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ABSTRACT

Fluorescence microscopy is an optical microscopy technique which has been extensively used to study specifically-
labeled subcellular objects, such as proteins, and their functions. The best possible accuracy with which an object
of interest can be localized when imaged using a fluorescence microscope is typically calculated using the Cramér-
Rao lower bound (CRLB). The calculation of the CRLB, however, so far relied on an analytical expression for
the image of the object. This can pose challenges in practice since it is often difficult to find appropriate
analytical models for the images of general objects. Even if an appropriate analytical model is available, the lack
of knowledge about the precise values of imaging parameters might also impose difficulties in the calculation of
the CRLB. To address these challenges, we have developed an approach that directly uses an experimentally
collected image set to calculate the best possible localization accuracy for a general subcellular object in two
and three dimensions. In this approach, we fit smoothly connected piecewise polynomials, known as splines, to
the experimentally collected image set to provide a continuous model of the object. This continuous model can
then be used for the calculation of the best possible localization accuracy.

Keywords: Cramér-Rao lower bound, Fisher information matrix, single molecule microscopy, splines

1. INTRODUCTION

Fluorescence microscopy is a photon-limited imaging modality that allows the study of subcellular objects, such
as single molecules, and processes with high specificity.1–3 A central question in fluorescence microscopy concerns
the best possible accuracy, in terms of standard deviation, with which an object of interest can be localized.4

This is of significant importance in localization-based superresolution microscopy where the spatial resolution is
tied to the localization accuracy.1,5 The best possible accuracy with which an object of interest can be localized
when imaged using a fluorescence microscope is often calculated using the Cramér-Rao lower bound (CRLB),
that is, the inverse of the Fisher information.4,6, 7 The latter represents the amount of information the data
provides about an unknown parameter.8,9 The calculation of the CRLB, however, so far relied on an analytical
expression for the image of the object, which we refer to as the image function.6,10 In practice, this can be
problematic owing to the fact that often no accurate analytical image function is available.11,12 Even if an
appropriate analytical model is available for the image function, the lack of knowledge about the precise values
of imaging parameters might also impose difficulties in the calculation of the CRLB, as analytical image functions
are typically functions of the parameters of the imaging setup (see e.g. Torok et al.13).

A few approaches are reported in the literature to address the model mismatch issue. For instance, in Liu et
al.14 a phase-retrieved pupil function was used to generate a more accurate model for the point spread function
(PSF) of the optical system. This more accurate PSF model was then used for the calculation of the CRLB. In
Quirin et al.15 a similar approach was used to model engineered PSFs. Such techniques, however, are limited
to point-like objects and are potentially susceptible to parameter mismatch, since phase retrieval algorithms
typically take a variety of imaging parameters, such as the numerical aperture of the objective lens, as inputs.14
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We have developed a new approach to address the above model and parameter mismatch issues which directly
makes use of an experimental image set to calculate the CRLB for a general object.16 A continuously differentiable
representation of the experimental image set is necessary to obtain certain derivatives that are required for the
calculation of the CRLB.4 To achieve such a continuously differentiable model we fit splines, i.e. smoothly
connected piecewise polynomials, to the experimentally collected image set.17 We use splines since they are
well-established in image processing and have a number of useful properties. In particular, their derivatives
can be obtained analytically.18 Our proposed method provides the best possible accuracy with which a general
subcellular object can be localized without requiring the knowledge of imaging parameters such as the numerical
aperture of the objective lens.16

Single molecule microscopy is a well-known application of fluorescence microscopy which allows the detection
of individual molecules.1,3 Due to its practical importance, we investigate the application of our approach to
single molecule microscopy in more detail. In this case, the object of interest is a single molecule which is
typically modeled as a point source2,4 and, as such, the acquired image set pertains to an experimental PSF. An
experimental PSF is a (3D) PSF obtained by (z-stack) imaging a point source, e.g. a bead.19,20

We would like to note that in this paper we review some of the results of our recently published journal
article16 and, particularly, apply them for a comparison of the CRLBs of 3D analytical and experimental PSFs.

2. MATERIALS AND METHODS

2.1 Software and Computations

The computations were carried out in a custom-written software package developed in the MATLAB environment
(The MathWorks Inc., Natick, MA). This package is capable of calculating the CRLB for 2D and 3D experimental
image sets. The computations of the CRLB for analytical PSFs were carried out in the FandPLimitTool,9,21

which is available online at http://www.wardoberlab.com/software/fandplimittool/.

3. PROBLEM FORMULATION AND THEORY

3.1 Fisher Information Matrix

In this section, we describe the theory for determining the best possible localization accuracy in single molecule
microscopy in two and three dimensions. For a 3D localization problem, we denote the location of the object of
interest in the object space by the parameter vector θ := (x0, y0, z0) ∈ Θ, where Θ ⊆ R3, is an open parameter
space. For a 2D localization problem, the location parameter vector obviously pertains to θ := (x0, y0) ∈ Θ ⊆ R2.
The best possible accuracy with which the location of the object can be estimated, observing its pixelated image, is
given by the practical localization accuracy measure (PLAM).1,4, 9 The PLAM is determined using the CRLB.4,6

According to the Cramér-Rao inequality,7,8 the covariance matrix of any unbiased estimator θ̂ of a parameter
vector θ ∈ Θ is bounded from below by the inverse Fisher information matrix (FIM), i.e. cov(θ̂) ≥ I−1(θ). The
main diagonal elements of the inverse FIM provide lower bounds on the variance of the estimates of the unknown
parameters, while we are interested in the estimation accuracy in terms of the standard deviation. Therefore,
the PLAM vector is defined as the element-wise square root of the main diagonal entries of the inverse FIM.9,21

We next express the FIM for the single molecule microscopy problem. Let {C1, . . . , CKpix} be a pixelated
detector, where Ck ⊆ R2 denotes the area occupied by the kth pixel and Kpix is the total number of pixels. The
pixels are assumed to be disjoint. It has previously been shown that the photon counts detected by the pixels
of the detector due to the object of interest are the realizations of independent Poisson random variables with
expected values4,8

µθ(k) =
N

M2

∫
Ck

qz0

( x

M
− x0,

y

M
− y0

)
dr, k = 1, . . . ,Kpix, (1)

where r := (x, y) ∈ R2, N is the expected number of detected photons on the infinite detector plane (i.e. R2)
due to the object, M is the lateral magnification of the objective lens and qz0 is the image function.4,6, 10 The
image function is a bivariate probability density function that describes the image of a stationary object on the
detector plane at unit lateral magnification when it is located on the optical axis at position z0 ∈ R.1,6 The
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image function for a 2D localization problem is simply given by setting z0 = 0. Interestingly, if the object of
interest is a point source, the image function is identical to the PSF of the optical system.16

It has been shown that in the presence of extraneous noise, the expression of the FIM is given by4,6, 7

I(θ) =

Kpix∑
k=1

α(k)

vθ(k)

(
∂µθ(k)

∂θ

)T
∂µθ(k)

∂θ
, θ ∈ Θ, (2)

where vθ(k) := µθ(k) + bk with bk, k = 1, . . . ,Kpix, denoting the photon count due to the background signal at
pixel Ck. The term α(k), k = 1, . . . ,Kpix, is the so-called noise coefficient that depends on the extraneous noise
sources and the detector type. In the absence of readout noise, α(k) = 1 for all k = 1, . . . ,Kpix.

4 In the presence
of readout noise, the noise coefficient is given by6,16

α(k) := vθ(k)


e−vθ(k)

√
2πσk

∫
R

(∑∞
l=1

vl−1
θ (k)

(l−1)! e
−(z−l−ηk)2

2σ2
k

)2

∑∞
l=0

vl
θ(k)

l! e
−(z−l−ηk)2

2σ2
k

dz − 1

 , k = 1, . . . ,Kpix,

where ηk and σ2
k denote the mean and the variance of the readout noise at pixel Ck, respectively. The expression

of the noise coefficient in the presence of readout noise and stochastic signal amplification, i.e. when using an
electron multiplying charge-coupled device (EMCCD) camera, can be found in Chao et al.22

Supposing that the object of interest is a point source and that an analytical expression is available for the PSF
(e.g. the Born and Wolf model11), Eq. (2) can be used to calculate the PLAM for a single molecule microscopy
experiment. However, as mentioned earlier, the lack of appropriate analytical models for PSFs and the lack of
knowledge about the precise values of imaging parameters often pose major challenges in the calculation of the
PLAM. To overcome these problems, we have developed an alternative approach by directly making use of an
experimental image set for the calculation of the PLAM.16

3.2 Experimental Image Sets

A 3D experimental image set is a set of pixelated images of an object acquired at different defocus levels,20

which are corrupted by extraneous noise during the measurement process.1,4 Additionally, due to the stochastic
nature of light, the acquired images are inherently stochastic.6,8 Let zp ∈ R, p = 1, . . . ,Kstk, denote the defocus
level in the object space, where Kstk is the total number of levels. We define an acquired 3D experimental image
set as a realization {hk,p ∈ R | k = 1, . . . ,Kpix, p = 1, . . . ,Kstk} of an array of independent random variables
{Hk,p | k = 1, . . . ,Kpix, p = 1, . . . ,Kstk} distributed as

Hk,p ∼Poisson

(
N c

M2

∫
Ck

qz0−zp

( x

M
− x0,

y

M
− y0

)
dxdy + bck,p

)
∗ N (0, σ2,c

k ), (3)

where N c > 0 is the expected photon count, ∗ denotes the convolution operator, bck,p ≥ 0 is the background level

at pixel Ck, k = 1, . . . ,Kpix, at defocus level zp, p = 1, . . . ,Kstk, and N (0, σ2,c
k ) denotes a zero-mean Gaussian

distribution with variance σ2,c
k associated with the readout noise. The above notation can also be used for a 2D

localization problem simply by assuming Kstk = 1 and zp = z0. If the object of interest is a point source, the
experimental image set pertains to an experimental PSF which can be collected by imaging a bead sample (see
e.g. Tahmasbi et al.16).

3.3 Spline Fitting

Splines are piecewise polynomials with pieces that are smoothly connected together.17 One of the important
characteristics of a spline is that it can be represented in the form of a linear combination of basis functions
known as B-splines. B-splines have a number of important properties, such as affine invariance, local support
and positivity,18 which make them of interest for our application. We therefore take advantage of splines to
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estimate the image function. Denote by ∆x > 0, and ∆y > 0, the physical pixel size in the image space in the
x and y directions, respectively. Let ∆x0 := ∆x/M , and ∆y0 := ∆y/M , be the effective pixel size in the object
space in the x and y directions, respectively, where M is the lateral magnification of the microscope optics. Let
∆z0 > 0 be the step size in the z-direction in the object space. A volume spline of degree d ∈ N0 with element
spacing (∆x0,∆y0,∆z0) in the object space is given by16

sda(x, y, z) :=

Krow∑
m=1

Kcol∑
n=1

Kstk∑
p=1

am,n,pβ
d

(
x

∆x0
− n

)
βd

(
y

∆y0
−m

)
βd

(
z

∆z0
− p

)
, (x, y, z) ∈ R3, (4)

where {am,n,p | m = 1, . . . ,Krow, n = 1, . . . ,Kcol, p = 1, . . . ,Kstk} are the B-spline coefficients, Krow and Kcol

denote the number of rows and columns of the image, respectively, such that Krow ×Kcol = Kpix, Kstk denotes
the total number of defocus levels, and βd denotes the symmetrical B-spline of degree d given by

βd(x) : =
d+1∑
i=0

(−1)i

d!

(
d+ 1

i

)(
x+

d+ 1

2
− i

)d

u

(
x+

d+ 1

2
− i

)
, x ∈ R, (5)

u(x) =

{
1, x ≥ 0
0, x < 0

.

Given the noisy measurements hk,p at pixels Ck, k = 1, . . . ,Kpix, and at defocus levels zp, p = 1, . . . ,Kstk,
our problem is to find a volume spline sda(x, y, z) for (x, y, z) ∈ R3, such that∫

Ck

sda

( x

M
− x0,

y

M
− y0, zp − z0

)
dxdy ≈ hk,p − bck,p, k = 1, . . . ,Kpix, p = 1, . . . ,Kstk, (6)

where bck,p denotes the background level at pixel Ck and at defocus level zp, and is assumed to be known or can

be estimated.4,16 To introduce a concise matrix notation for the above optimization problem we define

h := (h1,1 − bc1,1, . . . , hKpix,1 − bcKpix,1, h1,2 − bc1,2, . . . , hKpix,Kstk
− bcKpix,Kstk

)T ∈ RK ,

a := (a1,1,1, . . . , aKrow,1,1, a1,2,1, . . . , aKrow,Kcol,1, a1,1,2, . . . , aKrow,Kcol,Kstk
)
T ∈ RK ,

where K := Kpix × Kstk is the total number of data points. We also define S ∈ RK×K such that for k =
1, . . . ,Kpix, i, p = 1, . . . ,Kstk, m = 1, . . . ,Krow, and n = 1, . . . ,Kcol

Sk+(i−1)Kpix,m+(n−1)Krow+(p−1)Kpix
=

∫
Ck

βd

( x
M − x0

∆x0
− n

)
βd

( y
M − y0

∆y0
−m

)
drβd

(
zi − z0
∆z0

− p

)
,

where r = (x, y) ∈ R2. We now define B ∈ RK×K such that for m,m′ = 1, . . . ,Krow, n, n
′ = 1, . . . ,Kcol, p, p

′ =
1, . . . ,Kstk,

B(p−1)Kpix+(n−1)Krow+m,(p′−1)Kpix+(n′−1)Krow+m′ =
∑

q1+q2+q3=l

(
l

q1, q2, q3

)
Bq1

∆x0
(n, n′)Bq2

∆y0
(m,m′)Bq3

∆z0
(p, p′),

where

Bq
∆(n, n

′) :=

∫
R

∂q

∂tq
βd

(
t

∆
− n

)
∂q

∂tq
βd

(
t

∆
− n′

)
dt, n, n′ ∈ N, q = 1, . . . , l, ∆ > 0.

To estimate the B-spline coefficients in the presence of stochasticity and noise, by making use of the matrix
notation introduced above, we solve the following optimization problem (for more details see16)

â = argmin
a∈RK

(
∥h− Sa∥2 + γaTBa

)
, (7)
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which is a regularized least-squares problem.17,18 The first term measures the error between the data and the
model in the least squares sense and the second term imposes a smoothness constraint on the solution. The
regularization (smoothing) factor γ ≥ 0 controls the trade-off between fidelity to the data and the smoothness
of the estimate. Using vector differentiation,16 it is easy to verify that the minimizer to Eq. (7) is given by the
solution of the following equation (

STS + γB
)
â = STh, (8)

which can be solved efficiently using Gaussian elimination. We would like to note that the solution of the above
equation can be obtained given a specific choice of the smoothing factor γ, the derivative order l and the B-spline
degree d. The smoothing factor can be chosen based on a priori information, e.g. the variance of the measurement
noise. The typical choice for the derivative order in modern statistics literature is l = 2, although other orders
can also be easily used.16 Given the order of derivatives, an appropriate degree for the B-splines can be chosen
as d = 2l − 1.18

3.4 Calculation of the Fisher Information Matrix

After estimating the B-spline coefficients â using Eq. (8), one can substitute them into Eq. (4) and obtain
the spline fit to the experimental image set h. This volume fit ŝda after normalization can be used to obtain an

estimate of the image function. For conciseness, define
∑

m,n,p :=
∑Krow

m=1

∑Kcol

n=1

∑Kstk

p=1 . The normalization factor

is defined as (see Tahmasbi et al.16 for details)

C(z0) : = ∆x0∆y0
∑
m,n,p

âm,n,pβ
d

(
z0
∆z0

− p

)
, z0 ∈ R. (9)

The estimated image function is given by

q̂z0(x, y) :=
ŝda(x, y, z0)

C(z0)
=
∑
m,n,p

ãz0m,n,pβ
d

(
x

∆x0
− n

)
βd

(
y

∆y0
−m

)
βd

(
z0
∆z0

− p

)
,

where (x, y) ∈ R2, and ãz0m,n,p := âm,n,p/C(z0), m = 1, . . . ,Krow, n = 1, . . . ,Kcol, p = 1, . . . ,Kstk, are termed
the normalized B-spline coefficients.

We now have an estimate of the image function that can be used to calculate the PLAM. Substituting the
estimated image function into Eq. (1), for k = 1, . . . ,Kpix, we have

µθ(k) ≈
N

M2

∑
m,n,p

ãz0m,n,p

∫
Ck

βd

( x
M − x0

∆x0
− n

)
βd

( y
M − y0

∆y0
−m

)
drβd

(
z0
∆z0

− p

)
. (10)

An important property of B-spline functions is that their first derivatives can be obtained analytically using
the following expression16,17

∂βd(x)

∂x
= βd−1(x+

1

2
)− βd−1(x− 1

2
), x ∈ R, d ∈ N. (11)

Using this identity and taking the partial derivatives of both sides of Eq. (10) with respect to x0 for k =
1, . . . ,Kpix, we have (for details see16)

∂µθ(k)

∂x0
≈ −N

M2

Krow∑
m=1

Kcol+1∑
n=1

Kstk∑
p=1

ãz0m,n,p − ãz0m,n−1,p

∆x0
βd

(
z0
∆z0

− p

)

×
∫
Ck

βd−1

( x
M − x0

∆x0
− n+

1

2

)
βd

( y
M − y0

∆y0
−m

)
dr,
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where r = (x, y) ∈ R2 and we assumed ãz0m,0,p = ãz0m,Kcol+1,p = 0, m = 1, . . . ,Krow, p = 1, . . . ,Kstk. Similarly, we
can obtain the partial derivatives with respect to y0 for k = 1, . . . ,Kpix, as follows

∂µθ(k)

∂y0
≈ −N

M2

Krow+1∑
m=1

Kcol∑
n=1

Kstk∑
p=1

ãz0m,n,p − ãz0m−1,n,p

∆y0
βd

(
z0
∆z0

− p

)

×
∫
Ck

βd

( x
M − x0

∆x0
− n

)
βd−1

( y
M − y0

∆y0
−m+

1

2

)
dr,

where ãz00,n,p = ãz0Krow+1,n,p = 0, for all n = 1, . . . ,Kcol, and p = 1, . . . ,Kstk. We can also derive the partial

derivatives with respect to z0 for k = 1, . . . ,Kpix, as follows (see
16 for details)

∂µθ(k)

∂z0
≈ N

M2

Krow∑
m=1

Kcol∑
n=1

Kstk+1∑
p=1

ãz0m,n,p − ãz0m,n,p−1

∆z0
βd−1

(
z0
∆z0

− p+
1

2

)

×
∫
Ck

βd

( x
M − x0

∆x0
− n

)
βd

( y
M − y0

∆y0
−m

)
dr − µθ(k)ξ(z0), (12)

where ãz0m,n,0 = ãz0m,n,Kstk+1 = 0, for all m = 1, . . . ,Krow, and n = 1, . . . ,Kcol, and for z0 ∈ R,

ξ(z0) :=
1

C(z0)

∂C(z0)

∂z0
=

∆x0∆y0
∆z0

Krow∑
m=1

Kcol∑
n=1

Kstk+1∑
p=1

(ãz0m,n,p − ãz0m,n,p−1)β
d−1

(
z0
∆z0

− p+
1

2

)
.

4. RESULTS

4.1 Experimental PSF Example

We have developed an approach for the calculation of the best possible accuracy with which a general object
can be localized, i.e. the PLAM, directly from 2D and 3D experimental image sets. Here we primarily focus on
point-like objects (e.g. a single molecule) and, as such, the experimental image set pertains to an experimental
PSF. We refer to the PLAM deduced from an experimental PSF using the aforementioned approach as the
experimental PLAM, whereas the PLAM calculated from an analytical PSF is referred to as the analytical
PLAM. We further refer to the limit of the localization accuracy for the x, y and z coordinates of the single
molecule as x0-PLAM, y0-PLAM and z0-PLAM, respectively.

We now provide an example to investigate the performance of the proposed approach in practice and compare
the results with those for an analytical PSF model. In particular, we use the collected 3D experimental PSF
of a microscopy setup which was reported in Section 2.1 of Tahmasbi et al.16 We have deliberately used a
setup with an aberrated PSF as it is a good example to illustrate the practical performance of the proposed
approach. Figures 1(a) and 1(b) show the yz- and xy-projections of the acquired experimental PSF, respectively.
To suppress the stochasticity and noise in the collected experimental PSF, based on the analyses reported in,16

we fit a volume smoothing spline of appropriate degree and smoothing factor to the experimental PSF. The yz-
and xy-projections of the smoothing spline fit are shown in Figs. 1(a’) and 1(b’), respectively, where we see a
marked suppression of the extraneous noise.

Figures 1(c) and 1(d) show the experimental x0-PLAM and z0-PLAM, respectively, along the z-axis which
are taken from Tahmasbi et al.16 (the experimental y0-PLAM is analogous to x0-PLAM and is not shown). For
comparison purposes, we calculated the analytical PLAM assuming the Born and Wolf 3D PSF model with a set
of imaging parameters which are similar to those used for the collection of the experimental PSF. The analytical
x0-PLAM and z0-PLAM along the z-axis are also shown in Figs. 1(c) and 1(d), respectively. The experimental
x0-PLAM has smaller numerical values at or close to the plane of focus and increases as the particle moves away.
This is an expected result for typical 3D PSFs and is similar to the behavior of the x0-PLAM for the Born
and Wolf PSF (see Fig. 1(c)).1 An important observation is that the experimental x0-PLAM is consistently
larger than the analytical x0-PLAM along the z-axis. This is to a large degree due to the mismatch between the
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Figure 1. Comparison of the PLAM for an experimental PSF with that of the Born and Wolf model. (a), (b) The
yz-projection and the xy-projection (at z0 = 2.6 µm) of a deliberately aberrated experimentally collected PSF from a
practical microscopy setup, respectively, where the ROI size is 33 × 33 pixels (other parameters are reported in Section 2.1
of Tahmasbi et al.16). (a’), (b’) The corresponding yz- and xy-projections of the cubic volume spline fit with a smoothing
factor of γ = 0.01, which is evaluated on a finer grid (color scale bars are in photons). The vertical dashed lines show
the location of the plane of focus and the size bars are 1.5 µm (panels (a) and (a’) are stretched in the z-direction for
better visualization). The estimated photon count and background level of the bead sample are approximately Nc = 4500
photons and bc = 16 photons/pixel, respectively. (c), (d) The experimental x0-PLAM and z0-PLAM, respectively, along
the z-axis (the reported results are the average of the results for multiple beads) overlaid with analytical x0-PLAM and
z0-PLAM calculated using the Born and Wolf PSF model simulated considering similar imaging parameters. For the
calculation of the PLAMs we assumed N = 500 photons and b = 10 photons/pixel.

nominal values for imaging parameters, such as the numerical aperture of the objective and the refractive index
of the immersion oil, and their achievable values in practice. A subtle point in the behavior of the experimental
x0-PLAM is that it is not symmetric with respect to the plane of focus. For example, the numerical value of the
x0-PLAM is 30 nm at z0 = −0.6 µm, whereas it is approximately 26 nm at z0 = 0.6 µm. This is not surprising
since any mismatch between the refractive indices of the sample and immersion medium contributes to an axially
asymmetric PSF.12

Additionally, the experimental z0-PLAM is large near or at the focal plane, e.g. it is 144 nm at the focal
plane, and decreases as the point source moves away from the focal plane (see Fig. 1(d)). The large numerical
value of the experimental z0-PLAM at the focal plane is often referred to as the depth discrimination problem
and is expected (see e.g.9). However, note that the numerical value of the experimental z0-PLAM at the focal
plane is still considerably smaller than that of the analytical z0-PLAM for the Born and Wolf PSF model, which
tends to infinity. This behavior of the experimental z0-PLAM can be explained by the axial asymmetry of the
experimental PSF caused by the mismatch between the refractive indices of the sample and immersion oil.12

By contrast, the Born and Wolf PSF model is perfectly axially symmetric and therefore does not provide any
information about the z0-location of a single molecule when it is at the plane of focus. Finally, the considerable
difference between the numerical values of the experimental and analytical z0-PLAMs at larger z-positions is to
a large extent due to the mismatch between the nominal values of the imaging parameters and their practical
values.
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