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Analysis of Point Based Image Registration Errors
With Applications in Single Molecule Microscopy

E. A. K. Cohen and R. J. Ober, Senior Member, IEEE

Abstract—We present an asymptotic treatment of errors in-
volved in point-based image registration where control point (CP)
localization is subject to heteroscedastic noise; a suitable model
for image registration in fluorescence microscopy. Assuming an
affine transform, CPs are used to solve a multivariate regression
problem. With measurement errors existing for both sets of CPs
this is an errors-in-variable problem and linear least squares
is inappropriate; the correct method being generalized least
squares. To allow for point dependent errors the equivalence of a
generalized maximum likelihood and heteroscedastic generalized
least squares model is achieved allowing previously published
asymptotic results to be extended to image registration. For a
particularly useful model of heteroscedastic noise where covari-
ance matrices are scalar multiples of a known matrix (including
the case where covariance matrices are multiples of the identity)
we provide closed form solutions to estimators and derive their
distribution. We consider the target registration error (TRE) and
define a new measure called the localization registration error
(LRE) believed to be useful, especially in microscopy registration
experiments. Assuming Gaussianity of the CP localization errors,
it is shown that the asymptotic distribution for the TRE and LRE
are themselves Gaussian and the parameterized distributions are
derived. Results are successfully applied to registration in single
molecule microscopy to derive the key dependence of the TRE and
LRE variance on the number of CPs and their associated photon
counts. Simulations show asymptotic results are robust for low
CP numbers and non-Gaussianity. The method presented here is
shown to outperform GLS on real imaging data.

Index Terms—Errors-in-variable, fluorescence microscopy, gen-
eralized least squares, image registration.

I. INTRODUCTION

I MAGE registration is the process of overlaying two or more
images of the same scene [1]. From a theoretical stance,

registration is the process of establishing the geometric trans-
formations between two or more data sets such that they can
be viewed in a single coordinate system. These images could
arise from different times (multitemporal), different viewpoints
(multiview), or different sensors (multimodal).
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Broadly speaking, image registration techniques can be di-
vided into two categories. The first is intensity-based registra-
tion where gray scale values in both images are correlated to
match the images, e.g. [2], [3]. Here we are concerned with the
alternative method, feature-based registration, whereby corre-
spondence between the two images is determined through the
matching of distinct features common in both images e.g. [4],
[5], (although there exist methods that combine both feature
and intensity-based approaches to registration e.g. [6]). Specif-
ically we are concerned with the case where the features used
for matching are points in the image where pair correspondence
is certain. In this case they are known as control points (CPs). It
is common that these points are created with the use of fiducial
markers, e.g. beads in microscopy [7], [8], or infrared emitting
diodes in computer aided surgery [9].
We consider an image to capture a subset of the space ,

or 3. Given two image spaces and , say,
registration is concerned with estimating the mapping
. It is typical to consider to be an affine transformation e.g.

[10]–[13]. In this circumstance, for ,
where is a square invertible matrix and is
a translation vector. This includes the well studied subclass of
rigid transformations where the matrix is a rotation transfor-
mation [11], [12], [14], [15]. Registration involves using the CP
locations in and their corresponding mapped positions in
to find .
In general, due to noisy signals, the location of the CPs in at

least one of the images can not be measured exactly and instead
are perturbed by random errors. Commonly these error terms are
not identically distributed (heteroscedastic) and/or directional
(anisotropic). Consequently it is not possible to exactly match
the CPs in both images. With this problem in mind, two key
questions arise. Firstly; what is the procedure for estimating
and that correctly accounts for the measurement errors in lo-
calizing the CPs? Secondly; how accurately can we determine
the transformation and hence what errors arise from the regis-
tration process? In response to the second of these questions, it
has been common in the literature to define the target registra-
tion error (TRE) as a measure of accuracy for a registration and
its distributional properties are of keen interest e.g. [10]–[12],
[14]–[16].
One of the most widely researched and applied methods of

image registration has been the traditional least squares esti-
mator [13], [14], [17]. Given that the CP locations are precisely
known without error in one of the images, and the errors in their
localization in the second image are independent and identically
distributed (iid) then this provides a proper method of registra-
tion. In the case of rigid transformations ( represents rotation
only) [14] provides an approximation to the root mean square
of the TRE that has been corroborated with simulated data. This
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was extended to an approximate distribution of the TRE in [15]
and [16]. For rigid transforms when errors are only present in
one set of CPs then several papers have attempted to extend dis-
tributional results for the TRE to the case where errors are het-
eroscedastic and anisotropic based on a number of different ap-
proaches, including maximum likelihood procedures [12], and
a spatial stiffness model [10].
In most registration scenarios measurement errors will exist

in both sets of CP locations rendering these methods insuffi-
cient. In this circumstance the problem is known as an errors-in-
variables (EIV) problem and it is well known the that traditional
least square method provides inconsistent estimators [18]. If all
measurement errors are iid then the total least squares (TLS)
method (see [19]–[21]) is the correct procedure and [22] pro-
vides distributional results for the parameter estimators in the
Gaussian case. Under the assumption that measurement errors
are iid and white then [23] (corrected by [24]) takes a maximum
likelihood (ML) approach to the EIV problem associated with
image registration and Cramér-Rao lower bounds are derived
for the variance of parameter estimators. However the reality
is iid is a rare luxury and any deviation from this render the
TLS and ML methods inconsistent. It is therefore necessary to
consider the broader class of model called heteroscedastic EIV
(HEIV).
In this paper we will use fluorescence microscopy as a moti-

vating example. Using fiducial markers to perform image reg-
istration is an important pre-processing step when correcting
for drift between successive frames (multitemporal) e.g. [7], or
combining a pair of different colored monochromatic images
captured through different sensors (multimodal) e.g. [8], [25].
Localization accuracy depends on the brightness of the light
emitting object (see [26]–[30]) and hence each fiducial marker
is localized with varying degrees of accuracy. This presents us
with a typical HEIV model. It is useful to define a new measure
of registration error that we will call the localization registra-
tion error (LRE). Recent advances in microscopy have made it
possible to detect single molecules in a cellular environment,
e.g. [31]–[33]. Localizing a feature (e.g. a single molecule) in
typically has its own errors associated with it. The LRE mea-

sures the combined effect of this localization error and the reg-
istration error to give the localization error of the feature regis-
tered in the second image, and is of importance to researchers
[8], [25].
There have been recent attempts to tackle the EIV approach

to rigid image registration for heteroscedastic errors in [34],
[35] with the heteroscedastic EIV (HEIV) algorithm; an itera-
tive procedure that finds an optimal solution to the HEIVmodel.
Numerical Monte Carlo estimates of the TRE for the HEIV al-
gorithm are considered in [11] and compared with a spatial stiff-
ness model approach to the HEIV problem.
In this paper we consider the HEIV model for CP registra-

tion, the most general form of the registration problem (under
the affine assumption). In Section II we rigorously formulate CP
based image registration and formally define the TRE and LRE
measures. In Section III, by taking the generalized maximum
likelihood approach introduced in [36] as a starting point, we are
able to show its equivalence to a heteroscedastic formulation of
generalized least squares (GLS) and an EIV analogy of the least
squares approach, here called ordinary least squares (OLS) in

keeping with the terminology of [22] for iid EIV. In the case
where error covariance matrices for each CP are a scalar mul-
tiple of a knownmatrix (e.g. multiples of the identity), we derive
the closed form solution. In Section IV, asymptotic results de-
rived in [36] are used to derive distributions for the registration
parameters. In Section V these distributions are used to derive
asymptotic distributions for the TRE and LRE. In Section VI we
derive the asymptotic second order moments of the TRE and
LRE in a microscopy setting, giving neat closed form expres-
sions in terms of photon counts and experimental parameters.
We verify these results in Section VII with numerical simula-
tions and show asymptotic results are appropriate for relatively
low (realistic) numbers of CPs. The method presented here is
shown in Section VIII to outperform the traditional GLSmethod
(that assumes homoscedastic measurement errors) when applied
to real fluorescence microscopy imaging data. This paper rep-
resents a significant development upon the preliminary results
first reported in [37].
A comprehensive list of abbreviations and notations used in

this paper can be found in Tables II–V in Appendix A.

II. FORMULATING THE PROBLEM

Suppose CPs are located in at true locations
, and in at true loca-

tions , such that
, where and . In re-

ality the positions of the CPs cannot be known exactly and must
instead be measured. Consequently we observe the CP locations
as and ,
where , 2. The term

is a random variable known as the measurement error.
Each measurement error is assumed zero mean and to have indi-
vidual symmetric positive definite covariance matrix . It is
assumed that all measurement errors are pairwise independent
across the CPs.
We define the matrices ,

and , 2, and further
define the stacked matrices ,

and .With this notation the system of
equations can be conveniently represented as the single matrix
equation

(1)

where is the matrix transpose, ,
and is a column vector of length with every element
taking the value 1. The columns of are known as the in-
dependent variables and the columns of are the dependent
variables. Models of type (1) where observations of both the de-
pendent and independent variables contain measurement errors
are EIV models.
If covariance matrices differ across CPs then they must be

known [36]. (In [34] the covariance matrices are unknown, but
still require estimation through bootstrapping methods). It is
convenient at this point to assume the errors in model (1) follow
two possible, but different statistical frameworks. The first shall
be called the second-order framework .
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Assumption I: Under , the columns of are independent
with th column havingmean zero and known
symmetric positive definite (SPD) covariance matrix

(2)

where denotes the covariance matrix of a vector .
The alternative framework shall be called the distributional

framework .
Assumption II: Under , the columns of are inde-

pendent and of known distribution with the th column
where the SPD covariance

matrix is again known and of form (2). (Notation means
‘equal in distribution’ and denotes the -variate
normal distribution with mean and covariance .)
With both and , matrices are in

general not equal. In this circumstance (1) is a HEIV model.
Givenmeasurements , and assuming (1) models the system,

the image registration process involves constructing estimators
and for parameters and , respectively. The method of

estimation will be discussed in Section III.

A. Image Registration Errors

Suppose we have registered the pair of images with estima-
tors and , we need a measure of how successful the reg-
istration procedure has been. We begin by defining the com-
monly used target registration error [10]–[12], [14]–[16]. For
anisotropic noise it is important to consider the error as a vector,
rather than just its magnitude.
Definition II.1: The target registration error (TRE)
for an arbitrary point with corresponding mapped

position in of is given as
.

We may find it more helpful to consider a related measure.
Suppose we are interested in registering a specific feature (e.g.
a single molecule) in with true position , in the
second image the true position of this feature is , with

. However, as with the CPs, the position of the
feature in is actually measured to be at ,
where is a measurement error with zero mean and covari-
ance . Therefore our estimator for the position of the fea-
ture in is . A key question is; what is the error
associated with localizing the feature in ? To quantify this we
define a new measure that we will call the localization registra-
tion error.
Definition II.2: For a feature in with true and measured

locations and respectively, the lo-
calization registration error (LRE) is defined as the differ-
ence between the true position and the registered position, i.e.

.
Let us define the difference between the true and estimated

values of the transform parameters as and
. It can be shown that

(3)

(4)

We can connect the two as .
When localization of the feature in can be achieved exactly,

i.e. , then . To derive the distribution of
the TRE and LRE, and importantly their respective covariance
matrices and , it is necessary to know the distributional
properties of the terms and .

III. PARAMETER ESTIMATION

Parameter estimation for EIV models of type (1) when the
columns of the measurement error matrix are iid is well estab-
lished. Themultivariate total least squares (TLS) (see [19]–[21])
or the multivariate generalized least squares (GLS) method [22]
solve different but equivalent minimization problems. The pa-
rameter estimators that solve the respective minimization prob-
lems are exactly known and [22] also derived their asymptotic
distributions for Gaussian measurement errors.
The reality is that the covariance matrices

for the stacked measurement errors
are, in general, not identical and as such the iid

assumption is invalid (although pointwise independence is still
assumed). Hence, these estimators and the distributional results
derived for the iid case are unsuitable for the image registration
problem posed here. It is therefore necessary to take a more
general approach to formulating the minimization problem and
parameter estimation that can take into account heteroscedastic
measurement errors. Definition III.1(i) is given in [36] and
Definitions III.1(ii)–(iii) are given here as a generalization to
the minimization problems considered in [22].
Definition III.1: Consider the observation matrix of mea-

sured CP locations that is assumed to arise frommodel (1) under
Assumption I (second-order framework ).
(i) Define likelihood function

, where
is the joint probability

density function (pdf) for the columns
of observation matrix . The
ML estimators , and are defined as

.

(ii) For any given and , the residual vectors
are zero mean and

have covariance matrix . Let
and let

represent the Frobenius matrix norm, the
ordinary least squares (OLS) estimators , and

are defined as

.

(iii) For any given and , the residual vectors
are zero mean and have covariance matrix

, where .

Let , the generalized
least squares (GLS) estimators , are defined as

.

The maximum likelihood solutions for models of type (1) are
discussed in [36]. The number of unknown nuisance parameters

increases linearly with the number of ob-
servations and are known as incidental pa-
rameters [38]. [36] adopts the generalized likelihood approach
of [39] to estimate the structural parameters and in models
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containing incidental parameters and an iterative procedure for
computing the estimators is given. Let for a matrix

be defined as the vector
and define .
Assumption III: Let be a matrix with th element

given as . All elements of
exist and is non-singular.
Under Assumption III, these estimators of and are con-

sistent [36], [40]. We now present the key result of this section,
the proof of which is found in Appendix B.
Theorem III.2: Consider model (1) under Assumption

I (second-order framework ), where the random vectors
are pairwise independent and vector has

covariance , then the solutions to the OLS
and GLS minimization problems (see Definitions III.1(ii) and
III.1(iii)) are identical to the ML estimators for the likelihood
function under Assumption II (distributional framework ) (i.e.

, and ),

where .
We note the OLS and GLS estimators do not depend on

having Gaussian distributed measurement errors.

A. Weighted Covariance Generalized Least Squares

While iterative procedures are required to compute the
ML/OLS/GLS estimators—see Definitions III.1(i),(ii) and
(iii)—in the general case of heteroscedastic noise it is possible
to derive an exact closed form expression for the ML/OLS/GLS
estimators when we consider the following special case, which
we term weighted covariance.
Assumption IV: For all , the SPD covariance

matrix of —the th column of the measurement error ma-
trix —is given by where is a known SPD ma-
trix and is known.
Assumption IV will be shown to be suitable in fluorescence

microscopy image registration—see Section VI-A—and from a
theoretical stance includes the important case of .
We introduce a further set of assumptions that are necessary for
consistency of the estimators presented in Theorem III.3.
Assumption V:
(i) Define the scalar , vector

and matrix
,

then we assume exists, and there exists and

such that and with

probability one (wp1).
(ii) Define vector , ma-

trix and matrix

, then we assume
there exists such that wp1.

The proof of the following theorem is found in Appendix C.
Theorem III.3: Consider the multivariate EIV model (1)

under Assumption I (second-order framework ) and Assump-
tion IV (weighted covariance). Define ,
vector and matrix

.
The eigendecomposition of is represented as

with where
are the ordered eigenvalues of and

the columns of are the corresponding eigenvectors. Making

the partition , and assuming exists, the

ML/OLS/GLS estimators of and are given as

(5)

where . Furthermore, provided Assumption V
additionally holds then and are consistent estimators of
and , respectively.

IV. ASYMPTOTIC DISTRIBUTIONS FOR
PARAMETER ESTIMATORS

For the most general case where the covariance matrices
are unrelated and unequal SPD ma-

trices, [36] also derived the asymptotic distributions for the
ML estimators of and under distributional framework .
These estimators form the elements of the estimator for the
parameter vector . Provided Assumption
II (statistical framework ) holds, i.e. measurement errors are
Gaussian, the result will also be appropriate for the OLS and
GLS estimators as given in Definitions III.1(ii) and III.1(iii).
We introduce to denote asymptotically equal in distribution
with respect to . The following is from [36].
Theorem IV.1: Consider the multivariate EIV model (1)

under Assumption II (distributional framework ), then

given is a consistent estimator of
, defining we have

, where , with

,

(6)

and

(7)

where , ,
and denotes the Kronecker product. Given is a

consistent estimator of , then and are consistently es-
timated by and respectively, calculated by substi-
tuting for , and then and into (6)
and (7).1

Using this result we are able to present the following corollary
for the asymptotic distributions of the estimators in the special
case of the weighted covariance property—see Section III-A.
We introduce the notation for the th element
of a matrix , and specifically use as short-hand for

. The proof of the following is found in Appendix D.
Corollary IV.2: Consider the multivariate EIV model (1)

under Assumption II (distributional framework ) and As-

1A minus sign, believed to be incorrectly missing in [36], has been added to
the leading diagonal term in (6). This is required for consistency with the well
established iid results found in [22] and [41].
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sumption IV (weighted covariance). Define vector
, matrix ,

matrix , matrix
(where ), and matrix

. Let

be constructed from the estimators in (5),

then under Assumption V (consistency) ,
where ,

where

(8)

(9)

This gives the following key asymptotic identities as

where we define and the limits

and (which both exist under Assumption V).

We note that in the iid case where for all
then the parameter estimation procedures (as outlined

in Theorem III.3) and the asymptotic results (as outlined in
Corollary IV.2) reduce to the results presented in [22] and thus
forms a natural extension to well established GLS results.

V. ASYMPTOTIC DISTRIBUTIONS FOR TRE AND LRE

Given the distributional results of Theorem IV.1 and Corol-
lary IV.2 it is now possible to derive asymptotic distributions for
the TRE and LRE—see Definitions II.1 and II.2, respectively.
The proof of the following is omitted but follows directly from
the linear combination of Gaussian random variables being it-
self Gaussian. The covariance matrix follows directly from (3),
Theorem IV.1 and Corollary IV.2.
Corollary V.1: Under model (1), Assumption II (distribu-

tional framework ) and Assumption III (consistency), for a
point then with th
element given as

(10)

with as defined in Theorem IV.1. Further to this, under As-
sumption IV (weighted covariance) and Assumption V (consis-
tency), where and are as defined in Corollary IV.2

(11)

To consider distributional results for the LRE, it is necessary
to decompose into two parts, where

. The term is a random
variable with no dependency on the image registration process,
being independent of and (and hence , CP locations
and CP measurement errors). By contrast, each term in is
dependent on the image registration process, being a function
of and . It is important to note and are in-
dependent. We can now provide the following asymptotic result
for , the proof of which is omitted but follows directly from
the linear combination of Gaussian random variables being it-
self Gaussian. The covariance matrix follows directly from (4),
Theorem IV.1 and Corollary IV.2.
Corollary V.2: Under model (1), Assumption II (distribu-

tional framework ) and Assumption III (consistency) provided
where is the measurement error asso-

ciated with localizing a feature in with true location ,

then with th element of given as

(12)
Further to this, under Assumption IV (weighted covariance) and
Assumption V (consistency),

(13)

While the asymptotic distributions presented here are math-
ematically elegant, experimenters are keen to know the covari-
ance matrices and of the TRE and LRE , respec-
tively, in their registration procedure. It is therefore necessary
to have results for finite . Consider model (1) under Assump-
tions II (distributional framework ) and III (consistency), or
Assumptions II, IV (weighted covariance) and V (consistency).
Let be the true position of a feature that is localized

at , where . For “large
” we assume the asymptotics have been approximately met

and hence from Corollaries V.1 and V.2, together with the in-
dependence of and , the TRE and LRE
are both approximately -dimensional normally distributed with
zeromean and have respective approximate covariancematrices

(14)

(15)
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These approximations will be used in Sections VI and VII to
investigate in more detail registration problems in single mole-
cule microscopy.

VI. IMAGE REGISTRATION ERROR ANALYSIS FOR SINGLE
MOLECULE MICROSCOPY

We apply the theory presented thus far in this paper to the
important problem of assessing localization errors due to the
registration process in a fluorescence microscopy setup. Regis-
tration is a common pre-processing step in microscopy experi-
ments. Fiducial markers are used as CPs, these are bright, light
emitting objects (e.g. fluorescent beads [8], [42]) that require
estimation of their location. One example of a fluorescence mi-
croscopy experimental setup is to register a pair of different col-
ored monochromatic images, for example to see if two different
protein molecules colocalize e.g. [8], [25], [43], [44]. This is a
multimodal registration problem. Fiducial markers are also used
for drift correction between successive image frames [7]. This
is a multitemporal registration problem.
As will now be discussed, the covariance matrix associated

with localizing each CP/fiducial marker in each image is de-
pendent on the number of photons associated with it that are
detected at the sensor, and therefore presents us with a HEIV
problem of type (1).

A. Measurement Errors

In [26] and [30] are lower bound expressions for the covari-
ance matrix of the error in localizing an isolated point source
emitting photons as an inhomogeneous Poisson process in the
presence of background and readout noise, which in turn is
shown in [26] to be a reasonable estimate for the true covariance
matrix. These general expressions can be used with the estima-
tion procedure of [36]—see Section III—for parameter estima-
tion and TRE and LRE second-order moments can be computed
with the generalized expressions of (10) and (12), respectively.
When imaging in the absence of background noise and

readout noise the covariance matrix for the error in localizing
a point source in the object space is given as , where
is the number of photons collected from the point source

at the detector, and is a SPD matrix that can be computed
from experimental parameters including photon wavelength,
numerical aperture and the point spread function of the op-
tical system. For a non-pixelated detector is diagonal, with
pixels introducing off-diagonal terms. In the image space this
covariance matrix becomes , where is the known
system magnification between the object space and the image
space (a distance in the object space is measured as in the
image space). Further to this, it is shown in [45] that even in the
presence of typical levels of background and readout noise the
covariance matrix is a suitable approximation to the
covariance matrix for errors in localizing a bright (high signal
to noise ratio) point source. Conventional fiducial markers used
in fluorescence microscopy are typically bright and hence for
the purposes of this paper we assume that they can be treated
in this way.
We assume the image registration formulation of Section II

and model (1) with the use of fiducial markers for the CPs.
The matrix and system magnification are specific to the

image and hence labeled and , respectively, , 2.
Suppose photons are detected at the detector for fiducial
marker in , 2. Themeasurement errors

, 2, are therefore assumed to have co-
variance of the form , where

is a SPD matrix and universal for all CPs in . This

gives the covariance matrix of as the block
diagonal matrix .
Consider the two common image registration scenarios de-

scribed at the beginning of this section. The first is in registering
two monochromatic images captured at the same time with two
different sensors (multimodal). While the photon count associ-
ated with a single fiducial marker at two different wavelengths
(i.e. in separate monochromatic images) will be different, it is
reasonable to assume that there is a linear relation between the
brightness of themarker in each image i.e. a marker that is bright
in is also bright in . Mathematically we say
for all , where is a constant of propor-
tionality, suitable for all . The second scenario is
performing drift correction by registering two images taken by
the same sensor at different times (multitemporal). In this case,
provided the brightness of the marker remains constant in the
time between captures, then we assume (which
is mathematically equivalent to the multimodal scenario with

). The constant need not be known to derive expressions
for and , we just assume it exists.
With this assumption we have the situation where the covari-

ance matrices of the measurement errors have the weighted co-
variance property, i.e. they are scalar multiples of

(16)

with providing the scaling factor. This gives

, the
mean photon count for the CPs in . Fig. 1 summarizes
the key steps involved in registering a pair of fluorescence mi-
croscopy images.

B. Microscopy LRE

We now consider the expressions for the TRE and LRE co-
variance matrices, and , respectively. Consider localizing
a single molecule in at point , where
with the measurement error having covariance estimable
from [26], and being the true positional vector. We esti-
mate its location (the registered position) in as .
We begin by considering the following 2D model.
Assumption (i): We model the CP measurement errors

where is given in (2) with
where is the photon count at the detector

associated with CP in , 2. is the
known system magnification associated with . is a known
function of the point spread function, photon wavelength and
numerical aperture. In multimodal registration and will
be different for each image, while in multitemporal registration
they will be identical for both images. is of form (16) where

.
Assumption (ii): Consider the CP true positions

to be realizations of a random variable
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with mean zero and covariance , and let associated photon
counts be non-zero, finite and independent of CP positions.
Assumption (iii): The affine transformation parameter
represents a scaling , , combined with a

unitary rotation or reflection (or a combination of both) , i.e.
.

Wewill make use of the following Lemma, the proof of which
is found in Appendix E.
Lemma VI.1: Let CP positions

be realizations of a random variable with
finite mean and SPD covariance , and let weights

be realizations of a random variable
with finite non-zero mean and finite variance independent

of CP position. Let and

where and

, then

and , each wp1.

From Assumption (ii) and Lemma VI.1 and
will provide our estimate of , where

. We introduce . Using these expressions
for and and with the covariance matrix in Assump-
tion (i) and the form of the transformation parameters in
Assumption (iii), then from the definitions in Corollary
IV.2 we have the identities and

. Substituting
these expressions into (11) and (13) gives

where is the radial distance of the feature/single
molecule from the origin. Given the spread of the CPs (repre-
sented by ) is much greater than the localization accuracy of
the individual CPs (represented by and ) and the localiza-
tion accuracy of the feature (represented by )—as is typical in
microscopy—then the term and (both

in the order of for a typical microscopy experiment) can
be considered negligible. From Corollaries V.1 and V.2 and as-
suming approximations (14) and (15) we state the following key
result:
Proposition VI.2: For large , under Assumptions (i)–(iii)

the th element of the covariance matrix of the TRE can
be approximated as

(17)
The th element of the covariance matrix of the LRE can
be approximated as

(18)

If the covariance is itself representable as
, where is the photon count associated

with the feature (molecule) imaged in , then in (18) we
replace with . The covariance ma-
trices and are both given with respect to image space
. To express these matrices with respect to the object space

coordinates we use and .
Consider (17). We immediately notice that the TRE has an

inverse dependence the number of CPs (denoted by ). Given
extra CPs have similar localization errors to those already de-
ployed, then increasing the number of CPswill improve the TRE
covariance and it vanishes to zero as the number of CPs tends to
infinity. It will be the case that for relatively small numbers of
CPs the TRE improvements are significant by attempting to in-
troduce more of them into the registration process. However, if
we already have a large number of CPs then there is no signifi-
cant gain in registration performance by small increases in their
numbers. Specifically to microscopy, the TRE covariance will
also vanish as the mean photon counts tend to infinity. There-
fore extending exposure time will improve registration. Diag-
onal terms of the TRE covariance have dependency on CP mea-
surement errors in both images, while off diagonal terms of the
TRE covariance depend only on measurement errors in . In
relation to the parameters and , the LRE and TRE covariance
matrices are independent of rotation and translation and exhibit
dependence only on scaling factor . The diagonal terms of the
have lower bound .
Localization accuracy is defined as the standard deviation of

the molecule’s object space localization error. One derivable
quantity of interest to researchers will be the amount by which
the registration process affects localization of a feature (single
molecule) in object space.
Definition VI.3: Let be the covari-

ance matrix for the measurement error in localizing a feature at
true location , and let be the covariance matrix of
the LRE, then the localization loss ratio, say, has th

element .
From (18) we now give the following result for the registra-

tion induced error ratio:
Proposition VI.4: Under Assumptions (i)–(iii) the diagonal

terms of the registration induced error ratio matrix, , for a
feature at true location are given as (for , 2)

(19)

Proposition VI.5: If we wish the localization accuracy of a
registered feature in to be restricted to % more than the lo-
calization accuracy in , i.e. , assuming
strict equality in (19), we require the following inequality is sat-
isfied:

(20)
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Fig. 1. Flow chart summarizing the key steps in registering a pair of fluorescence microscopy images.

Consider a multitemporal registration scenario, i.e. point
spread functions, numerical aperture and photon wavelengths
can be considered identical , and

for all . Assume is a rota-
tion with no scaling (i.e ) and we have an arbitrary

translation . Inequality (20) becomes

. For example, suppose

we image a single molecule in with a photon count of
on the outer corner of a square of dimen-

sions , then . Consider CPs that are uniformly
distributed in , then and . To
restrict the loss in localization accuracy of the single molecule
due to the registration process to within 10% then we require

. In such a scenario,
10 CPs with a mean photon count of 1350 would be sufficient.
A single molecule at the center of would undergo a loss in
localization accuracy of only 0.71%.

C. Non-Diagonal

Let us now consider the case where there exists off-diagonal
terms in the matrices and —see Section VI-A. is

still of form (16) with . Assuming the

analysis in Section VI-B on the order of magnitude of relative
terms still holds, and matrix

(21)

represents a rotation by angle , we have the following

(22)

(23)

(24)

where , , 2, and . Equations
(22), (23) and (24) show that when the covariance of the CP
measurement errors contain off-diagonal terms, the covariance
matrices of the TRE and LRE are dependent on the amount of
rotation in the transform. For example, for then

, and for we have
. However, for small rotation angles the effect of off

diagonal terms is negligible and the results in Propositions VI.2
and VI.4 will still be appropriate.

D. Geometrically Regular Control Point Configurations

In addition to control points that appear to the experimenter
at random locations in the image space, it is also useful to con-
sider the use of deterministic, geometrically regular CP loca-
tions set by the experimenter. These could take the form of a
grid or ellipse (which includes the special case of a circle, pro-
vided pair correspondence between the CPs in both images can
be guaranteed). We once again take the weighting factor for the
covariance matrix (the reciprocal of the photon count) associ-
ated with a CP to be a realization of a random variable and
is completely independent of CP location.
Consider a square grid of side length centered at the

origin, where CPs are evenly spaced including positioning
at each vertex (i.e. is always square). It can be shown

. In this situation (18) is valid, re-
placing with .
We also consider an ellipse centered at the origin with

the major axis running along the x axis with major ra-
dius and minor radius , then it can the shown that

. Equation (18) is still
valid, however for the case then should be
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replaced by . When , is replaced . With ,
this implies that image registration is better resolved in the
direction of the major axis as opposed to the direction of the
minor axis.

VII. SIMULATIONS

Here we seek verification of the results in Section VI through
Monte Carlo simulations. We consider a multitemporal registra-
tion scenario. and each comprise of 512 512 pixels, with
each pixel being of dimensions . The system
magnification is , so in object space each
pixel corresponds to a square of . We con-
sider the affine transformation ,
with being a rotation of form (21) with and

(corresponding to 30 pixels in each direction).
We assume the measurement errors for the bead positions

in have mean zero and covariance matrix
where [26]. is the wavelength of
the photons observed in the th image and is set as 0.520
for and 2. is the numerical aperture of the optical
system and set to a typical value of 1.4 for both images. is
the photon count associated with the th CP in the th image.
We consider a single molecule in with true position

(giving ), assuming
localization is subject to measurement error with covariance

, where . Estimators and were com-
puted as outlined in Theorem III.3.
Simulations for a multimodal scenario would be carried out

in an analogous manner. However, instead of the system param-
eters (photon wavelength, numerical aperture, system magnifi-
cation) being the same for both images, they would in general
differ between and . These different values can be easily
accounted for by calculating the covariance matrix appropri-
ately and generating measurement errors with this covariance.
LRE and TRE covariance terms can be calculated by substi-
tuting the system parameters into (17) and (18). Affine transfor-
mation parameters and are then estimated in an identical
way.

A. Distributional Analysis

Fig. 2 is a quantile-quantile (Q-Q) plot for the distribution
of the first element of the TRE. The curve is produced by or-
dering 10000 independent and normalized estimates (with re-
spect to the theoretical variance) into increasing order of the
size. The probability of a value less than the th ordered esti-
mate (or sample quantile) is to a close approx-
imation. The corresponding theoretical quantile of the normal
distribution is the value such that , where is
the cumulative distribution function of the normal distribution.
The values are plotted on the -axis against the
ordered estimates for (a) , (b) 10, (c) 15, (d) 20 uniformly
distributed CPs. Even for low numbers of CPs the fit to the de-
rived “large ” distribution is striking, and similar results were
seen for the second element of the TRE.
We note that the LRE is comprised of contributions from

the TRE and the measurement error . The elements of
the TRE have standard deviation of order , whereas the
elements of have standard deviation of order 2 nm. The

LRE is therefore dominated by the Gaussian

Fig. 2. Q-Q plot for the first element of the TRE vector with normally dis-
tributed CP measurement errors, for (a) , (b) 10, (c) 15, (d) 20 CPs uni-
formly distributed in the image space. The (mostly obscured) dashed straight
line marks the line of perfect fit.

measurement error . For this reason it is more meaningful
to focus analysis on the distribution of the TRE.

B. Localization Analysis

We now consider four different CP configurations; CP loca-
tions are (a) normally distributed about the center of with
covariance , , (b) uniformly distributed in
, (c) arranged in an ellipse with major radius 4000 and

minor radius 3000 , and (d) arranged in a square grid of side
8100 . Due to restrictions on the possible values of in (d)
we consider simulations where takes the value of the square
numbers from 4 to 64 inclusive. For configurations (a)–(d) the
sample standard deviation of for 100000Monte Carlo sim-
ulations is computed for each value of , while keeping the
same uniform distribution that the CP photon counts are sam-
pled from. The results are plotted in Fig. 3, as are the values
predicted by (18). The dashed line marks the theoretical lower
bound of the LRE standard deviation.
The accuracy for normally and uniformly distributed CPs

(scenarios (a) and (b)) shows some deviation from the large
sample results for small , and in such a circumstance (20)
is not totally appropriate. A better interpretation is; at the very
least this inequality must be satisfied. However, for larger values
of this provides an excellent guide to experimenters. The el-
liptical and grid configurations (scenarios (c) and (d)) show a
much closer fit for small compared to the random configu-
rations (secnarios (a) and (b)). This is most likely due to the
random positioning of the CPs adding to the overall variance
of the parameter estimators. In the deterministic case (20) is an
excellent guide to experimenters.
In Fig. 4 we keep the number of CPs constant at

and change the mean of the uniform distribution from which
the photon counts are sampled. For configurations (a)–(d), the
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Fig. 3. The sample standard deviation of (from 100000 simulations) in
object space dimensions is plotted as a function of the number of CPs for
(a) normally distributed, (b) uniformly distributed, (c) elliptical and (d) grid
CP configurations (see Section VII-B for more details). The ‘ ’ represents the
sample standard deviation of the LRE (in units nanometers). The circles repre-
sent the standard deviation as predicted by Corollary V.2. The ‘ ’ shows the
standard deviation as predicted with (18). The dashed line marks the theoretical
bound .

sample standard deviation of the first element of the LRE for
100000 Monte Carlo simulations is computed. We also plot the
values as predicted by (18). The dashed line marks the theoret-
ical lower bound of the LRE standard devia-
tion. By increasing the photon count, the asymptotic results can
be readily achieved and the key results presented in this paper
provide an excellent guide.
We have shown in Section VI-B that for a diagonal covari-

ance matrix , as is the case in our simulations, then the LRE
and TRE are independent of rotation angle and translation in
the affine transformation. In Fig. 5 we keep the number of CPs
constant at , the mean of the uniform distribution from
which the photon counts are sampled is kept constant and with
affine transformation parameter of form (21) change
the angle of rotation . For each rotation angle the translation
is by a random amount. For configurations (a)–(d), the sample
standard deviation of the first element of the LRE for 100000
Monte Carlo simulations is computed.We also plot the values as
predicted by (18). The dashed line marks the theoretical lower
bound of the LRE standard deviation. It is
clear that the standard deviation of the LRE is invariant to rota-
tion angle and translation, as predicted.

C. Non-Gaussian Measurement Errors

The derived Gaussian distribution for the TRE presented
in this paper is given under the assumption that measurement
errors in localizing CPs are themselves Gaussian distributed.
The measurement errors in a microscopy experiment are often
assumed to be Gaussian—which is justified by large sample
results and evidence based on the analysis of experimental and

Fig. 4. The sample standard deviation of (from 100000 simulations) in
object space dimensions is plotted as a function of , the mean photon
count for the CPs in , for a constant with (a) normally distributed,
(b) uniformly distributed, (c) elliptical and (d) grid CP configurations (see
Section VII-B for more details). The ‘ ’ represents the sample standard
deviation of the LRE (in units nanometers). The circles represent the standard
deviation as predicted by Corollary V.2. The ‘ ’ shows the standard deviation
as predicted with (18). The dashed line marks the theoretical bound .

Fig. 5. The sample standard deviation of (from 100000 simulations) in ob-
ject space dimensions is plotted as a function of rotation angle (in degrees)
when with of form (21), for a constant with (a) normally dis-
tributed, (b) uniformly distributed, (c) elliptical and (d) grid CP configurations
(see Section VII-B for more details). The ‘ ’ represents the sample standard
deviation of the LRE (in units nanometers). The circles represent the standard
deviation as predicted by Corollary V.2. The ‘ ’ shows the standard deviation
as predicted with (18). The dashed line marks the theoretical bound .

simulated data—it is nevertheless useful to know how robust
the results of this paper are under deviations away from this
Gaussian assumption. We therefore consider the TRE when
measurement errors are uniformly distributed, an extreme
deviation from Gaussianity.
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Fig. 6. Q-Q plot for the first element of the TRE vector with uniformly dis-
tributed CP measurement errors, for (a) , (b) 10, (c) 15, (d) 20 CPs uni-
formly distributed in the image space. The (mostly obscured) dashed straight
line marks the line of perfect fit.

Fig. 6 gives Q-Q plots to compare the first element of the TRE
against the normal distribution. Labels (a)–(d) refer to the same
values of as with Fig. 2. Even with such a pronounced change
in the distribution of the CP measurement errors the plots show
the normal distribution is still an appropriate approximation for
the TRE, although the exact distribution is unknown.

VIII. IMAGING DATA AND METHOD COMPARISON

We now apply the algorithm presented in this paper to real
imaging data. Analysis has been conducted by performing
image registration between a pair of images of the same object
space taken by two separate cameras (multimodal registra-
tion). We have 599 repeat captures, resulting in 599 pairs of
images to register. The registration was performed using 27
TetraSpeck fluorescent beads visible in both fields of view.
System parameters were identical for each image, with system
magnifications of 63, numerical apertures equal to 1.45 and the
photon wavelength distributions peaking at 638 nm.
To calculate the TRE for each of the 599 registrations we

need to know the exact coordinates of a point in each image that
perfectly map to one another under the affine transformation.
Without knowledge of the true transformation parameters this is
not available andwe instead isolate one of the beads and average
its location over the 599 images for each camera. This will give
a very high precision estimate of its true location in each image
and these coordinates are used as the reference points for the
TRE. The TRE is then calculated for each of the 599 registration
experiments using two different methods.
The first method is the weighted covariance GLS method

presented in this paper (developed in Section III-A and imple-
mented on simulations in Section VII). This method uses the
system parameters quoted above and the point spread function

TABLE I
SAMPLE STANDARD DEVIATIONS OF TRE IN THE - AND -DIRECTIONS FROM
599 REGISTRATION EXPERIMENTS (UNITS: nm), EACH ROW IS FOR ONE OF

27 DIFFERENT COORDINATE POINTS. ‘WCGLS’ COLUMNS ARE USING THE
NEW WEIGHTED COVARIANCE GENERALIZED LEAST SQUARES PRESENTED IN
THIS PAPER. ‘GLS’ COLUMNS ARE USING TRADITIONAL GENERALIZED LEAST
SQUARES THAT ASSUMES HOMOSCEDASTIC MEASUREMENT ERRORS. ‘GAIN’
COLUMNS GIVE THE PRECENTAGE IMPROVEMENT IN THE WCGLS METHOD

OVER THE GLS METHOD

to calculate covariance matrix and takes into account both
the photon count and location estimates for each bead to com-
pute estimates of the affine transformation parameters and
—see Fig. 1 for details.
The second method used is the traditional GLS method pre-

sented in [22, page 28] (that assumes homoscedastic measure-
ment errors and is equivalent to the ML approach to image reg-
istration used by [23]). This method uses just the location esti-
mates for each bead in estimating and .
For both methods, the sample standard deviation of the TRE

for the - and -direction is computed and displayed in Table I.
This was repeated 27 times, each time isolating a different bead
to act as the reference point.
The results show the weighted covariance GLS methods

presented here consistently outperforms the traditional GLS
method. Comparisons with the theoretical results would be
misleading because of a lack of access to the ground truth and
photon counts significantly differ across the 599 samples.

IX. CONCLUDING REMARKS

We have used a heteroscedastic generalized least squares ap-
proach to point-based image registration. This has allowed an
asymptotic analysis of the distributional properties of the TRE
and the LRE; a new measure of registration success that is of
interest in microscopy. By considering the weighted covariance



6302 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 24, DECEMBER 15, 2013

TABLE II
ABBREVIATIONS

TABLE III
OPERATORS AND FUNCTIONS

case we have derived closed form expressions for both the regis-
tration estimators and the large sample TRE/LRE distributions.
These distributions can be used for determining confidence in-
tervals of errors induced by registration.
Fluorescence microscopy image registration was used as a

motivating example. Here we have derived the TRE and LRE
covariance matrices in terms of the number of CPs, their spread
in the object space, and associated photon counts. The relative
loss in localization accuracy of a imaged single molecule was
further derived. When the covariance matrices of the CP mea-
surement errors are multiples of the identity then there is no
dependence on the translation or rotation components of the
affine transformation. When they have off-diagonal terms then
the TRE/LRE are dependent on the rotation part of the affine
transformation but still remain independent of the translation.
Theoretical results have been verified with Monte Carlo simula-
tions and even for relatively small values of simulations show
excellent agreement with the theory. However, small but notice-
able discrepancies between the simulations and large sample ex-
pressions do occur for small and in such a situation the results
presented here should be considered a useful guide rather than
exact.
Using real imaging data the weighted covariance GLS

method presented here has been shown to consistently outper-
form the traditional GLS method.

APPENDIX A

Table II gives a list of standard abbreviations. Table III gives
a list of common operators and functions. Table IV gives a list

TABLE IV
KEY NOTATION

of standard notations. Table V gives a list of fluorescence mi-
croscopy notations.
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APPENDIX B

Proof of Theorem III.2: Under Assumption II, the 4D multi-
variate Gaussian pdf for measurement vector
is given as

where , , . The
likelihood function for , and is given as

The parameter values that maximize are those
that minimize the term . Noticing

it follows that , and .
Lemma B.1: Let the th column of be given as

(25)

then for any fixed and ,
and .

Proof: Let , then

. The con-

ditional estimator is the value of that gives

. This gives
and the result follows.
The ML estimators (under Assumption II) and OLS estima-

tors (under Assumption I) for and are the values that min-

imize where . Sub-
stituting in (25) gives

(26)

We note that is a non-singular square matrix

and .
Lemma B.2: Let and be equal dimension matrices

such that the matrix is square nonsingular and ,
then .
Lemma (B.2) gives

(27)

Substituting (27) into (26) gives where

and is a row orthogonal matrix.
Hence and , giving

under Assumption I.

APPENDIX C

Proof of Theorem III.3: This proof borrows from [22]. Con-
sider the Frobenius norm

Then

and consequently by setting equal to zero we conclude for any
fixed where

(28)

Under Assumption IV we have and we can simplify
(28) to give , where
and .
Define , and the matrix

, then it can be shown for any fixed that

(29)

where

with equality in (29) holding if and only if

We now note that under Assumption IV

where

and hence we can write with

. We note .
We are required to minimize

with respect to .
LemmaC.1: Let with and

and let , , be a matrix with orthonormal
columns. Then is minimized for
given , when where is a singular value de-
composition (svd) of and denotes
the matrix of orthonormal right singular vectors of corre-
sponding to the smallest singular values.
We note that
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TABLE V
FLUORESCENCE MICROSCOPY NOTATION

and is a matrix with orthonormal columns. Let

be the svd of where we partition the matrix of
right singular vectors

From Lemma C.1 we have

with equality reached when is such that .

From the svd of we have

the eigendecomposition of where the columns of

are the eigenvectors of , with inverse

(30)

We have which gives
, resulting in

with the final equality coming from (30), where we make the
partition

With

we have and .
Using the block inverse of we have

and
, and it follows that

. We have
now shown

for all and .
We are left with showing consistency. Let

and consider eigendecomposition
with

where are the ordered eigenvalues
of and the columns of are the corre-
sponding eigenvectors. Under Assumptions I, IV and
V(i) it can be shown exists

and is equal to wp1, where
, ,

and . Further
to this, Assumption V(ii) implies is positive definite.
Under these conditions we give the following as a summary to
the results found in [22, Section 3].
Lemma C.2: will have eigendecomposition

where and

each wp1.

Let be the eigenvalues of
. is symmetric hence there exists

matrix such that where
. We therefore have

and hence

Consequently, we conclude that are ordered eigenvectors of
with eigenvalues . By also considering

we see that the columns of are the
eigenvectors with the largest corresponding eigenvalues, and

the columns of are the eigenvectors with the smallest
eigenvalues (each equal to one). As such, if we define to be a
matrix whose columns are the eigenvectors of , ordered
by descending size of their corresponding eigenvalues, then

for some unitary matrix . From Lemma C.2 this gives

wp1.
Using this result and under Assumption V

where and . By the strong



COHEN AND OBER: POINT BASED IMAGE REGISTRATION ERRORS 6305

law of large numbers (SLLN),

wp1, and hence where with

. Therefore, with
for all , and

wp1.

APPENDIX D

Proof of Corollary IV.2: Under Assumptions II, IV, V and
IV, and from Theorems III.3 and IV.1, we have that asymp-
totically in , where and
are given by (6) and (7), respectively. Let us define scalar

, vector and
matrix . Under Assumption IV
it can be shown

and

Considering the forms of and in (8) and (9),
respectively, we write and

. Using the mixed-product property of the Kro-
necker product and the symmetry of , then

and

Using the block matrix inverse

where . Results follow
by computing , forming the Kro-
necker product with and taking limits as under
Assumption V.

APPENDIX E

Proof of Lemma VI.1: . With

weighting factors being independent of
points by SLLN

wp1. Let us consider the matrix

where and .

By SLLN . By SLLN and independence

Hence

wp1.
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