block diagonal and is equivalent to two independent localization accuracy
problems in the absence of any extraneous background signal. Note that the Fisher informa-
tion matrix for the separate detection approach is independent of the location coordinates of
the objects. This is in contrast to the simultaneous detection approach, where we saw that the
Fisher information matrix depended on the location coordinates of the two objects (Theo-
rem 2). In addition to this, for the simultaneous detection approach when both object coordi-
nates are unknown the Fisher information matrix becomes block diagonal and reduces to that
of two independent localization accuracy problems (in the absence of any extraneous back-
ground signal) only when the distance becomes infinitely large i.e., d → ∞ (Theorem 3).

6.1 Example 3

To illustrate the result derived in this section, we consider a specific image function. Anal-
ogous to Sects. 4.1 and 5.1, we assume the image functions q1 and q2 to be identical Airy
profiles given by Eq. 21 and set the photon detection rates to be constant and equal, i.e.,
Λ1(τ ) = Λ2(τ ) = Λ0, τ ≥ t0. We also define the 2D FREM for the separate detection
approach δ

sep
d . Then in Corollary 4, we derive an analytical expression for δ

sep
d for the spe-

cific image functions and photon detection rates considered here.

Definition 5 The 2D FREM for the separate detection approach is defined as δ
sep
d :=√

I−1
sep(d), d ∈ [0,∞), where I−1

sep(d) is obtained by substituting S−1
sep(θc) (result 2 of

Theorem 5) in the transformation formula given by Eq. 2.

Corollary 4 For d ∈ [0,∞), let δ
sep
d denote the 2D FREM for the separate detection

approach. For i = 1, 2, let Λi and qi denote the photon detection rate and the image
function of the i th object, respectively.

1. For i = 1, 2, assume that qi is radially symmetric, i.e., there exists a qi such that
qi (x, y) := qi (

√
x2 + y2), (x, y) ∈ R

2 and i = 1, 2. Then for d ∈ [0,∞), we have

δ
sep
d =

√(
δloc

rs,1

)2 +
(
δloc

rs,2

)2
,

where for i = 1, 2, δloc
rs,i is given by Eq. 23.

2. For i = 1, 2, let qi be an Airy profile that is given by Eq. 21 and Λ1(τ ) = Λ2(τ ) =
Λ0, τ ≥ t0. Then for d ∈ [0,∞), δ

sep
d = √

2δloc, where δloc is given by Eq. 22.

Proof 1. Using Eq. 2 and Lemma 3, we have

(δ
sep
d )2 = I−1

sep(d) := ∂d

∂θc
S−1

sep(θc)

(
∂d

∂θc

)T

= 1

d2

⎛
⎜⎜⎝

−(x02 − x01)

−(y02 − y01)

(x02 − x01)

(y02 − y01)

⎞
⎟⎟⎠

T (
Q−1

1 0
0 Q−1

2

)
⎛
⎜⎜⎝

−(x02 − x01)

−(y02 − y01)

(x02 − x01)

(y02 − y01)

⎞
⎟⎟⎠
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= 1

d2

⎛
⎜⎜⎝

−Δx

−Δy

Δx

Δy

⎞
⎟⎟⎠

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
δloc

rs,1

)2
0 0 0

0
(
δloc

rs,1

)2
0 0

0 0
(
δloc

rs,2

)2
0

0 0 0
(
δloc

rs,2

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

−Δx

−Δy

Δx

Δy

⎞
⎟⎟⎠

= 1

d2

((
Δ2

x + Δ2
y

) (
δloc

rs,1

)2 +
(
Δ2

x + Δ2
y

) (
δloc

rs,2

)2
)

=
(
δloc

rs,1

)2 +
(
δloc

rs,2

)2
, d ∈ [0,∞),

where Δx = x02 − x01 and Δy = y02 − y01. From this the result immediately follows.
2. The Airy profile given in Eq. 21 is radially symmetric. Hence substituting for Λi and

qi , i = 1, 2, in result 1 of this Corollary, the result immediately follows. ��

From the above result we see that the 2D FREM for the separate detection approach
δ

sep
d is a constant and is independent of the distance of separation, if the image func-

tions of the objects are radially symmetric. More specifically, when the image functions
are assumed to be Airy profiles (Eq. 21), then the 2D FREM δ

sep
d is

√
2 times the fun-

damental limit to the localization accuracy δloc. This is in contrast to the simultaneous
detection approach where the 2D FREM δsim

d (as well as δ
sim,sp
d ) depends on the distance

and only in the limiting case when d becomes infinitely large, δsim
d = √

2δloc (Corol-
lary 2). An immediate implication of the above result is that, if there exists an efficient
estimator of the distance for the separate detection approach, then all distances can be
determined with the same level of accuracy when the image profiles are radially symmet-
ric.

7 Simulations

In the previous sections we investigated the Fisher information matrix of the distance d and
calculated the 2D FREM for different experimental approaches. An important question then
arises as to whether for a given experimental approach there exists an unbiased estimator
that can attain the corresponding 2D FREM. In this section we address this question, where
we use the Maximum Likelihood (ML) estimator to determine the distance d from simulated
data and compare its performance (i.e. standard deviation) to the 2D FREM for the different
experimental approaches. We consider all three approaches, i.e., the simultaneous detection
approach, the special case of the simultaneous detection approach when one of the object
locations are known, and the separate detection approach. We generate the acquired data
through Monte-Carlo simulations which are discussed below. Here, we consider the data
generation process for an ideal (non-pixelated) detector, where the acquired data consists of
the spatial coordinates of the detected photons. We then use the maximum likelihood esti-
mation algorithm on the simulated data to estimate the location coordinates of the objects,
and from this we deduce the distance. Table 1 lists the standard deviations of the distance
estimates for the different experimental approaches considered here. As we will see the ML
estimator is unbiased and attains the 2D FREM for a range of distances when the sample size
is sufficiently large.
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Table 1 Results of the maximum likelihood estimator of the distance for the different experimental approaches
considered here

Data set # True value
of distance

Mean distance
estimates

SD of distance
estimates

Resolution
measure

nm nm nm nm

A. Simultaneous detection approach

1 10 10.22 5.87 5.89

2 20 20.01 4.14 4.23

3 50 49.99 2.67 2.65

4 100 99.99 2.14 2.12

5 200 200.06 1.97 1.93

6 500 500 1.64 1.68

B. Special case of the simultaneous detection approach

1 10 10.15 1.56 1.81

2 20 20.03 1.68 1.82

3 50 50.03 1.85 1.85

4 100 100.02 1.91 1.91

5 200 200.03 1.78 1.74

6 500 500.01 1.56 1.6

C. Separate detection approach

1 10 10.15 1.48 1.47

2 20 20.02 1.49 1.47

3 50 50.04 1.50 1.47

4 100 100.01 1.48 1.47

5 200 200.03 1.50 1.47

6 500 500.03 1.45 1.47

A shows the results for the simultaneous detection approach. B shows the results for the special case of the
simultaneous detection approach, where one of the location coordinates is independently determined and is
assumed to be known. C shows the results of the separate detection approach. The numerical values used to
generate the data are identical to those used in Fig. 2. For all the data sets, the mean and standard deviation
(SD) are obtained from 2,000 maximum likelihood estimates of the distance

7.1 Data simulation

We consider the two objects to be identical point sources. We set the photon detection rates of
the two objects to be equal and constant, i.e. Λθ,1(τ ) := Λ0, τ ≥ t0 and Λθ,2(τ ) := Λ0, τ ≥
t0 and assume the image functions q1 and q2 to be identical Airy profiles given by Eq. 21.
We generate a sequence of images {Jθ,1, Jθ,2, . . . , Jθ,Nmax }, where Nmax denotes the total
number of images. For k = 1, . . . , Nmax , the kth image is given by Jθ,k := {Jθ,1,k, Jθ,2,k},
where

Jθ,i,k :={(xi,k
1 , yi,k

1 ), (xi,k
2 , yi,k

2 ), . . . ., (xi,k
Ni,k

, yi,k
Ni,k

)}, i =1, 2, k = 1, . . . , Nmax , (31)

denotes the signal from the i th object in the kth image for k = 1, . . . , Nmax and i = 1, 2.
In the above equation, Ni,k denotes the number of detected photons from the i th object
in the kth image for i = 1, 2 and k = 1, . . . , Nmax , and is a realization of the Poisson
random variable with mean Λ0(t −t0). The sequence {(xi,k

m , yi,k
m ); m = 1, . . . , Ni,k)} denotes

the spatial coordinates of the detected photons from the i th object in the kth image for
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i = 1, 2 and k = 1, . . . , Nmax , and is a realization of Ni,k random variables with den-
sity fθc,τ,i given by Eq. 8, which is generated by using a method described in Ober et al.
(2004b).

7.2 Maximum likelihood estimator

For a general parameter estimation problem, the maximum likelihood estimator can be writ-
ten as argmaxθ ln(L(θ | Z) where Z denotes the data and L(θ | ·) denotes the likelihood
function. For the simultaneous detection approach, the acquired data pertaining to the kth
image is given by Z = Jθ,k = {Jθ,1,k, Jθ,2,k}, k = 1, . . . , Nmax where Jθ,i,k is defined in
Eq. 31 and θ = θc = (x01, y01, x02, y02) ∈ R

4.
For the special case of the simultaneous detection approach when one of the location

coordinates are known, the acquired data consists of a pair of images {Z1, Z2}. We assume
Z1 to be the image that contains the signal from object 1, i.e., Z1 = Jθ1,1,k , and Z2 to
be the image that contains the signal from both objects, i.e., Z1 = {Jθ1,1,k, Jθ2,2,k}, where
J θi ,i,k is defined in Eq. 31, θi = (x0i , y0i ) ∈ R

2, i = 1, 2 and k = 1, . . . , Nmax . Here, we
carry out two independent ML estimations on each image, i.e., argmaxθ1

ln(L(θ1 | Z1) and

argmaxθ2
ln(L(θ2 | Z2, θ̂1), where θi := (x0i , y0i ) ∈ R

2, i = 1, 2. Note that while carrying
out the maximum likelihood estimation with the second image Z2, we set the value of θ1 to
be equal to θ̂1, where θ̂1 denotes the maximum likelihood estimate of θ1, which is determined
from the first image.

For the separate detection approach, the acquired data consists of a pair of images {Z1, Z2}
each of which contains the image of only one of the objects. Here, we have Z1 = Jθ1,1,k and
Z2 = Jθ2,1,k , where J θi ,i,k is defined in Eq. 31 for θi = (x0i , y0i ) ∈ R

2, i = 1, 2 and k =
1, . . . , Nmax . For this approach, we carry out independent ML estimations on each image, i.e.
argmaxθ1

ln(L(θ1 | Z1) and argmaxθ2
ln(L(θ2 | Z2), where θi := (x0i , y0i ) ∈ R

2, i = 1, 2.
In all the three imaging scenarios, the ML estimates are determined computationally by

using a gradient based optimization algorithm (fminunc) in the MATLAB programming
language.

7.3 Comparison of ML estimator performance to the 2D FREM

Table 1 shows the results of the ML estimator for the different experimental approaches
considered here. The table lists mean and standard deviation of the distance estimates as
well as the 2D FREM of the distance for the corresponding experimental approach. From the
table we see that for all the experimental approaches considered here, the mean value of the
distance estimates is very close to the true value suggesting that the ML estimator is unbiased.
Moreover, for a range of distances, the standard deviation of the distance is also consistently
close to the 2D FREM thereby suggesting that the ML estimator is capable of achieving the
theoretically best possible accuracy provided the sample size is sufficiently large. Note that
the standard deviation of the ML estimates for the separate detection approach is almost a
constant for a range of distances in agreement with the 2D FREM, which in turn shows that
different distances can be estimated with the same level of accuracy.

A comparison of the standard deviations of the distance estimates (as well as the 2D
FREMs) for the three approaches shows that for a range of distances considered in Table 1,
the separate detection approach provides the best accuracy (i.e., the smallest 2D FREM/stan-
dard deviation) for determining the distance, followed by the special case of the simultaneous
detection approach, and then followed by the simultaneous detection approach.
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A Appendix

Definition 6 A function q : R
2 → [0,∞) is said to be an image function if the following

properties are satisfied (see Ram et al. 2006b, p. 37).

1.
∫

R
2

q(x, y)dxdy = 1,

2. ∂q(x,y)
∂x and ∂q(x,y)

∂y exist for every (x, y) ∈ R
2,

3.
∫

R
2

∣∣∣ ∂q(x,y)
∂x

∣∣∣ dxdy < ∞,
∫
R

2

∣∣∣ ∂q(x,y)
∂y

∣∣∣ dxdy < ∞, and

4.
∫
R

2
1

q(x,y)

(
∂q(x,y)

∂x

)2
dxdy < ∞,

∫
R

2
1

q(x,y)

(
∂q(x,y)

∂y

)2
dxdy < ∞, and∫

R
2

1
q(x,y)

∂q(x,y)
∂x

∂q(x,y)
∂y dxdy < ∞.

Lemma 1 For θ = (θ f , θΛ) ∈ Θ, τ ≥ t0 and i = 1, 2, let fθ,τ,i and Λθ,i denote the photon
distribution profile and the photon detection rate of the i th object, respectively, and let Λθ

and fθ,τ be given by Eqs. 3 and 4, respectively. Let C denote the detector.

1. For θ ∈ Θ and τ ≥ t0, if fθ,τ,1(r) = fθ,τ,2(r), r ∈ C, then ∂ fθ,τ (r)

∂θΛ
= 0, θ ∈ Θ,

τ ≥ t0, r ∈ C.
2. For θ ∈ Θ and τ ≥ t0, if β(τ)Λθ,1(τ ) = Λθ,2(τ ) for some β(τ) ≥ 0 that is independent

of θ , then ∂ fθ,τ (r)

∂θΛ
= 0, θ ∈ Θ, τ ≥ t0, r ∈ C.

Proof 1. For θ ∈ Θ, τ ≥ t0 and i = 1, 2, let εθ,i (τ ) = Λθ,i (τ )/Λθ (τ). Consider the term

∂εθ,1(τ )

∂θΛ

+ ∂εθ,2(τ )

∂θΛ

= Λθ(τ)
∂Λθ,1(τ )

∂θΛ
− Λθ,1(τ )

∂Λθ (τ)
∂θΛ

Λ2
θ (τ )

+Λθ(τ)
∂Λθ,2(τ )

∂θΛ
− Λθ,2(τ )

∂Λθ (τ)
∂θΛ

Λ2
θ (τ )

=
Λθ(τ)

(
∂Λθ,1(τ )

∂θΛ
+ ∂Λθ,2(τ )

∂θΛ

)
− (Λθ,1(τ ) + Λθ,2(τ ))

∂Λθ (τ)
∂θΛ

Λ2
θ (τ )

= Λθ(τ)
∂Λθ (τ)

∂θΛ
− Λθ(τ)

∂Λθ (τ)
∂θΛ

Λ2
θ (τ )

= 0, θ ∈ Θ, τ ≥ t0, (32)

where we have used the fact that Λθ(τ) := Λθ,1(τ ) + Λθ,2(τ ), τ ≥ t0 and θ ∈ Θ .
Consider the term

∂ fθ,τ (r)

∂θΛ

= ∂εθ,1(τ )

∂θΛ

fθ,τ,1(r) + εθ,1(τ )
∂ fθ,τ,1(r)

∂θΛ

+ ∂εθ,2(τ )

∂θΛ

fθ,τ,2(r)

+ εθ,2(τ )
∂ fθ,τ,2(r)

∂θΛ

, (33)
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where θ ∈ Θ, τ ≥ t0 and r ∈ C. Substituting for fθ,τ,1 and fθ,τ,2 in Eq. 33 and using
Eq. 32, we have for θ ∈ Θ, τ ≥ t0 and r ∈ C

∂ fθ,τ (r)

∂θΛ

= fθ,τ,1(r)

(
∂εθ,1(τ )

∂θΛ

+ ∂εθ,2(τ )

∂θΛ

)
= 0.

2. We have, εθ,1(τ ) = 1
1+β(τ)

, θ ∈ Θ and τ ≥ t0, and εθ,2(τ ) = β(τ)
1+β(τ)

, θ ∈ Θ and τ ≥ t0.

Since β(τ) is independent of θ for τ ≥ t0,
∂εθ,i (τ )

∂θΛ
= 0, θ ∈ Θ, τ ≥ t0 and i = 1, 2.

Substituting this in Eq. 33 the result follows. ��

Lemma 2 For θc = (x01, y01, x02, y02) ∈ Θc, τ ≥ t0 and i = 1, 2, let fθc,τ,i be given by
Eq. 8. Let M > 0. Then for θc ∈ Θc and τ ≥ t0, we have

1. ∂ fθc ,τ,i (r)

∂x0i
= −M ∂ fθc ,τ,i (r)

∂x , r = (x, y) ∈ R
2, i = 1, 2.

2. ∂ fθc ,τ,i (r)

∂y0i
= −M ∂ fθc ,τ,i (r)

∂y , r = (x, y) ∈ R
2, i = 1, 2.

Proof 1. For θc = (x01, x02, y01, y02) ∈ Θc and i = 1, 2, define ui := x
M − x0i and

vi := y
M − y0i . Then for i = 1, 2, we have

∂ fθc,τ,i (r)

∂x0i
= 1

M2

∂qi
( x

M − x0i ,
y
M − y0i

)
∂x0i

= 1

M2

∂qi (ui , vi )

∂ui

∂ui

∂x0i
= − 1

M2

∂qi (ui , vi )

∂ui

= 1

M2

∂qi
( x

M − x0i ,
y
M − y0i

)
∂x

∂x

∂ui
= −M

1

M2

∂qi
( x

M − x0i ,
y
M − y0i

)
∂x

= −M
∂ fθc,τ,i (r)

∂x
,

for r = (x, y) ∈ R
2, θc ∈ Θc and τ ≥ t0.

2. Proof is similar to that of result 1. ��

Lemma 3 For i = 1, 2, let Qi be given by Eq. 20, and Λi and qi denote the photon detec-
tion rate and the image function of the i th object, respectively. For i = 1, 2, assume that qi

is radially symmetric with respect to the origin, i.e., there exists a qi such that qi (x, y) =
qi (

√
x2 + y2) for (x, y) ∈ R

2 and i = 1, 2. Then for i = 1, 2,

Qi = 1

(δloc
rs,i )

2
12×2,

where 12×2 denotes the 2 × 2 identity matrix and δloc
rs,i , i = 1, 2, is given by Eq. 23.

Proof By definition, qi , i = 1, 2, is symmetric along the x and y axes with respect to the
origin. Using this, it can be shown that (see Ram et al. 2006b, p. 39)

Qi =
⎛
⎝

t∫

t0

Λi (τ )dτ

⎞
⎠ Diag

⎡
⎢⎣

∫

R
2

1

qi (x, y)

(
∂qi (x, y)

∂x

)2

dxdy
∫

R
2

1

qi (x, y)

(
∂qi (x, y)

∂y

)2

dxdy

⎤
⎥⎦,

where diag denotes the diagonal matrix. Further, using the fact that qi , i = 1, 2, is radially
symmetric, we have
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[Qi ]11 =
⎛
⎝

t∫

t0

Λi (τ )dτ

⎞
⎠

∫

R
2

1

qi (x, y)

(
∂qi (x, y)

∂x

)2

dxdy

=
⎛
⎝

t∫

t0

Λi (τ )dτ

⎞
⎠

2π∫

0

∞∫

0

1

qi (r)

(
∂qi (r)

∂r

∂r

∂x

)2

rdrdφ

=
⎛
⎝

t∫

t0

Λi (τ )dτ

⎞
⎠

2π∫

0

cos2(φ)dφ

∞∫

0

1

qi (r)

(
∂qi (r)

∂r

)2

rdr

=
⎛
⎝

t∫

t0

Λi (τ )dτ

⎞
⎠

⎛
⎝

2π∫

0

1 + cos(2φ)

2
dφ

⎞
⎠ κi =

⎛
⎝

t∫

t0

Λi (τ )dτ

⎞
⎠πκi = 1(

δloc
rs,i

)2 ,

where i = 1, 2, and κi is defined in Eq. 23. Similarly, we can show that for i = 1, 2, [Qi ]22 =
1/(δloc

rs,i )
2. ��

A.1 Proof of Theorem 1

Proof 1. Substituting for Λθ and fθ,τ in Eq. 1, and using assumptions A1–A2 we get

Isim(θ) =
t∫

t0

∫

C

1

Λθ(τ) fθ,τ (r)

⎛
⎜⎝

Λθ(τ)
(

∂ fθ,τ (r)

∂θ f

)T

Λθ(τ)
(

∂ fθ,τ (r)

∂θΛ

)T + fθ,τ (r)
(

∂Λθ (τ)
∂θΛ

)T

⎞
⎟⎠

×
(

Λθ(τ)
∂ fθ,τ (r)

∂θ f
Λθ(τ)

∂ fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ (τ)
∂θΛ

)
drdτ

=
⎡
⎢⎣

Ssim(θ)(
t∫

t0

∫
C

1
fθ,τ (r)

(
∂ fθ,τ (r)

∂θ f

)T (
fθ,τ (r)

∂Λθ (τ)
∂θΛ

+ Λθ(τ)
∂ fθ,τ (r)

∂θΛ

)
drdτ

)T

t∫
t0

∫
C

1
fθ,τ (r)

(
∂ fθ,τ (r)

∂θ f

)T (
Λθ(τ)

∂ fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ (τ)
∂θΛ

)
drdτ

t∫
t0

∫
C

1
Λθ (τ) fθ,τ (r)

(
Λθ(τ)

∂ fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ (τ)
∂θΛ

)T (
Λθ(τ)

∂ fθ,τ (r)

∂θΛ
+ fθ,τ (r)

∂Λθ (τ)
∂θΛ

)
drdτ

⎤
⎥⎥⎥⎦ .

(34)

By definition, fθ,τ is a probability density function, which satisfies the regularity condi-
tions that are necessary for the calculation of the Fisher information matrix (Kay 1993).
Hence we have for θ ∈ Θ and τ ≥ t0,

∫

C

∂ fθ,τ (r)

∂θ
dr =

⎛
⎜⎝

∫
C

∂ fθ,τ (r)

∂θ f
dr

∫
C

∂ fθ,τ (r)

∂θΛ
dr

⎞
⎟⎠=

⎛
⎜⎝

∂
∂θ f

∫
C

fθ,τ (r)dr

∂
∂θΛ

∫
C

fθ,τ (r)dr

⎞
⎟⎠=

(
∂

∂θ f
1

∂
∂θΛ

1

)
=

(
0
0

)
. (35)
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Using Eq. 35, we have

[Isim(θ)]12 = [Isim(θ)]T
21

=
t∫

t0

∫

C

1

fθ,τ (r)

(
∂ fθ,τ (r)

∂θ f

)T (
Λθ(τ)

∂ fθ,τ (r)

∂θΛ

+ fθ,τ (r)
∂Λθ (τ)

∂θΛ

)
drdτ

=
t∫

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂ fθ,τ (r)

∂θ f

)T
∂ fθ,τ (r)

∂θΛ

drdτ = Rsim(θ), θ ∈ Θ. (36)

Using Eq. 35 and the fact that
∫
C fθ,τ (r)dr = 1 for θ ∈ Θ and τ ≥ t0, we have

[Isim(θ)]22 =
t∫

t0

∫

C

1

Λθ(τ) fθ,τ (r)

(
Λθ(τ)

∂ fθ,τ (r)

∂θΛ

+ fθ,τ (r)
∂Λθ (τ)

∂θΛ

)T

×
(

Λθ(τ)
∂ fθ,τ (r)

∂θΛ

+ fθ,τ (r)
∂Λθ (τ)

∂θΛ

)
drdτ

=
t∫

t0

∫

C

Λθ(τ)

fθ,τ (r)

(
∂ fθ,τ (r)

∂θΛ

)T
∂ fθ,τ (r)

∂θΛ

drdτ

+
t∫

t0

⎛
⎝
∫

C

(
∂ fθ,τ (r)

∂θΛ

)T

dr

⎞
⎠ ∂Λθ (τ)

∂θΛ

dτ

+
t∫

t0

1

Λθ(τ)

(
∂Λθ(τ)

∂θΛ

)T
∂Λθ (τ)

∂θΛ

dτ

+
t∫

t0

(
∂Λθ(τ)

∂θΛ

)T ∫

C

∂ fθ,τ (r)

∂θΛ

drdτ = Tsim(θ), θ ∈ Θ. (37)

Substituting Eqs. 36 and 37 in Eq. 34, the result immediately follows.
2. Using assumptions A1 and A3 it can be shown that (∂ fθ,τ (r)/∂θΛ) = 0, r ∈ C, θ ∈

Θ, τ ≥ t0 (see result 3 of Lemma 1 in Appendix). Substituting this and using assump-
tion A3 in Eqs. 5, 6 and 7, we obtain the desired result.

3. Using assumptions A1 and A4 it can be shown that (∂ fθ,τ (r)/∂θΛ) = 0, r ∈ C, θ ∈
Θ, τ ≥ t0 (see result 2 of Lemma 1 in Appendix). Further, by assumption A4 we have
fθ,τ (r) = fθ,τ,1(r)(εθ,1(τ ) + εθ,2(τ )) = fθ,τ,1(r), r ∈ C and τ ≥ t0. Substituting these
results in Eqs. 5, 6 and 7, we obtain the desired result. ��

Proof of results 2 and 3 of Theorem 2

Proof 2. For θc ∈ Θc\Θ0
c , define sx := (x01 + x02)/2, sy := (y01 + y02)/2 and

φ = tan−1((y02 − y01)/(x02 − x01)). Then we have x01 := sx − d cos φ
2 , y01 :=

sy − d sin φ
2 , x02 := sx + d cos φ

2 , y02 := sy + d sin φ
2 . Substituting this in result 1 of

the Theorem 2 and using the shift invariant property of Lebesgue intergrals, we get for
θc ∈ Θc\Θ0

c ,

123



532 Multidim Syst Sign Process (2013) 24:503–542

Ssim (θc) :=
t∫

t0

∫

R
2

1

Λ1(τ )q1

(
x + d

2 cos φ, y + d
2 sin φ

)
+ Λ2(τ )q2

(
x − d

2 cos φ, y − d
2 sin φ

)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ1(τ )
∂q1

(
x+ d

2 cos φ,y+ d
2 sin φ

)
∂x

Λ1(τ )
∂q1

(
x+ d

2 cos φ,y+ d
2 sin φ

)
∂y

Λ2(τ )
∂q2

(
x− d

2 cos φ,y− d
2 sin φ

)
∂x

Λ2(τ )
∂q2

(
x− d

2 cos φ,y− d
2 sin φ

)
∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ1(τ )
∂q1

(
x+ d

2 cos φ,y+ d
2 sin φ

)
∂x

Λ1(τ )
∂q1

(
x+ d

2 cos φ,y+ d
2 sin φ

)
∂y

Λ2(τ )
∂q2

(
x− d

2 cos φ,y− d
2 sin φ

)
∂x

Λ2(τ )
∂q2

(
x− d

2 cos φ,y− d
2 sin φ

)
∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

dxdydτ.

(38)

For (x, y) ∈ R
2, τ ≥ t0 and θc ∈ Θc\Θ0

c , let

Q+
θc

(x, y, τ ) := Λ1(τ )q1

(
x + d

2
cos φ, y + d

2
sin φ

)
, (39)

Q−
θc

(x, y, τ ) := Λ2(τ )q2

(
x − d

2
cos φ, y − d

2
sin φ

)
. (40)

For φ ∈ (0, 2π), define Tφ : R
2 → R

2

(
x
y

)
�→

(
u
v

)
=

(
x cos φ + y sin φ

−x sin φ + y cos φ

)
.

The transformation Tφ maps the coordinates of a point on the 2D plane when the coor-
dinate axes is rotated by an angle φ. Let P± := (x ± d

2 cos φ, y ± d
2 sin φ). Then

P̃± :=Tφ P± =
(

cos φ sin φ

− sin φ cos φ

)(
x ± d

2 cos φ

y ± d
2 sin φ

)
=

(
x cos φ + y sin φ ± d

2−x sin φ + y cos φ

)
. (41)

Using Eq. 41, we have for τ ≥ t0 and θc ∈ Θc\Θ0
c ,

(Q+
θc

◦ Tφ)(x, y, τ ) = Λ1(τ )q1

(
Tφ

(
x + d

2
cos φ, y + d

2
sin φ

))

= Λ1(τ )q1(Tφ(P+)) = Λ1(τ )q1(P̃+)

=Λ1(τ )q1

(
x cos φ+y sin φ+ d

2
,−x sin φ+y cos φ

)
,

(x, y) ∈ R
2, (42)

(Q−
θc

◦ Tφ)(x, y, τ )=Λ2(τ )q2

(
x cos φ + y sin φ− d

2
,−x sin φ+y cos φ

)
,

(x, y) ∈ R
2. (43)

Similarly, for θc ∈ Θc\Θ0
c , τ ≥ t0 and ζ ∈ {x, y},

(
∂ Q+

θc

∂ζ
◦ Tφ

)
(x, y) = Λ1(τ )

∂q1(Tφ(P+))

∂ζ
= Λ1(τ )

∂q1(P̃+)

∂ζ

= Λ1(τ )
∂q1

(
x cos φ + y sin φ + d

2 ,−x sin φ + y cos φ
)

∂ζ
,

(x, y) ∈ R
2, (44)
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(
∂ Q−

θc

∂ζ
◦ Tφ

)
(x, y) = Λ2(τ )

∂q2
(
x cos φ + y sin φ − d

2 ,−x sin φ + y cos φ
)

∂ζ
,

(x, y) ∈ R
2. (45)

By definition, the determinant of the Jacobian of Tφ is given by

Det[T ′
φ] := Det

[
cos φ sin φ

sinφ cos φ

]
= 1, φ ∈ (0, 2π), (46)

and for (u, v) := Tφ(x, y),

dudv = |Det[T ′
φ]|dxdy = dxdy. (47)

Substituting Eqs. 42–47 in the expression for Ssim(θc) given in Eq. 38 and making use
of the change of variables Theorem (Rudin 1987) we get,

Ssim (θc) =
t∫

t0

∫

R
2

1

Q+
θc

(x, y, τ ) + Q−
θc

(x, y, τ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

(x,y,τ )

∂x
∂ Q+

θc
(x,y,τ )

∂y
∂ Q−

θc
(x,y,τ )

∂x
∂ Q−

θc
(x,y,τ )

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

(x,y,τ )

∂x
∂ Q+

θc
(x,y,τ )

∂y
∂ Q−

θc
(x,y,τ )

∂x
∂ Q−

θc
(x,y,τ )

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

dxdydτ

=
t∫

t0

∫

Tφ(R
2
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

Q+
θc

+ Q−
θc

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

∂x
∂ Q+

θc
∂y

∂ Q−
θc

∂x
∂ Q−

θc
∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

∂x
∂ Q+

θc
∂y

∂ Q−
θc

∂x
∂ Q−

θc
∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

◦ Tφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x, y, τ )Det|T ′
φ |dxdydτ

=
t∫

t0

∫

R
2

1

Q+
θc

(Tφ(P+)) + Q−
θc

(Tφ(P−))

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

(Tφ(P+))

∂x
∂ Q+

θc
(Tφ(P+))

∂y
∂ Q−

θc
(Tφ(P−))

∂x
∂ Q−

θc
(Tφ(P−))

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

(Tφ(P+))

∂x
∂ Q+

θc
(Tφ(P+))

∂y
∂ Q−

θc
(Tφ(P−))

∂x
∂ Q−

θc
(Tφ(P−))

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

dxdydτ

=
t∫

t0

∫

R
2

1

Q+
θc

(P̃+) + Q−
θc

(P̃−)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

(P̃+)

∂x
∂ Q+

θc
(P̃+)

∂y
∂ Q−

θc
(P̃−)

∂x
∂ Q−

θc
(P̃−)

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Q+
θc

(P̃+)

∂x
∂ Q+

θc
(P̃+)

∂y
∂ Q−

θc
(P̃−)

∂x
∂ Q−

θc
(P̃−)

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

dxdydτ

=
t∫

t0

∫

R
2

1

Λ1(τ )q1

(
x cos φ+y sin φ+ d

2 , −x sin φ+y cos φ
)
+Λ2(τ )q2

(
x cos φ+y sin φ− d

2 , −x sin φ+y cos φ
)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1(τ )
∂q1

(
x cos φ+y sin φ+ d

2 ,−x sin φ+y cos φ
)

∂x

Λ1(τ )
∂q1

(
x cos φ+y sin φ+ d

2 ,−x sin φ+y cos φ
)

∂y

Λ2(τ )
∂q2

(
x cos φ+y sin φ− d

2 ,−x sin φ+y cos φ
)

∂x

Λ2(τ )
∂q2

(
x cos φ+y sin φ− d

2 ,−x sin φ+y cos φ
)

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1(τ )
∂q1

(
x cos φ+y sin φ+ d

2 ,−x sin φ+y cos φ
)

∂x

Λ1(τ )
∂q1

(
x cos φ+y sin φ+ d

2 ,−x sin φ+y cos φ
)

∂y

Λ2(τ )
∂q2

(
x cos φ+y sin φ− d

2 ,−x sin φ+y cos φ
)

∂x

Λ2(τ )
∂q2

(
x cos φ+y sin φ− d

2 ,−x sin φ+y cos φ
)

∂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

dxdydτ

=
t∫

t0

∫

R
2

1

Λ1(τ )q1

(
u + d

2 , v
)

+ Λ2(τ )q2

(
u − d

2 , v
)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1(τ )

(
cos φ

∂q1

(
u+ d

2 ,v
)

∂u − sin φ
∂q1

(
u+ d

2 ,v
)

∂v

)

Λ1(τ )

(
sin φ

∂q1

(
u+ d

2 ,v
)

∂u + cos φ
∂q1

(
u+ d

2 ,v
)

∂v

)

Λ2(τ )

(
cos φ

∂q2

(
u− d

2 ,v
)

∂u − sin φ
∂q2

(
u− d

2 ,v
)

∂v

)

Λ2(τ )

(
sin φ

∂q2

(
u− d

2 ,v
)

∂u + cos φ
∂q2

(
u− d

2 ,v
)

∂v

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1(τ )

(
cos φ

∂q1

(
u+ d

2 ,v
)

∂u − sin φ
∂q1

(
u+ d

2 ,v
)

∂v

)

Λ1(τ )

(
sin φ

∂q1

(
u+ d

2 ,v
)

∂u + cos φ
∂q1

(
u+ d

2 ,v
)

∂v

)

Λ2(τ )

(
cos φ

∂q2

(
u− d

2 ,v
)

∂u − sin φ
∂q2

(
u− d

2 ,v
)

∂v

)

Λ2(τ )

(
sin φ

∂q2

(
u− d

2 ,v
)

∂u + cos φ
∂q2

(
u− d

2 ,v
)

∂v

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

dudvdτ, θc ∈ Θc, (48)

where u := x cos φ+ y sin φ and v := −x sin φ+ y cos φ. Further, for θc ∈ Θc\Θ0
c , τ ≥

t0 and (x, y) ∈ R
2, we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1(τ )

(
cos φ

∂q1

(
u+ d

2 ,v
)

∂u − sin φ
∂q1

(
u+ d

2 ,v
)

∂v

)

Λ1(τ )

(
sin φ

∂q1

(
u+ d

2 ,v
)

∂u + cos φ
∂q1

(
u+ d

2 ,v
)

∂v

)

Λ2(τ )

(
cos φ

∂q2

(
u− d

2 ,v
)

∂u − sin φ
∂q2

(
u− d

2 ,v
)

∂v

)

Λ2(τ )

(
sin φ

∂q2

(
u− d

2 ,v
)

∂u + cos φ
∂q2

(
u− d

2 ,v
)

∂v

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos φ − sin φ 0 0

sin φ cos φ 0 0

0 0 cos φ − sin φ

0 0 sin φ cos φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ1(τ )
∂q1

(
u+ d

2 ,v
)

∂u

Λ1(τ )
∂q1

(
u+ d

2 ,v
)

∂v

Λ2(τ )
∂q2

(
u− d

2 ,v
)

∂u

Λ2(τ )
∂q2

(
u− d

2 ,v
)

∂v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= 1

d

⎡
⎢⎢⎣

x02 − x01 −(y02 − y01) 0 0
y02 − y01 x02 − x01 0 0

0 0 x02 − x01 −(y02 − y01)

0 0 y02 − y01 x02 − x01

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ1(τ )
∂q1

(
u+ d

2 ,v
)

∂u

Λ1(τ )
∂q1

(
u+ d

2 ,v
)

∂v

Λ2(τ )
∂q2

(
u− d

2 ,v
)

∂u

Λ2(τ )
∂q2

(
u− d

2 ,v
)

∂v

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= D(θc)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ1(τ )q ′
1,x (x, y)

Λ1(τ )q ′
1,y(x, y)

Λ2(τ )q ′
2,x (x, y)

Λ2(τ )q ′
2,y(x, y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where D(θc) is defined in Eq. 13, q ′
i,ζ , i = 1, 2, ζ ∈ {x, y} is given by Eq. 16 and we

have used the fact that cos φ := (x02 − x01)/d and sin φ := (y02 − y01)/d . Substituting
the above expression in Eq. 48, the result immediately follows.

3. To prove this result we need to show that the off-diagonal terms of Ci j (θc) are zero, for
i, j = 1, 2 and θc ∈ Θc\Θ0

c . For θc ∈ Θc\Θ0
c , τ ≥ t0 and (x, y) ∈ R

2, let

W 1
θc

(x, y, τ ) :=Λ1(τ )q1

(
x + d

2
, y

)
, W 2

θc
(x, y, τ ) :=Λ2(τ )q2

(
x− d

2
, y

)
. (49)

Define TY : R
2 × [t0,∞) → R

2 × [t0,∞), (x, y, τ ) �→ (x,−y, τ ). Since q1 and
q2 are symmetric along the y axis with respect to y = 0, we have W 1

θc
(x, y, τ ) =

(W 1
θc

◦ TY )(x, , y, τ ) and W 2
θc

(x, y, τ ) = (W 2
θc

◦ TY )(x, , y, τ ) for θc ∈ Θc\Θ0
c , (x, y) ∈

R
2 and τ ≥ t0. This implies that for θc ∈ Θc\Θ0

c , (x, y) ∈ R
2 and τ ≥ t0, we

have

U±
θc

(x, y, τ ) = Λ1(τ )q1

(
x − d

2
, y

)
± Λ2(τ )q2

(
x + d

2
, y

)

=
(

U±
θc

◦ TY

)
(x, y, τ ), (50)

∂W i
θc

(x, y, τ )

∂x
=

(
∂W i

θc

∂x
◦ TY

)
(x, y, τ ), i = 1, 2, (51)

∂W i
θc

(x, y, τ )

∂y
= −

(
∂W i

θc

∂y
◦ TY

)
(x, y, τ ), i = 1, 2. (52)

Consider the term [C11(θc)]12, where C11(θc) is given by Eq. 15. Using Eqs. 50, 51
and 52 we have
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[C11(θc)]12 =
t∫

t0

∫

R
2

1

Λ1(τ )q1
(
x + d

2 , y
) + Λ2(τ )q2

(
x − d

2 , y
)

×
(

Λ1(τ )
∂q1

(
x + d

2 , y
)

∂x

)(
Λ2(τ )

∂q1
(
x + d

2 , y
)

∂y

)
dxdydτ

=
t∫

t0

∫

R
2

1

U+
θc

(x, y, τ )

∂W 1
θc

(x, y, τ )

∂x

∂W 1
θc

(x, y, τ )

∂y
dxdydτ

= −
t∫

t0

∫

R
2

1

(U+
θc

◦ TY )(x, y, τ )

×
(

∂W 1
θc

∂x
◦ TY

)
(x, y, τ )

(
∂W 1

θc

∂y
◦ TY

)
(x, y, τ )dxdydτ

= −
t∫

t0

∫

R
2

((
1

U+
θc

∂W 1
θc

∂x

∂W 1
θc

∂y

)
◦ TY

)
(x, y, τ )dxdydτ

=
t∫

t0

∫

R
2

1

U+
θc

(x, y, τ )

∂W 1
θc

(x, y, τ )

∂x

∂W 1
θc

(x, y, τ )

∂y
dxdydτ

= −[C11(θc)]12, θc ∈ Θc\Θ0
c ,

where we have used the change of variables theorem in the final step. From the above
equation it follows that [C11(θc)]12 = [C11(θc)]21 = 0, θc ∈ Θc\Θ0

c . Similarly, by using
Eqs. 50, 51 and 52, we can show that [C12(θc)]12 = [C12(θc)]21 = 0, and [C22(θc)]12 =
[C22(θc)]21 = 0 for θc ∈ Θc\Θ0

c . From this the result follows. ��

Lemma 4 For θc = (x01, y01, x02, y02) ∈ Θc, let K12(θc) be given by Eq. 12 and for i = 1, 2
let Qi be given by Eq. 20. Then for θc ∈ Θc and i, j = 1, 2, we have

[K12(θc)]i j ≤ √[Q1]i i [Q2] j j < ∞.

Proof Define Δx = x02 −x01 and Δy = y02 − y01. Applying the Cauchy-Schwarz inequality
to the term [K12(θc)]11 and using the fact that Λ1,Λ2, q1, q2 ≥ 0, we have for θc ∈ Θc

[K12(θc)]11 =
t∫

t0

∫

R
2

Λ1(τ )Λ2(τ )

Λ1(τ )q1(x, y) + Λ2(τ )q2(x − Δx , y − Δy)

×∂q1(x, y)

∂x

∂q2(x − Δx , y − Δy)

∂x
dxdydτ

≤

⎛
⎜⎜⎝

t∫

t0

∫

R
2

Λ1(τ )Λ2(τ )

Λ1(τ )q1(x, y) + Λ2(τ )q2(x − Δx , y − Δy)

(
∂q1(x, y)

∂x

)2

dxdydτ

⎞
⎟⎟⎠

1
2
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×

⎛
⎜⎜⎝

t∫

t0

∫

R
2

Λ1(τ )Λ2(τ )

Λ1(τ )q1(x, y)+Λ2(τ )q2(x−Δx , y−Δy)

(
∂q2(x−Δx , y−Δy)

∂x

)2

dxdydτ

⎞
⎟⎟⎠

1
2

≤
⎛
⎝

t∫

t0

Λ2(τ )dτ

⎞
⎠

1
2

⎛
⎜⎜⎝

∫

R
2

1

q1(x, y)

(
∂q1(x, y)

∂x

)2

dxdydτ

⎞
⎟⎟⎠

1
2

×
⎛
⎝

t∫

t0

Λ1(τ )dτ

⎞
⎠

1
2

⎛
⎜⎜⎝

∫

R
2

1

q2(x − Δx , y − Δy)

(
∂q2(x − Δx , y − Δy)

∂x

)2

dxdy

⎞
⎟⎟⎠

1
2

=

⎛
⎜⎜⎝

t∫

t0

Λ1(τ )dτ

∫

R
2

1

q1(x, y)

(
∂q1(x, y)

∂x

)2

dxdy

⎞
⎟⎟⎠

1
2

×

⎛
⎜⎜⎝

t∫

t0

Λ2(τ )dτ

∫

R
2

1

q2(x, y)

(
∂q2(x, y)

∂x

)2

dxdy

⎞
⎟⎟⎠

1
2

= √[Q1]11[Q2]22 < ∞,

where we have used the shift invariant property of Lebesgue integrals in the penultimate
step, and we have used the properties of image functions (see Definition 6) in the last step.
Similarly, we can prove the other results. ��

Proof of Theorem 3

Proof Consider the term K11(θc) given in Eq. 12. By definition, the integral expression of
K11(θc) is measurable for every θc ∈ Θc. Define Δx := x02 − x01 and Δy := y02 − y01.
Using the shift invariant property of Lebesgue integrals, and the fact that qi (x, y) ≥ 0 and
Λi (τ ) ≥ 0 for i = 1, 2, (x, y) ∈ R

2 and τ ≥ t0, we have for θc ∈ Θc

K11(θc) :=
t∫

t0

∫

R
2

Λ2
1(τ )

Λ1(τ )q1(x, y) + Λ2(τ )q2(x − Δx , y − Δy)

×
⎛
⎜⎝

(
∂q1(x,y)

∂x

)2
∂q1(x,y)

∂x
∂q1(x,y)

∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

(
∂q1(x,y)

∂y

)2

⎞
⎟⎠ dxdydτ

≤
t∫

t0

∫

R
2

Λ2
1(τ )

Λ1(τ )q1(x, y)

⎛
⎜⎜⎝

(
∂q1(x,y)

∂x

)2
∂q1(x,y)

∂x
∂q1(x,y)

∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

(
∂q1(x,y)

∂y

)2

⎞
⎟⎟⎠ dxdydτ =Q1. (53)

By definition of the image function (see Definition 6), we have for ζ1 = x and ζ2 =
y,

∫
R

2
1

q1(x,y)
∂q1(x,y)

∂ζi

∂q1(x,y)
∂ζ j

dxdy < ∞ for i, j = 1, 2. This implies that K11(θc) is dom-
inated by the expression given in Eq. 53 for every θc ∈ Θc. By definition of the image
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function (see Definition 6), q1(x, y) and ∂q1(x,y)
∂x are continuous for every x ∈ R. Hence

the integrand of K11(θc) is continuous for every x ∈ R. Hence by using the Theorem
on changing integration and limits for Lebesgue integrals (see Apostol 1974, p. 281), we
have

lim
x02→∞ K11(θc) = lim

x02→∞

t∫

t0

∫

R
2

Λ2
1(τ )

Λ1(τ )q1(x, y) + Λ2(τ )q2(x − Δx , y − Δy)

×

⎛
⎜⎜⎝

(
∂q1(x,y)

∂x

)2
∂q1(x,y)

∂x
∂q1(x,y)

∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

(
∂q1(x,y)

∂y

)2

⎞
⎟⎟⎠ dxdydτ

=
t∫

t0

∫

R
2

lim
x02→∞

Λ2
1(τ )

Λ1(τ )q1(x, y) + Λ2(τ )q2(x − Δx , y − Δy)

×

⎛
⎜⎜⎝

(
∂q1(x,y)

∂x

)2
∂q1(x,y)

∂x
∂q1(x,y)

∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

(
∂q1(x,y)

∂y

)2

⎞
⎟⎟⎠ dxdydτ

=
t∫

t0

Λ1(τ )dτ

∫

R
2

1

q1(x, y)

⎛
⎜⎜⎝

(
∂q1(x,y)

∂x

)2
∂q1(x,y)

∂x
∂q1(x,y)

∂y

∂q1(x,y)
∂x

∂q1(x,y)
∂y

(
∂q1(x,y)

∂y

)2

⎞
⎟⎟⎠ dxdy =Q1,

where we have used assumption A1 in the next to last step. Similarly, we can show that
limx02→∞ K22(θc) = Q2. For the term K12(θc), by definition, the integrand is measur-
able. Further by definition of the image function, the integrand of K12(θc) is continuous
for every x ∈ R. From Lemma 4 we know that the entries of K12(θc) are dominated by
integral expressions that are independent of θc ∈ Θc and are bounded. Hence using the
above results pertaining to K12(θc) and assumptions A1 and A2, we apply the Theorem
on changing integration and limits for Lebesgue integrals (see Apostol 1974, p. 281) to
obtain

lim
x02→∞ K12(θc) =

t∫

t0

∫

R
2

lim
x02→∞

Λ1(τ )Λ2(τ )

Λ1(τ )q1(x, y) + Λ2(τ )q2(x − Δx , y − Δy)

×
⎛
⎜⎝

∂q1(x,y)
∂x

∂q2(x−Δx ,y−Δy)

∂x
∂q1(x,y)

∂x
∂q2(x−Δx ,y−Δy)

∂y

∂q1(x,y)
∂y

∂q2(x−Δx ,y−Δy)

∂x
∂q1(x,y)

∂y
∂q2(x−Δx ,y−Δy)

∂y

⎞
⎟⎠ dxdydτ

=
t∫

t0

∫

R
2

Λ1(τ )Λ2(τ )

Λ1(τ )q1(x, y) + 0

⎛
⎜⎝

∂q1(x,y)
∂x 0 ∂q1(x,y)

∂x 0

∂q1(x,y)
∂y 0 ∂q1(x,y)

∂y 0

⎞
⎟⎠ dxdydτ = 0.

��
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Proof of Theorem 4

Proof 1. The image detection processes G1 and G2, which describe the first and second
images, respectively, are assumed to be statistically independent of each other. Hence
the general expression for the Fisher information matrix can be written as

Ssim,sp(θc) = Ssim,sp,1(θc) + Ssim,sp,2(θc), θc ∈ Θc,

where Ssim,sp,1 and Ssim,sp,2 denote the Fisher information matrices corresponding to
the image detection processes G1 and G2, respectively. In the present case, we assume
without loss of generality that (x01, y01) to be the location coordinates that is determined
from the first image. Then it immediately follows that Ssim,sp,1(θc) = Q1 for θc ∈ Θc,
where Q1 denotes the Fisher information matrix for the localization accuracy problem
corresponding to object 1 and is given by Eq. 20.
To derive an expression for Ssim,sp,2(θc), we make use of the fact that for the second
image the location coordinates (x01, y01) of object 1 can be assumed to be known a priori,
since it is already determined from the first image. Hence for the second image only the
location coordinates (x02, y02) of the second object are the unknown parameters. Hence
from this it immediately follows that the expression for Ssim,sp,2(θc) will be identical to
K22(θc) which is a component of the Fisher information matrix Ssim(θc) for the problem
of estimating θc when the location coordinates of both objects are unknown (Theorem 2).

2. To show that Ssim,sp(θc) is invertible, we require that Q−1
1 and K−1

22 (θc) exist for every
θc ∈ Θc. We prove the result by contradiction. Define Δx := x01 − x02 and Δy =
y01 − y02. For θc ∈ Θc, consider the term

K22(θc) =
t∫

t0

∫

R
2

Λ2
2(τ )

Λ1(τ )q1(x − x01, y − y01) + Λ2(τ )q2(x − x02, y − y02)

×
⎛
⎜⎝

(
∂q2(x−x02,y−y02)

∂x

)2
∂q2(x−x02,y−y02)

∂x
∂q2(x−x02,y−y02)

∂y

∂q2(x−x02,y−y02)
∂x

∂q2(x−x02,y−y02)
∂y

(
∂q2(x−x02,y−y02)

∂y

)2

⎞
⎟⎠ dxdydτ

=
t∫

t0

∫

R
2

Λ2
2(τ )

Λ1(τ )q1(x − Δx , y − Δy) + Λ2(τ )q2(x, y)

×
⎛
⎜⎝

(
∂q2(x,y)

∂x

)2
∂q2(x,y)

∂x
∂q2(x,y)

∂y

∂q2(x,y)
∂x

∂q2(x,y)
∂y

(
∂q2(x,y)

∂y

)2

⎞
⎟⎠ dxdydτ

=
t∫

t0

∫

R
2

hθc (x, y, τ )

⎛
⎜⎝

(
∂q2(x,y)

∂x

)2
∂q2(x,y)

∂x
∂q2(x,y)

∂y

∂q2(x,y)
∂x

∂q2(x,y)
∂y

(
∂q2(x,y)

∂y

)2

⎞
⎟⎠ dxdydτ, (54)

where for θc ∈ Θc,

hθc (x, y, τ ) := Λ2
2(τ )

Λ1(τ )q1(x − Δx , y − Δy) + Λ2(τ )q2(x, y)
, (x, y) ∈ R

2, τ ≥ t0.

Assume that there exists an image function q2 such that the Fisher information matrix
K22(θc) is singular for θc ∈ Θc. Hence by Eq. 54, it immediately follow that
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Det[K22(θc)] =
t∫

t0

∫

R
2

hθc (x, y, τ )

(
∂q2(x, y)

∂x

)2

dxdy

×
t∫

t0

∫

R
2

hθc (x, y, τ )

(
∂q2(x, y)

∂y

)2

dxdy

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t∫

t0

∫

R
2

hθc (x, y, τ )
∂q2(x, y)

∂x

∂q2(x, y)

∂y
dxdy

︸ ︷︷ ︸
T2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

= 0, θc ∈ Θc.

Note that the above expression pertains to the limiting case of equality of the Cauchy-
Schwarz inequality applied to the term T2. Hence by applying the condition for equality,
we have for k 
= 0

∂q2(x, y)

∂x
− k

∂q2(x, y)

∂y
= 0, (x, y) ∈ R

2. (55)

The above equation is analogous to the classical one-dimensional transport equation
whose solutions are given by (Strauss 1992, p. 6-7)

q2(x, y) = F
(

x + y

k

)
, (x, y) ∈ R

2,

where F is defined on R. As q2 is an image function satisfying the regularity conditions,
we know that q2 is continuous on R

2. Hence it follows that F is also continuous on R.
Further, q2(x, y) ≥ 0, (x, y) ∈ R

2 and hence F(x) ≥ 0, x ∈ R. This implies that there
exists a constant K > 0 and a finite interval I = (a, b) ⊂ R such that F(x) ≥ K , x ∈ I.
Making use of the fact that

∫
R

2 q2(x, y)dxdy = 1 (since q2 is an image function) and
substituting for q2 in terms of F , we have

1 =
∫

R
2

q2(x, y)dxdy =
∫

R
2

F
(

x + y

k

)
dxdy =

∫

R

⎛
⎜⎝
∫

R

F
(

x + y

k

)
dx

⎞
⎟⎠ dy

=
∫

R

⎛
⎜⎝
∫

I
F

(
x + y

k

)
dx +

∫

I\R

F(x + y

k
)dx

⎞
⎟⎠ dy

≥
∫

R

⎛
⎜⎝
∫

I
K dx +

∫

I\R

F
(

x + y

k

)
dx

⎞
⎟⎠ dy

= K (b − a)

∫

R

dy +
∫

R

⎛
⎜⎝

∫

I\R

F
(

x + y

k

)
dx

⎞
⎟⎠ dy

= ∞,
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which is a contradiction. Hence K22(θc) is invertible for θc ∈ Θc. Similarly we can show
that Q1 is also invertible. From this the result follows. ��
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