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Limits of Accuracy for Parameter Estimation and Localization in Single-Molecule
Microscopy via Sequential Monte Carlo Methods∗
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Abstract. Assessing the quality of parameter estimates for models describing the motion of single molecules in
cellular environments is an important problem in fluorescence microscopy. In this work, we consider
the fundamental data model, where molecules emit photons at random time instances and these
photons arrive at random locations on the detector according to complex point spread functions
(PSFs). The randomness and non-Gaussian PSF of the detection process, and the random trajectory
of the molecule, make inference challenging. Moreover, the presence of other closely spaced molecules
causes further uncertainty in the origin of the measurements, which impacts the statistical precision
of the estimates. We quantify the limits of accuracy of model parameter estimates and separation
distance between closely spaced molecules (known as the resolution problem) by computing the
Cramér–Rao lower bound (CRLB), or equivalently the inverse of the Fisher information matrix
(FIM), for the variance of estimates. Results on the CRLB obtained from the fundamental model are
crucial, in that they provide a lower bound for more practical scenarios. While analytic expressions
for the FIM can be derived for static and deterministically moving molecules, the analytical tools to
evaluate the FIM for molecules whose trajectories follow stochastic differential equations are still for
the most part missing. We address this by presenting a general sequential Monte Carlo (SMC) based
methodology for both parameter inference and computing the desired accuracy limits for nonstatic
molecules and a non-Gaussian fundamental detection model. For the first time, we are able to
estimate the FIM for stochastically moving molecules observed through the Airy and Born and Wolf
detection models. This is achieved by estimating the score and observed information matrix via
SMC. We summarize the outcome of our numerical work by delineating the qualitative behaviors
for the accuracy limits as functions of various experimental settings like collected photon count,
molecule diffusion, etc. We also verify that we can recover known results from the static molecule
case.
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1. Introduction.

1.1. Motivation. In recent years, single-molecule microscopy has become a powerful tool
in cell biology [54, 53]. It has allowed significant insight to be gained into the behavior of
single molecules in cellular environments using fluorescence microscopy. Single-molecule fluo-
rescence microscopy (see [55, 39] for reviews) consists of using a suitable fluorophore to label
the molecule(s) of interest, exciting said fluorophore with a specific light source and capturing
the fluorescence or photons emitted by the molecule(s) through an optical microscope system
onto a detector during a fixed acquisition time. Many biological applications rely on being able
to accurately track moving molecules (or localize them in the static case) and also estimate
their model parameters. Molecule location estimates, which are themselves useful, are also
used to estimate the separation distance between two closely spaced molecules [54, 38], which
is needed to quantify the microscopy technique’s resolution (discussed below). By model pa-
rameters, we mean the drift and diffusion coefficients that describe the motion of randomly
moving molecules, but also more generally other parameters for any assumed statistical ele-
ments/model for the image acquisition pipeline (see Example 2.1, Example 4.2, and section 5).
In addition to solving these estimation problems by devising appropriate numerical techniques
to compute them, it is also essential to quantify their accuracy, and tools from statistical es-
timation theory such as the Cramér–Rao lower bound (CRLB) [13, 51, 25, 14] are popular in
the microscopy literature [40, 10, 48]. Not only is the CRLB able to quantify the accuracy of
the estimates, but it can also provide the qualitative relationship between estimation accuracy
and various experimental settings, such as the average number of photons captured by the
detector, the speed of one or multiple diffusing molecules, or the distance between molecules,
which is particularly important in experimental design. For example, one might aim to eval-
uate how an increase in the speed (or diffusion) of a stochastically diffusing molecule might
reduce the accuracy of estimates for its mean location, and whether this loss in accuracy can
be mitigated by increasing the mean number of photons captured by the detector.

1.2. Methods for assessing the accuracy of parameter estimates. In the past, in the
context of the resolution problem, Rayleigh’s criterion [4] has been used to define the minimum
distance between two point sources such that they can be distinguished in the image. However,
a drawback of employing Rayleigh’s criterion is that it ignores the statistical aspect of the
separation distance estimation problem. For example, it doesn’t account for the fact that
each new observation (taking the form of a captured emitted photon) brings new information
on the separation distance. In contrast, in estimation theory, the CRLB establishes a lower
bound on the variance of unbiased estimates and is therefore often used as a benchmark for the
quality of a given estimator. As a result, the CRLB plays an important part in experimental
design for single-molecule microscopy [40, 49]. For example, in [48, 50], the authors present an
improved microscope resolution measure in the form of the square root of the CRLB for the
separation distance between two molecules, which is referred to as the limit of accuracy with
which the separation distance between the two objects can be estimated based on the observed
data. A particular advantage of this new resolution measure is that it predicts that increasing
the photon count makes it possible to estimate a separation distance between two molecules
that is shorter than Rayleigh’s criterion. In the context of localization and estimation of
parameters for models describing the motion of a single molecule, we also quantify the limits
of accuracy for these model parameter estimates by computing the CRLB.
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Evaluating these limits of accuracy is a challenging task. In this paper, we consider the
fundamental data model [40, 49], which is crucial in that it provides more easily computed
lower bounds for the limits of accuracy of more realistic practical models, where factors such
as pixelization and readout noise come into play and make inference more challenging [58].
Indeed, the limits of accuracy derived for the fundamental model are often known as the
fundamental limits of accuracy. In this model, the detection process of the emitted fluorescence
already presents its own challenges, as it is intrinsically random both in time and location.
While many methods [7, 6, 8] have assumed that the arrival times of the photons on the
detector were uniformly distributed, [40, 49] suggest that the arrival times of photons follow
a Poisson process. As for the arrival location of these photons on the detector, a wide range
of measurement models exist—corresponding to the various types of detector. The typical
measurement model used for an in-focus source is the Airy profile [59, 10]. If the molecule is
out of focus, three-dimensional (3D) models are generally used instead, such as the Born and
Wolf model [4]. Often, these models make parameter inference difficult, and researchers have
often opted for a Gaussian approximation to these models, such as in [2, 52, 37]. However,
[59] argue that in practice, assuming Gaussian distributed photon locations on the detector
is not an accurate approximation of the underlying model.

While it is important to be able to accurately study the behaviors and interactions of
single molecules within a cell, it is especially challenging when those molecules have stochastic
trajectories. The motion of an object in a cellular environment is affected by a multitude of
deterministic as well as random factors [5], and in many applications [59, 6], the trajectories
of single molecules are modeled by stochastic differential equations (SDEs) [43]. The CRLB
is obtained by taking the inverse of the Fisher information matrix (FIM), and analytical
expressions for the FIM, and thus the limit of accuracy (given by the square root of the
CRLB) for the location of an in-focus static (or unmoving) molecule has been derived in
[40, 10]. Similar results for an out-of-focus static molecule are available in [41], and analytical
expressions have also been derived in the context of molecules with deterministic linear or
circular trajectories in [60]. As for the resolution problem, it is addressed in [48, 49] in a
static molecule context and in [36] for two dynamic molecules with deterministic trajectories.
However, when molecules have stochastic trajectories, the analytical tools to obtain the CRLB
and tackle many of these problems are still for the most part missing. In this paper, we propose
a numerical approach to address these problems.

In the context of stochastically moving molecules, [59] developed a method to obtain
the FIM for a molecule whose trajectory is described by a linear SDE. For a 2D Gaussian
approximation of the photon detection process, the authors take advantage of the Kalman filter
formulae to obtain an analytical form for the FIM for a specific set of photon detection times.
However, if the Airy profile is used instead, the computational cost of performing numerical
integration becomes prohibitive for more than a single photon. Among other things, we build
on [59] and provide effective methodological advances which enable the estimation of the FIM
for the hyperparameters of models with Airy and Born and Wolf distributed photon locations.

1.3. Contributions. In this paper, we develop an effective and general numerical frame-
work to obtain sequential Monte Carlo (SMC) approximations of expectations of interest,
including for stochastically moving molecules. The ability to approximate these expectations
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is important for estimating the score and observed information matrix (OIM) for the hyper-
parameters of interest and can also be employed to obtain maximum likelihood (ML) esti-
mates of said hyperparameters. Access to the score and/or OIM is vital in order to be able to
estimate the FIM. To achieve this, the observation interval is first discretized and the problem
reformulated as a discrete-time state space model, which takes into account the random arrival
times of photons on the detector in the form of missing observations. Then, a particle filter
is employed in conjunction with forward smoothing methods [16, 46] to obtain particle ap-
proximations of the expectations of interest. Our work complements [1], in which the authors
similarly employed time discretization of the observation interval, but they did not attempt
to estimate the CRLB for hyperparameters. With our approach, we are for the first time able
to obtain the limits of accuracy for parameters of a single molecule whose trajectory follows
an SDE, thus providing new insights beyond existing results for molecules that are static or
following a deterministic trajectory. Our SMC-based methodology is also more general than
the Kalman filter–based approach of [59] and has no systemic limitations (i.e., variance in esti-
mates of the limits of accuracy can always be reduced by increasing the number of Monte Carlo
samples). We are also able to generalize results for the optical microscope resolution problem
from considering the separation distance between two static molecules to that between two
stochastically diffusing molecules.

The numerical experiments in this paper consist first of applying the methodology to es-
timate the limit of accuracy for a single stochastically moving molecule with 2D Gaussian,
Airy, and Born and Wolf photon detection models by using estimates of the score and OIM
obtained by forward smoothing. This is repeated for various expected mean photon counts to
verify that for molecules with stochastic trajectories, the limit of accuracy exhibits an inverse
square root decay with respect to mean photon count, i.e., the uncertainty of the hyperparam-
eter estimates decreases as the expected number of photons increases. This has already been
proven for static molecules [42, 41, 48]. The methodology is also applied in the context of the
optical microscope resolution problem to obtain estimates of the limit of accuracy for the mean
separation distance between two closely spaced diffusing molecules. Thanks to our numerical
approach, insights can be obtained into the generalization to diffusing molecules of results
proven in [50] on this resolution problem for two static molecules. For instance, in [40], it was
shown that the limit of accuracy for the location of a static molecule has a linear relationship
with the standard deviation of the photon detection profile. From our numerical results, we
show that when molecules are diffusing, the appropriate relationship behaves qualitatively
with the diffusion coefficient standard deviation in a similar way, i.e., it can be translated
into additional observation uncertainty. The qualitative relationships observed through our
numerical experiments for stochastically moving molecules are summarized in Table 2.

For reference, a glossary of the mathematical symbols employed throughout this paper
is available in Table 1. This paper is structured as follows. In section 2, the model is pre-
sented, including the molecule trajectory, described by an SDE, and the photon detection
time and location processes. In section 3, the model is formulated as a discrete-time state
space model with a discretized observation interval. Then, section 4 establishes the main
parameter inference aims and methods, which consist of particle filtering and smoothing of
additive functionals in order to estimate the score and OIM for hyperparameters, and methods
to estimate the FIM from the score and OIM. Numerical experiments are run in section 5 to
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Table 1
Glossary of mathematical symbols.

[t0, T ] observation interval, t ∈ [t0, T ]
X object plane
X(t), Xt object location at time t in the object space

fθ
s,t(xt|xs) probability density of Xt given previous location Xs,

relabeled fθ
∆(xk+1|xk) after discretization, see subsection 2.1

Y detector (in the image space)
Y (t), Yt location of detected photon at time t in the image space
gθ(y|x) photon distribution profile for an object located at x, see (2.7)
qz0(x1, x2) image function, see (2.7)
N(t) number of photons detected at time t
λ(t), λ photon detection rate
b(t,Xt), b drift coefficient, see (2.1), (2.6)
σ(t,Xt), σ

2 diffusion coefficient, see (2.1), (2.6)
dBt Wiener process
θ vector of model parameters (hyperparameters)
z0 optical axis location (z0 = 0 if object is in focus)
M lateral magnification matrix
t0 < t1 < · · · < tnp arrival times of np photons on the detector
∆ discretized segment length, see subsection 3.2

Gθ
k(x) potential function for an object located at x

at kth discrete segment, see (3.1)
In(θ) FIM for vector θ, see (4.18), (4.19)
CRLBϑ Cramér–Rao lower bound for parameter ϑ
δϑ limit of accuracy for parameter ϑ
eo,1:2, ei,1:2 unit vectors in the object (o) and image (i) plane, see Figure 1
E[·],Cov[·] expectation, covariance
P[·] probability
Id×d identity matrix of dimensions d× d
Ja(·) Bessel function of the first kind of order a
N (µ,Σ) multivariate Gaussian distribution with mean µ and covariance Σ
∇, ∇2 gradient, Hessian
σ2
a measurement uncertainty, see (2.9)

nα numerical aperture of the objective lens, see (2.8), (2.10)
λe emission wavelength, see (2.8), (2.10)
no refractive index of the objective lens immersion medium, see (2.10)
δv0(v) Dirac delta mass located at v0
(i) particle index (superscript)

ω
(i)
k ith particle normalized importance weight, see subsection 4.2

pθ(x1:n|y1:n) joint smoothing distribution, see (4.1)

Sθ
k(x1:k) additive functional, see (4.4)

sθj (xj−1, xj) sufficient statistic, see (4.4)
Sk(θ) smoothing expectation for parameter vector θ, see (4.5), (4.9)

T θ
k (xk) auxiliary function, see (4.6)

∥·∥2 vector inner product, i.e., ∥x∥2 = x⊺x
o(·) little o notation
O(·) big O notation

first estimate the limit of accuracy for the drift and diffusion coefficients of the SDE for all
photon detection profiles and then estimate the limit of accuracy for the separation distance
between two dynamic molecules. Finally, section 6 provides concluding remarks.
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lens system

object space image space

object
plane

object

image
plane

detector

eo,1

eo,2

optical
axis

ei,1

ei,2

X(t)
object

location at
time t

Y (t)
location of

detected photon
at time t

Figure 1. Illustration of an optical microscope. At time t ≥ t0, the molecule is located at X(t) in the object
space and might be moving along the object plane. If the molecule is out of focus, it will instead move along a
plane parallel to the object plane but displaced along the optical axis. The molecule emits photons through the
lens system into the image space and its image is acquired on the planar detector Y located on the image plane.
The location of the detected photons at time t is denoted by Y (t).

2. Model specification. For the purpose of this paper, a basic optical system is consid-
ered, also known in [59, 10] as the fundamental data model. See Figure 1 for an overview of
the optical system. Under the fundamental model, we assume that the photons are observed
under ideal conditions, in which the detector Y = R2 is nonpixelated. This model does not
describe image data obtained from actual microscopy experiments the way more realistic or
practical models do. However, the fundamental model is crucial, in that it offers an obtain-
able lower bound to the CRLB of parameters of the more realistic practical model, which is
much more difficult to obtain. In this section, the various aspects of the model are described.
These include the true molecule trajectory, occurring in the object space, the photon detection
locations in the image space, and the times at which photons arrive on the detector.

2.1. Molecule trajectory. For notational simplicity, let Xt := X(t) ∈ Rd denote the true,
d-dimensional location of the molecule at time t. Given hyperparameters θ, let fθ

s,t(xt|xs)
denote the probability density function of Xt given the previous location Xs. Assume that
the molecule trajectory (Xt)t0≤t≤T follows a linear SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,(2.1)

where b(t,Xt) := b0+b1(t)Xt and σ(t,Xt) := σ(t) represent the drift and diffusion coefficients,
respectively, b0 is the zero order drift coefficient, and (dBt)t0≤t≤T is a Wiener process with
E [dBtdB

⊺
t ] = Id×d. According to [31, 24] the solution to the SDE in (2.1) at discrete time

points t0 < t1 < · · · is given by

Xti+1 = Φ(ti, ti+1)Xti + a(ti, ti+1) +Wg(ti, ti+1),(2.2)

where the fundamental matrix function Φ ∈ Rd×d satisfies for all s, t, u ≥ t0
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dΦ(s, t)

dt
= b1(t)Φ(s, t),(2.3)

Φ(t, t) = Id×d, Φ(s, t)Φ(t, u) = Φ(s, u),

the vector a(ti, ti+1) ∈ Rd is given by

a(ti, ti+1) =

∫ ti+1

ti

b0Φ(ti, t)dt,

and finally the process (Wg(ti, ti+1) =
∫ ti+1

ti
Φ(ti, t)σ(t)dBt)

∞
i=1 is a white noise sequence with

mean zero and covariance

R(ti, ti+1) =

∫ ti+1

ti

Φ(ti, t)σ(t)σ
⊺(t)Φ⊺(ti, t)dt.(2.4)

Therefore, the transition density fθ
ti+1,ti(x

′|x) can be expressed as a Gaussian with mean
µ(x, ti, ti+1) = Φ(ti, ti+1)x+ a(ti, ti+1) and covariance R(ti, ti+1):

Xti+1 |(Xti = x) ∼ N (µ(x, ti, ti+1), R(ti, ti+1)) .(2.5)

Example 2.1. Let the trajectory of a molecule be given by the SDE

dXt = bId×dXtdt+
√
2σdBt,(2.6)

where in the drift term b ∈ R, in the diffusion term σ > 0, and (dBt)t0≤t≤T is a Wiener process
and let θ = (σ2, b). Assuming the time points t0, t1, . . . are equidistant, i.e., ti+1 − ti = ∆ for
all i = 0, 1, . . ., let the fundamental matrix Φ∆ := φθ

∆Id×d where φθ
∆ ∈ R and the covariance

matrix R∆ := rθ∆Id×d where rθ∆ > 0. Then, by solving (2.3) and plugging the result into (2.4),
we obtain

φθ
∆ =

{
e∆b if b ̸= 0,

1 if b = 0,
and rθ∆ =

{
σ2

b

(
e2∆b − 1

)
if b ̸= 0,

2σ2∆ if b = 0.

The initial distribution Xt0 ∼ N (x0, P0) has covariance matrix P0 = p20Id×d where p0 ∈ R.
In a 2D setting (i.e., d = 2), let the drift b = −10 s−1, the diffusion σ2 = 1 µm2/s, and the

initial covariance p20 = 10−2 µm2 and mean x0 = (4.4, 4.4)⊺ µm. Note that for the purpose of
this example, the initial covariance matrix is diagonal, but there is no restriction to employing
a more general, nondiagonal initial covariance matrix. By simulating the molecule trajectory
for the time interval [0, 0.1] seconds, we obtain the trajectory in Figure 2.

2.2. Photon detection locations. The true molecule trajectory cannot be observed di-
rectly. Instead, a fluorescence microscope is used: the molecule of interest is labeled using a
suitable fluorophore and magnified through a lens system, and the photons it emits arrive on a
detector Y := R2 for a fixed time period (see Figure 1). The arrival location of a photon on the
detector is random, and using the typical approximation of the optical microscope from [27],
it can be described as follows. Let Y ∈ Y denote the observed location of a detected photon.
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2.5 3.0 3.5 4.0 4.5
x1-location of molecule (μm)
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True molecule trajectory

Figure 2. Trajectory of a molecule in the object space with stochastic trajectory described in (2.6) and with
diffusion and drift coefficients σ2 = 1 µm2/s and b = −10 s−1, respectively. The molecule moves during an
interval of [0, 0.1] seconds and its initial location is Gaussian distributed with mean x0 = (4.4, 4.4)⊺ µm and
covariance P0 = 10−2I2×2 µm2.

For an object located at (x0,1, x0,2, z0) ∈ R3 in the object space, its photon distribution profile
[49] is given by the density

gθ(y|x) :=
1

|M |
qz0

(
M−1y − (x0,1, x0,2)

⊺) , y ∈ R2,(2.7)

where M ∈ R2×2 is an invertible lateral magnification matrix and the image function qz0 :
R2 → R describes the image of an object in the detector space when that object is located at
(0, 0, z0) in the object space. Note that the subscript θ is used in the left-hand side of (2.7) to
include dependence on hyperparameters. Depending on the model considered and inference
aims, the hyperparameter(s) of interest can be (x0,1, x0,2) if the object is static and/or z0 if
an out-of-focus molecule is considered.

Three types of image functions are considered. First of all, according to optical diffraction
theory from [4], an in-focus point source (i.e., when z0 = 0) will typically generate an image
that follows the Airy profile, given by

q(x1, x2) =
J2
1

(
2πnα
λe

√
x21 + x22

)
π
(
x21 + x22

) , (x1, x2) ∈ R2,(2.8)

where nα is the numerical aperture of the objective lens, λe is the emission wavelength of the
molecule, and J1(·) represents the first order Bessel function of the first kind.

Often, to simplify the problem, the 2D Gaussian approximation to the Airy profile has
been used instead (see [11, 57, 61, 56]):

q(x1, x2) =
1

2πσ2
a

exp

[
−x21 + x22

2σ2
a

]
, (x1, x2) ∈ R2.(2.9)D
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If the point source of interest is out of focus, then a 3D Born and Wolf model [4] is used
instead:

qz0(x1, x2) =
4πn2

α

λ2
e

∣∣∣∣∫ 1

0
J0

(
2πnα

λe

√
x21 + x22ρ

)
exp

(
jπn2

αz0
noλe

ρ2
)
ρdρ

∣∣∣∣2 , (x1, x2) ∈ R2,

(2.10)

where z0 ∈ R is the location of the object on the optical axis, no is the refractive index of
the objective lens immersion medium, and J0(·) is the zeroth order Bessel function of the first
kind. Note that the Airy profile is a special case of the Born and Wolf model. Indeed, if the
object is in focus, then z0 = 0 on the optical axis and (2.8) and (2.10) coincide.

2.3. Photon detection times. Just like the photon detection locations, the times at which
the photons arrive on the detector Y are random. More specifically, in [59, 10], the arrival of
the photons on the detector, or photon detection process, can be modeled as a Poisson process.
Let N(t) be the number of photons detected at time t ≥ t0 for initial time t0 ∈ R and let λ(t)
be the photon detection rate, representing the rate at which the photons emitted by the object
hit the detector at any given time t. For example, the detection rate of an object that has
high photostability will simply be constant, while an exponentially decaying λ(t) can indicate
that the object image is photobleaching, or fading over time. The arrival times of the photons
on the detector Y are denoted t1, t2, . . . , where ti denotes the arrival time of the ith photon.

2.4. The observed data. Let np = N(T )−N(t0) be the number of photons detected in the
interval [t0, T ]. We have now established the two aspects of the data that can be observed in a
basic optical system during this interval, namely the detection times t1, t2, . . . , tnp of photons
and the location of those detected photons Yt1 , Yt2 , . . . , Ytnp

on the detector Y. Assume that,
conditionally on the current object location Xti , the location of the ith detected photon Yti
at time ti is independent of the previous locations and time points of the detected photons,
i.e., for xti ∈ X ,

pθ(yti |xti , yti−1 , . . . , yt0) = pθ(yti |xti) =: gθ(yti |xti), yti ∈ Y,(2.11)

where the density gθ is the photon distribution profile from (2.7). This is a reasonable as-
sumption, as at any given time, processes such as photon emission and image formation only
depend on the state of the emitting fluorescent molecule at that time, and not on any prior
event.

Example 2.2. Let the trajectory of a molecule be given by the SDE in Example 2.1 and
simulated using the same parameters and for the same time interval. Let Y be a nonpixelated
detector. Then, let the photon detection rate be constant such that the mean number of
photons is 500, and the photon distribution profile be given by (2.7), where the magnification
matrix M = mI2×2 with m = 100. The image functions for the Airy, 2D Gaussian, and
Born and Wolf profiles are given by (2.8), (2.9), and (2.10), respectively, where nα = 1.4,
λe = 0.52 µm, no = 1.515, σ2

a = 49× 10−4 µm2, and z0 = 1 µm. By simulating the detected
photon locations based on the same molecule trajectory and according to these three models,
we obtain the observed photon trajectories in Figure 3. Note that the parameters of the Airy
and 2D Gaussian profiles have been chosen so that the Gaussian profile approximates the Airy
profile.D
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Figure 3. Detected photon locations of a moving molecule with stochastic trajectory for the 2D Gaussian
(left) and Airy (middle) profiles and the Born and Wolf model (right).

3. The model as a state space model. It is possible to reformulate this model as a state
space model that takes into account the random arrival times of photons. This is achieved by
discretizing the time interval during which photons are recorded.

3.1. Reformulation. For simplicity, we assume for the rest of this paper (unless stated
otherwise) that the photon detection rate is constant, i.e., λ(t) = λ ∈ [0, 1] for all t ≥ t0.
First of all, let Xt = (xt,1, xt,2) ∈ X where X := R2 denotes the state of the molecule at time
t ≥ t0, which includes its location xt,1:2 on the object plane. The location of the object on the
optical axis is assumed to be constant and equal to the initial location parameter, i.e., z0 for
all t ≥ t0. The probability of recording an observation, i.e., detecting a photon in the small
interval (t, t+ h], is

P [N(t+ h)−N(t) > 0] = λh+ o(t), λ ∈ [0, 1], t ≥ t0.

Let ti denote the arrival time of the ith photon on a detector Y for i = 1, 2, . . . and Yti ∈ Y
be the location of the captured photon on the detector. Assume the location of a detected
photon is distributed according to the probability density function

Yti | (Xti = x) ∼ gθ(·|x), i = 1, 2, . . . ,

where gθ is the photon distribution profile given in (2.7). The recorded data in the time interval
[t0, T ], 0 ≤ t0 < T comprises np observations with arrival times t0 < t1 < · · · < tnp ≤ T and
photon locations yt1 , . . . , ytnp

. The inference objective is to estimate the trajectory of the
molecule (Xt)t0≤t≤T given data (ti, yti), i = 1, . . . , np. As seen in subsection 2.1, the molecule
evolves according to the probability density function

Xti+1 | (Xti = x) ∼ fθ
ti,ti+1

( · |x), i = 1, 2, . . . , np,

where θ denotes the model parameters and fθ
s,t for t > s ≥ t0 is the homogeneous continuous-

time Markov transition density given by the Gaussian distribution in (2.5) for d = 2.
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3.1.1. Nonconstant photon detection rate. If the photon detection rate λ(t) is not
assumed to be constant, then we redefine the state of an object at time t ≥ t0 as Xt =
(xt,1, xt,2, λt) ∈ X , where X := R2× [0, 1]. The state at time t now includes the location of the
molecule (xt,1, xt,2) as well as the probability λt of detecting a photon it emits. The Markov
transition density pθ(x

′|x) can be defined as follows:

pθ(xti+1 |xti) = fθ
ti,ti+1

(xti+1,1:2|xti,1:2)lθ(λti+1 |λti), xti+1 , xti ∈ X ,

where ti and ti+1 denote the arrival times of the ith and (i+1)th photons, respectively, fθ
ti,ti+1

is the Markov transition density for the object location defined above, and lθ is the Markov
transition density for the photon detection rate.

3.2. Time discretization. Let (t1, yt1), . . . , (tnp , ytnp
) be a realization of the photon arrival

times and locations observed in the time interval [t0, T ]. Setting t0 := 0 for convenience, we
adopt a discrete time formulation where [0, T ] is divided into segments of length ∆. Let xk ∈ X
denote the state of the molecule at time t = (k − 1)∆, where k = 1, . . . , n for n := ⌈T/∆⌉.
We assume the discretization is fine enough so that an interval (k∆, k∆+∆] contains at most
one arrival time ti. Then, for k = 1, . . . , n, let

yk =

{
∅ if ti /∈ (k∆−∆, k∆] ∀i = 0, 1, . . . , np,

yti if ti ∈ (k∆−∆, k∆],

where yti ∈ Y denotes the location of the ith detected photon on the detector Y. The vector
yk is assigned ∅ to indicate the absence of an observation in the corresponding interval. See
section SM1 for details on why the time discretization is a valid approximation of the Poisson
process. If x = (x1, x2, λ) ∈ X , let

Gθ
k(x) =

{
1−∆λ if yk = ∅,
λgθ(yti |x1:2) if yk = yti ,

(3.1)

where gθ is the photon distribution profile (2.7), then Gθ
k(x) is the so called potential function.

The potential Gθ
k(x) plays the role of the likelihood in Bayesian estimation problems. In the

above context, the expression for yk = ∅ corresponds to the probability of no photon being
observed during that time interval. When a photon is observed in the interval, with observation
time ti and observation location yti on the detector, the expression for Gθ

k is the product of
the probability ∆λ of receiving one photon, with the uniform probability density 1/∆ for the
arrival time ti in that interval and the density of the location of the observation given that
the molecule is situated at x1:2 in the object space (the ∆ terms then cancel out).

For k = 1, . . . , n, the probability density function of Xk+1 given the previous state Xk is
fθ
∆(xk+1|xk) := fθ

k∆,k∆+∆(xk+1|xk) from (2.5), thus transforming (2.2) into

Xk+1 = Φ∆Xk + a∆ +Wx, Wx ∼ N (0, R∆) ,

where Φ∆ = Φ(k∆, k∆+∆) is now constant and similarly for a∆ and R∆.
To summarize, (Xk)

∞
k=1 and (Yk)

∞
k=1 are X - and Y ∪ ∅-valued stochastic processes where

the molecule trajectory in the object space (Xk)
∞
k=1 corresponds to the unobserved latent
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Markov process with Markov transition density fθ
∆(x

′|x) and initial density νθ(x), and the
photon detection locations (or lack of) (Yk)

∞
k=1 represent the observed process with conditional

density or potential function Gθ
k(x), i.e.,

X1 ∼ νθ(·), Xk+1| (Xk = x) ∼ fθ
∆(·|x),(3.2)

Yk| (Xk = x) ∼ Gθ
k(x), k = 1, 2, . . . .(3.3)

Note that if the object is static, so that the drift and diffusion coefficient in (2.1) are zero,
the model simplifies from a state space model to a basic inference problem with independent
observations. The observed process is still described by (3.3) but the location of the object
x0 becomes part of the hyperparameters.

4. Parameter inference.

4.1. Inference aim. Now that we have formulated the problem in (3.2) and (3.3) as a
state space model, the first aim is going to be to estimate the posterior probability density
function of X1:n := {X1, . . . , Xn}, n ∈ N, given the observations Y1:n, also known as the joint
smoothing distribution, which is given by

pθ(x1:n|y1:n) =
pθ(x1:n, y1:n)

pθ(y1:n)
,(4.1)

where the numerator represents the joint density

pθ(x1:n, y1:n) = νθ(x1)

n∏
k=2

fθ
∆(xk|xk−1)

n∏
k=1

Gθ
k(xk),(4.2)

where νθ(x1) is the initial distribution of X1, and the denominator represents the marginal
likelihood of the observed data

pθ(y1:n) =

∫
Xn

pθ(x1:n, y1:n)dx1:n.(4.3)

Estimating pθ(x1:n|y1:n) is what allows the molecule to be tracked and is done using a particle
filter. The second aim is to obtain particle approximations of smoothed additive functionals,
which in turn will allow for estimation of the score and OIM for of the hyperparameters θ, as
well as other applications such as ML estimation of said hyperparameters via gradient ascent
and expectation-maximization (EM). Finally, the third aim is to use the estimates of the score
and OIM of the hyperparameters to obtain an approximation of their FIM.

4.2. Tracking the molecule using a particle filter. The particle approximation of the
marginal posterior of X1, . . . , Xn defined in (4.1) is given by

p̂(x1:n|y1:n) =
N∑
i=1

ω(i)
n δ

X
(i)
1:n

(x1:n),

where X
(1:N)
1:n are the particles, ω

(1:N)
n their corresponding normalized importance weights,

i.e.,
∑N

i=1 ω
(i)
n = 1, and δv0(v) denotes the dirac delta mass located at v0. To obtain this
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particle approximation, we employ SMC methods in the form of a particle filter (see [9,
18, 19, 12] for comprehensive reviews of SMC methods). There is flexibility in the specific
choice of particle filter, but the general form they take follows three key steps, namely
resample→propagate→weight. For k = 2, . . . , n, the resampling step avoids weight degen-

eracy [21, 34] and consists of drawing indices ι
(1:N)
k−1 with probabilities corresponding to the

normalized weights ω
(1:N)
k−1 , then, depending on the resampling algorithm considered, resetting

the weights accordingly, e.g., ω
(1:N)
k−1 := 1

N . The propagation and weighting steps consist of ad-

vancing the (resampled) particle population (X
ι
(1:N)
k−1

k−1 , ω
(1:N)
k−1 ) forward in time via the proposal

density ηk(xk|xk−1) (propagate) and updating the importance weights (weight) as follows (see
section SM2 for more details):

ω
(i)
k =

ω
(i)
k−1w̃

(
X

(i)
k−1, X

(i)
k

)
∑N

j=1 ω
(j)
k−1w̃

(
X

(j)
k−1, X

(j)
k

) ,
where w̃(xk−1, xk) is known as the incremental weight and is given by

w̃(xk−1, xk) =
Gθ

k(xk)f
θ
∆(xk|xk−1)

ηk(xk|xk−1)
.

The proposal density is user-defined. For example, if ηt(xk|xk−1) = fθ
∆(xk|xk−1), the particle

filter becomes the well-known bootstrap filter, introduced in [28], and the computation of the
incremental weights simplifies to w̃(xk) = Gθ

t (xk). A generic particle filter is summarized in
Algorithm SM2.1.

Given weighted particle sample (X
(1:N)
k−1 , ω

(1:N)
k−1 ) at step k, we denote an iteration of running

the particle filter (steps 4–6 of Algorithm SM2.1) as(
X

(1:N)
k , ω

(1:N)
k

)
:= PF∆

(
X

(1:N)
k−1 , ω

(1:N)
k−1

)
.

For this particular problem, we must also take into account the missing observations intro-
duced by the time discretization. Since a lack of observation does not bring any new infor-
mation, it suffices to only run the particle filter at segments which contain an observation.
A typical iteration of this approach is summarized in Algorithm 4.1. The interval counter is
initialized at c0 := 1 and counts the number of discrete intervals since (and including) the
last observation. An example of particle filtering for stochastically moving molecules observed
through the 2D Gaussian, Airy, and Born and Wolf models is available in Example SM2.1.

4.3. Particle approximations of expectations of additive functionals. The second infer-
ence aim is to obtain estimates of the score and OIM for the hyperparameters θ. To achieve
these aims, we make use of smoothed additive functionals. Assume that there exists a real-
valued function Sθ

k, k ≥ 0, such that it is an additive functional given by

Sθ
k(x1:k) =

k∑
j=1

sθj(xj−1, xj),(4.4)D
ow

nl
oa

de
d 

02
/0

3/
22

 to
 1

52
.7

8.
0.

18
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

152 A. MARIE D’AVIGNEAU, S. S. SINGH, AND R. J. OBER

Algorithm 4.1. Particle filter for SDE with missing observations

Input: weighted particle sample (X
(1:N)
k−1 , ω

(1:N)
k−1 ) and interval counter ck−1 at step k − 1.

1: if yk = ∅ then
2: ck := ck−1 + 1
3: Do not run the particle filter(

X
(1:N)
k , ω

(1:N)
k

)
:=

(
X

(1:N)
k−1 , ω

(1:N)
k−1

)
.

4: else
5: Run the particle filter with updated interval length, i.e.,(

X
(1:N)
k , ω

(1:N)
k

)
:= PFck∆

(
X

(1:N)
k−1 , ω

(1:N)
k−1

)
.

6: ck := 1
7: end if

Output: updated particle sample (X
(1:N)
k , ω

(1:N)
k ).

where sθ1(x0, x1) := sθ1(x1) and
{
sθk
}
k≥0

is a sequence of sufficient statistics which may depend
on the value of the observations y0:k. The main aim is to compute the posterior or smoothing
expectation, given by

Sk(θ) := Eθ

[
Sθ
k (X1:k) |y1:k

]
=

∫
X
Sθ
k (x1:k) pθ(x1:k|y1:k)dx1:k.(4.5)

If the model in question is linear and Gaussian or the state space X is finite, then the ex-
pectation Sk(θ) can be computed exactly by recursion. However, this is not the case if the
Airy or Born and Wolf profiles are used to describe photon distribution. In this case, SMC
methods can again be employed to approximate the expectation as follows:

Ŝk(θ) :=

N∑
i=1

ω
(i)
k Sθ

k

(
X

(i)
1:k

)
,

where the weighted sample (X
(1:N)
1:k , ω

(1:N)
k ) is a particle approximation of the joint smoothing

distribution pθ(x1:k|y1:k) obtained using a particle filter.
A simple way of estimating the smoothing expectation Sn(θ) for a set of n observations

y1:n is to run the desired particle filter in a “forward pass” through the whole data to obtain

the particle approximation (X
(1:N)
n , ω

(1:N)
n ) at the final step n, followed then by a “backward

smoothing” pass through the data, starting from the latest sample yn. This is the case of
algorithms such as the fixed-lag smoother by [33, 44, 45], forward-filtering backward smoothing
(FFBSm) by [20, 30, 32], and forward-filtering backward simulation (FFBSi) by [26]. However,
if one wishes to avoid multiple passes through the data, it is also possible to take advantage
of the form of the additive functional in (4.4) to estimate Sk(θ) in an online or “forward-only”
fashion, as proposed in [16] and further developed in [46]. Introducing the auxiliary function
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T θ
k (xk) :=

∫
Xk−1

Sθ
k(x1:k)pθ(x1:k−1|y1:k−1, xk)dx1:k−1,

the following recursion is then created:

T θ
k (xk) =

∫
X

[
T θ
k−1(xk−1) + sθk(xk−1, xk)

]
pθ(xk−1|y1:k−1, xk)dxk−1,(4.6)

where T θ
0 := 0 and its particle approximation given the weighted sample (X

(1:N)
1:k , ω

(1:N)
k ) and

previous state particle approximation T̂ θ
k−1(X

(1:N)
k−1 ) is given by

T̂ θ
k

(
X

(i)
k

)
=

N∑
j=1

Ψθ
k(i, j)

[
T̂ θ
k−1

(
X

(j)
k−1

)
+ sθk

(
X

(j)
k−1, X

(i)
k

)]
(4.7)

for all i ∈ {1, . . . , N}, and where

Ψθ
k(i, j) :=

ω
(j)
k−1f

θ
∆

(
X

(i)
k |X(j)

k−1

)
∑N

j=1 ω
(j)
k−1f

θ
∆

(
X

(i)
k |X(j)

k−1

) .(4.8)

Finally, using the recursion on the auxiliary function T θ
k , the smoothing expectation in (4.5)

can be rewritten as

Sk(θ) =

∫
X
T θ
k (xk)pθ(xk|y1:k)dxk,(4.9)

and its particle approximation is

Ŝk(θ) =
N∑
i=1

ω
(i)
k T̂ θ

k

(
X

(i)
k

)
.(4.10)

This algorithm is known as forward smoothing SMC (SMC-FS) and is summarized in the
context of our experiments in Algorithm 4.2.

4.4. Estimation of the score and OIM. The score and OIM have important applications
to ML estimation, e.g., see [35, 47]. They can also be instrumental in assessing the performance
of such an estimator, either directly, as argued by [23], or as tools to estimate the FIM when
the latter cannot be computed exactly, as we will see in this section. We aim to compute,
recursively in time, the score vector Gk(θ) := ∇ log pθ(y1:k) and OIMHk(θ) := −∇2 log pθ(y1:k)
where pθ(y1:k) denotes the marginal likelihood at step 1 ≤ k ≤ n defined in (4.3), ∇ denotes
the gradient and ∇2 the Hessian.

4.4.1. Establishing the sufficient statistics. The key to obtaining the particle approxi-
mation (4.10) of a smoothing expectation (4.9) of interest is to establish the relevant additive
functionals and sufficient statistics. First of all, assume that the regularity conditions allowing
for differentiation and integration to be switched around in expressions are satisfied. Let us
establish the Fisher and Louis identities for the score and OIM, respectively, from [9, 18]:
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Algorithm 4.2. Forward smoothing SMC

Where (i) or (j) appears, the operation is performed for all i, j ∈ {1, . . . , N}.
At k = 1,

1: Initialize the particle filter to obtain the weighted particle sample (X
(1:N)
1 , ω

(1:N)
1 ).

2: Initialize the interval counter c0 := 1.
3: Set T̂ θ

1 (X
(i)
1 ) := 0.

4: for k = 2, . . . , n do
5: if yk = ∅ then
6: ck := ck−1 + 1
7: else
8: Use the particle filter to update the weighted particle sample, i.e.,(

X
(1:N)
k , ω

(1:N)
k

)
:= PFck∆

(
X

(1:N)
k−1 , ω

(1:N)
k−1

)
.

9: Evaluate

Ψθ
k(i, j) :=

ω
(j)
k−1f

θ
ck∆

(
X

(i)
k |X(j)

k−1

)
∑N

j=1 ω
(j)
k−1f

θ
ck∆

(
X

(i)
k |X(j)

k−1

) .
10: Update the auxiliary function estimate

T̂ θ
k

(
X

(i)
k

)
=

N∑
j=1

Ψθ
k(i, j)

[
T̂ θ
k−1

(
X

(j)
k−1

)
+ sθk

(
X

(j)
k−1, X

(i)
k

)]
.

11: Update the smoothing expectation estimate

Ŝk(θ) =

N∑
i=1

ω
(i)
k T̂ θ

k

(
X

(i)
k

)
.

12: Reset the interval counter ck := 1.
13: end if
14: end for

Output: smoothing expectation estimate Ŝn.

Gk(θ) =

∫
X
∇ log pθ(xk, y1:k)pθ(xk|y1:k)dxk,(4.11)

Hk(θ) = ∇ log pθ(y1:k)∇ log pθ(y1:k)
⊺ − ∇2pθ(y1:k)

pθ(y1:k)
,

where

∇2pθ(y1:k)

pθ(y1:k)
=

∫
X
∇ log pθ(xk, y1:k)∇ log pθ(xk, y1:k)

⊺pθ(xk|y1:k)dxk

+

∫
X
∇2 log pθ(xk, y1:k)pθ(xk|y1:k)dxk,(4.12)
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and note that (4.11) and (4.12) can be rewritten as

∇ log pθ(y1:k) = E
[
αθ
k(Xk)|y1:k

]
,(4.13)

∇2pθ(y1:k)

pθ(y1:k)
= E

[
αθ
k(Xk)α

θ
k(Xk)

⊺|y1:k
]
+ E

[
βθ
k(Xk)|y1:k

]
,(4.14)

where the expectations here are with respect to the density p(xk|y1:k) and correspond to the
smoothing expectations in (4.9), with the functions αθ

k(xk) := ∇ log pθ(xk, y1:k) and βθ
k :=

∇2 log pθ(xk, y1:k) acting as the auxiliary functions of interest. A recursion for αθ
k and βθ

k is
straightforward to obtain; see more details in [47]. For αθ

k and βθ
k, (4.6) becomes

αθ
k(xk) =

∫
X

[
αθ
k−1(xk−1) + sαk (xk−1, xk)

]
pθ(xk−1|y1:k−1, xk)dxk−1,

βθ
k(xk) =

∫
X

[
βθ
k−1(xk−1) + sβk(xk−1, xk)

]
pθ(xk−1|y1:k−1, xk)dxk−1 − αθ

k(xk)α
θ
k(xk)

⊺,

where the sufficient statistics are given by

sαk (xk−1, xk) := ∇ logGθ
k(xk) +∇ log fθ

∆(xk|xk−1),(4.15)

sβk(xk−1, xk) :=
[
αθ
k−1(xk−1) + sαk (xk−1, xk)

] [
αθ
k−1(xk−1) + sαk (xk−1, xk)

]⊺
+∇2 logGθ

k(xk) +∇2 log fθ
∆(xk|xk−1).(4.16)

Finally, to approximate the score and OIM, adapt the particle approximation in (4.7) to the
recursions in (4.15) and (4.16) to obtain the score estimate, given by a weighted sum (4.10)
approximating the smoothing expectation (4.13), i.e.,

Ĝk(θ) =
N∑
i=1

ω
(i)
k α̂θ

k

(
X

(i)
k

)
,

and the OIM estimate

Ĥk(θ) = Ĝk(θ)Ĝk(θ)
⊺ −

N∑
i=1

ω
(i)
k

[
α̂θ
k

(
X

(i)
k

)
α̂θ
k

(
X

(i)
k

)⊺
+ β̂θ

k

(
X

(i)
k

)]
,

where the weighted sum is the particle approximation (4.10) of the smoothed expectation
in (4.14). In Example 4.1, we apply this framework to a possible application of the single-
molecule tracking model. We focus for now on the case where the photon distribution is
described by the Airy or 2D Gaussian profile.

Example 4.1. Let the trajectory of a molecule be given by the following SDE:

dXt = bI2×2Xtdt+
√
2σdBt,

where in the drift term, b ̸= 0, in the diffusion term, σ > 0, and (dBt)t0≤t≤T is a Wiener
process. Let the photon detection process be described by the Airy or 2D Gaussian profile.
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Then, the parameters of interest are θ = (σ2, b). Recall from subsection 3.2 and Example 2.1
that the solution to the SDE can be written as

Xk = e∆bXk−1 +Wx, Wx ∼ N
(
0,

σ2

b

(
e2∆b − 1

)
I2×2

)
,(4.17)

and since the potential function Gk does not depend on θ in this case, it can be dropped from
(4.15) and (4.16) and the components of the sufficient statistic sαk (xk−1, xk) for the additive
functional αθ

k are

∂

∂σ2
log fθ

∆(xk|xk−1) = − 1

σ2
+

b
∥∥xk − e∆bxk−1

∥∥2
2σ4 (e2∆b − 1)

,

∂

∂b
log fθ

∆(xk|xk−1) =
1

b
− 2∆e2∆b

(e2∆b − 1)
−

∥∥xk − e∆bxk−1

∥∥2
2σ2(e2∆b − 1)

+
∆be∆b(xk − e∆bxk−1)

⊺xk−1

σ2(e2∆b − 1)
+

∥∥xk − e∆bxk−1

∥∥2∆be2∆b

σ2(e2∆b − 1)2
.

The components of the sufficient statistic sβk(xk−1, xk) for β
θ
k are given in section SM3. Note

that these derivatives can be evaluated for any value of ∆, and it is therefore possible to
adapt them in order to only compute sufficient statistics when an observation is recorded as
in Algorithm 4.1. This is reflected in Algorithm 4.2.

4.5. Estimating the FIM. The FIM is widely used in estimation problems as an indicator
of the performance of a given estimator. Indeed, it is a key element of the Cramér–Rao
inequality, or CRLB derived by [13, 51, 25, 14], which states that for an unbiased estimate θ̂
of the parameter θ, its covariance has lower bound

Cov(θ̂) ⪰ In(θ)−1,

where given matrices A and B, the inequality A ⪰ B indicates that A − B is a positive
semidefinite matrix, and In(θ) denotes the FIM in a random sample Y1, . . . , Yn of size n [15],
defined as

In(θ) = Eθ [∇ log pθ(Y1:n)∇ log pθ(Y1:n)
⊺](4.18)

= Eθ

[
−∇2 log pθ(Y1:n)

]
,(4.19)

where the second equality is proven in [22, p. 211]. When the expectations in (4.18) and
(4.19) are intractable—which is the case when the Airy profile is used to describe the photon
detection locations in the single-molecule tracking model—there are several ways one can go
about estimating the FIM.

4.5.1. Estimating the FIM for a single large sample using the OIM. First, note that
from (4.19), the relationship between the FIM and the OIM is simply

In(θ) = Eθ [Hn(θ)] ,(4.20)

D
ow

nl
oa

de
d 

02
/0

3/
22

 to
 1

52
.7

8.
0.

18
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LIMITS OF ACCURACY FOR INFERENCE IN SMM VIA SMC 157

where Hn(θ) = −∇2 log pθ(y1:n) denotes the OIM. Then, for a general state space model, in
[3], it was proven that under mild assumptions,

1

n
Hn(θ) → I(θ) as n → ∞,

where I(θ) is the asymptotic FIM. See [29] for the corresponding result for multiple targets.
So for a large enough sample size n, i.e., if the interval during which the molecules of interest
are observed is long enough, the OIM and FIM can be used interchangeably, i.e., for n ≫ 1,

Hn(θ) ≈ In(θ).(4.21)

See Figure 4 for an illustration. Therefore, the first way of estimating the asymptotic FIM in
the single-molecule tracking model is simply to obtain the OIM for a large sample size. For
more details on the OIM as an estimate of the FIM, see [17].

4.5.2. Estimating the FIM using the mean outer product of the score. If the molecules
of interest are only observed for a short interval, then the size n of the sample of interest is
not large enough to estimate the FIM using the OIM. It is then also possible to instead obtain
a particle approximation of the expectation in (4.18) using the score as follows: generate D

datasets y
(1:D)
1:n of (smaller) size n where y

(d)
1:n := {y(d)1 , . . . , y

(d)
n }, and according to the same

parameters θ. The outer product of the score can then be used in the estimate of the FIM as
follows:

În(θ) =
1

D

D∑
j=1

G(d)
n (θ)G(d)

n (θ)⊺,(4.22)

where for d = 1, . . . , D, the vector G(d)
n (θ) := ∇ log pθ(y

(d)
1:n) is the score for the dth dataset of

size n. An advantage of this approach is that the OIM need not be computed.

4.5.3. Estimating the FIM using the mean OIM. When multiple datasets are available,
the OIM can also similarly be averaged over D datasets to estimate the FIM as follows:

În(θ) =
1

D

D∑
j=1

H(d)
n (θ).(4.23)

This third approach is the Monte Carlo estimator of the expectation in (4.20) and can be seen
as averaging the first estimation method in (4.21).

Now that the various methods for estimating the FIM have been established, it can be
used in an experimental design setting to plan experiments with the aim of returning the
most accurate parameter estimates. See section SM4 for details on how ML estimates can
similarly be obtained via EM and gradient ascent methods with the use of smoothed additive
functionals and SMC-FS.

Example 4.2. To verify these approaches to estimate the FIM, consider the straightforward
special case of estimating the FIM for the location x0 = (x0,1, x0,2) parameters of a static
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molecule emitting photons at a constant rate. In [40, 10], the analytical expression for the
FIM is derived for the Airy profile, and its diagonal components given observations y1:n are
given by

IAiry
n (x0,1) = IAiry

n (x0,2) = Nphotα
2,

where α = 2πna
λe

, Nphot denotes the expected photon count, and IAiry(x0,i) denotes the (i, i)th
element of the FIM, corresponding to parameter component xi, for the Airy profile. As
mentioned in subsection 3.2, having a static molecule simplifies the model. Since we have
independent data, the true values of score G and OIM H can be derived as follows. Given a
set of observations y1:n distributed according to the Airy profile,

GAiry
n (x0) =

n∑
k=1

γk(M
−1yk − x0)1yk ̸=∅,

HAiry
n (x0) =

n∑
k=1

(
χk(M

−1yk − x0)(M
−1yk − x0)

⊺ + γkI2×2

)
1yk ̸=∅,

where

γk =
2α

r

J2(αrk)

J1(αrk)
, χk = −2α2

r2k

[
J3(αrk)

J1(αrk)
− J2

2 (αrk)

J2
1 (αrk)

]
,

and rk =
√

(M−1yk − x0)⊺(M−1yk − x0). See supplementary material SM5 for the full deriva-
tion.

Using the same settings as in Example 2.2, we simulate Dl = 40 “large” datasets according
to the Airy profile consisting of observations obtained during the interval [0, 0.2] seconds. We
also simulate Ds = 400 “short” datasets consisting of observations obtained during the shorter
interval [0, 0.02] seconds. The score and OIM are obtained for all datasets and the FIM for
the large and short datasets is estimated in three ways: (i) using the OIM returned from a
single dataset selected at random (4.21), (ii) using the mean outer product of the score (4.22)
over all datasets, and (iii) using the mean OIM across all datasets (4.23). Finally, the square
root of the CRLB, also known as the (fundamental) limit of accuracy and defined as

δϑ =
√
CRLBϑ

for parameter ϑ, is obtained. This is repeated for various expected photon counts in order to
compare the evolution of the estimated limit of accuracy as the expected number of photons
increases to the true limit of accuracy obtained using the true FIM. In Figure 4, it is apparent
that, apart from very low photon counts, all approaches are able to return accurate estimates
of the limit of accuracy. Comparing Figures 4(a) and 4(b), it also becomes apparent that
for long datasets, approach (i) is slightly more accurate than (ii), and the opposite is true
for short datasets. In both cases, approach (iii) is the most accurate. Similar results can be
obtained for the 2D Gaussian profile and the Born and Wolf model, as analytical expressions
for the FIM are also available for a static object [42, 41].
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Figure 4. True and estimated limits of accuracy for mean photon counts ranging from (a) 1 to 150 and
(b) 10 to 1500. The limit of accuracy is estimated for the location parameters (x1, x2) of a static in-focus
molecule. The estimates are obtained by taking the square root of the inverse of the FIM, obtained for (a) 400
“short” (b) 40 “long” simulated datasets using approaches (i) ⋆, (ii) × and (iii) + for comparison purposes. To
generate each dataset, the photon detection times are simulated according to a Poisson process with constant
rate corresponding to the expected mean photon count for (a) [0, 0.02] and (b) [0, 0.2] seconds and the intervals
are discretized. The photon detection locations are generated according to the Airy profile, with parameters as
in Example 2.2. The true limit of accuracy (blue solid line) is also computed as it is available analytically
[42]. Estimates of the limit of accuracy based on a single dataset (approach (i)) are more accurate when the
dataset is long, while taking the mean outer product of the score over all datasets (approach (ii)) yields more
accurate estimates for a large number of short datasets. Approach (iii) provides a good balance between the two.
In general, estimates of the limit of accuracy are relatively poor for very low mean photon counts but quickly
improve as it increases.

5. Numerical experiments. In this section, we apply the particle smoother known as
SMC-FS to estimate the FIM, and thus the limit of accuracy, for various parameters in the
context of one or multiple moving molecules with stochastic trajectories. Experiments are
first run with photon detection locations described by the Gaussian and Airy profiles, and
then the Born and Wolf model, where an additional hyperparameter, namely the optical
axis location, must be considered as well. The methodology is then applied to the optical
microscope resolution problem, where the limit of accuracy for the mean separation distance
between two closely spaced diffusing molecules is assessed.

Unless stated otherwise, the FIM for any given settings is estimated according to (4.23),
i.e., by generating several datasets according to the same settings, estimating the OIM for each
dataset using the SMC-FS algorithm (Algorithm 4.2), and averaging the estimated OIM over
all generated datasets. The particle filter employed in the SMC-FS algorithm is the bootstrap
filter. A large number of datasets is needed to minimize Monte Carlo error in FIM estimates,
so to speed up computations we adopt a distributed computing approach: the datasets and
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repeat runs of the SMC-FS algorithm to estimate the OIMs are divided evenly among 60 to
64 CPUs and run in parallel. We note that for our methodology, access to a large number
of CPUs is beneficial to both the accuracy of estimates and the speed at which they can be
obtained. The wall clock speed of the SMC-FS algorithm is also affected by the mean photon
count Nphot considered. Indeed, as described in Algorithm 4.2, the filtering and smoothing
steps occur only in segments where a photon is observed, so the expected complexity of a
full run of the SMC-FS algorithm is O(NphotN

2), where N is the size of the SMC particle
population (generally N = 500).

5.1. Limit of accuracy of drift and diffusion coefficients for the Gaussian and Airy
profiles. Consider a molecule with trajectory described by the SDE in Example 2.1. In [59],
the authors took advantage of the Kalman filter formulae to evaluate the FIM for the diffusion
(σ2) and drift (b) coefficients. However, it was only possible to obtain an analytic solution
for a particular set of detection times t1, t2, . . . and for the 2D Gaussian photon distribution
profile. Otherwise, the computational cost of performing numerical integration was too high
for more than one photon.

In our particle filtering framework, it is also possible to take advantage of the Kalman
filter formulae when considering the 2D Gaussian model in order to obtain an accurate ap-
proximation of the true score and OIM by numerical differentiation, and for any detection
times schedule. An estimate of the FIM is therefore obtained by evaluating the true OIM for
3000 datasets and taking their mean, as described in subsection 4.5. The molecule trajecto-
ries are simulated for [0, 0.2] seconds, with diffusion coefficient σ2 = 1 µm2/s, drift coefficient
b = −10 s−1, and initial location Gaussian distributed with mean x0 = (5.5, 5.5)⊺ µm and
covariance P0 = 10−2I2×2 µm2. The observations for the first experiment are generated ac-
cording to the 2D Gaussian profile (2.9) with parameters as in Example 2.2. It is not possible
to employ the Kalman filter formulae for the Airy and Born and Wolf profiles, and we must
resort to using the SMC-FS algorithm instead. First of all, to evaluate the performance
of the SMC-FS algorithm, the algorithm is employed using N = 500 particles to estimate
the score and OIM for the same 3000 2D Gaussian profile datasets, and we similarly take
the mean OIM over all datasets to estimate the FIM. Next, we move on to the Airy pro-
file, for which it was too computationally costly in [59] to obtain the FIM for more than a
single photon. We estimate the OIM for the diffusion and drift coefficients using the SMC-
FS algorithm with N = 500 particles for 2040 datasets, where the molecule trajectories are
simulated using the same parameters as for the 2D Gaussian profile, and the observations
are generated according to the Airy profile (2.8) with parameters as in Example 2.2. This is
repeated for various mean photon counts ranging from 10 to 1250. Then, the limit of accu-
racy estimate, denoted δ̂ϑ for hyperparameter ϑ, is computed, and the results are displayed
in Figure 5.

Both Figures 5(a) and 5(b) display an inverse square root decay of the limit of accuracy
with respect to the mean photon count. This is consistent with the results for a static molecule
from Example 4.2 and means that the quality of diffusion and drift estimates improves as the
mean photon count increases. In addition to that, comparing the limit of accuracy obtained
from the estimated and true OIM for the 2D Gaussian profile in Figure 5(a) indicates that the
SMC-FS algorithm is able to return accurate estimates of the score and FIM for a stochastically
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Figure 5. Evolution of the estimated limit accuracy for mean photon counts ranging from 10 to 1250. The
limit of accuracy is estimated for the diffusion (σ2) and drift (b) coefficients for an in-focus molecule with
stochastic trajectory. The estimates are obtained by taking the square root of the inverse of the FIM, obtained
by estimating the OIM using the SMC-FS algorithm with 500 particles for (a) 3000 and (b) 2040 simulated
datasets. To generate each dataset, the molecule’s trajectory was simulated according to the SDE in Example 2.1
for the interval [0, 0.2] seconds, with σ2 = 1 µm2/s, b = −10 s−1, and initial location Gaussian distributed with
mean x0 = (5.5, 5.5)⊺ µm and covariance P0 = 10−2I2×2 µm2. The observations are generated according to the
(a) 2D Gaussian and (b) Airy profiles, with parameters as in Example 2.2. For the (a) 2D Gaussian profile,
the limit of accuracy is also estimated by using the true OIM obtained using numerical differentiation applied
to the Kalman filter. An inverse square root curve (orange and green dashed) is fitted to the resulting estimated
limits of accuracy for comparison.

moving molecule. Indeed, apart from a very slight discrepancy for very low photon counts for
the drift coefficient, the estimates of the limit of accuracy are almost indistinguishable.

5.2. Limit of accuracy of drift, diffusion, and optical axis location for the Born and
Wolf model. When the molecule is out of focus, which means the photon detection locations
are distributed according to the Born and Wolf model (2.10), the FIM components for the
diffusion and drift coefficients can be obtained as for the Airy and Gaussian profiles. However,
a new hyperparameter must be considered, namely the optical axis location, denoted z0.
While previously, differentiating the log potential function was not needed, the vector of
hyperparameters is now θ = (σ2, b, z0), and Gθ

k(xk) depends on z0 for k = 1, . . . , n.
While it requires numerical integration, differentiating log qz0(x1, x2) for a given x =

(x1, x2) ∈ R2 with respect to z0 is not impossible. For notational simplicity, let α := 2πnα
λe

,

r :=
√

x21 + x22, and W := πn2
α

noλe
and rewrite (2.10) as

qz0(x1, x2) =
α2

π

(
U2
z0 + V 2

z0

)
,

where

Uz0 :=

∫ 1

0
J0 (αrρ) cos

(
Wz0ρ

2
)
ρdρ, Vz0 :=

∫ 1

0
J0 (αrρ) sin

(
Wz0ρ

2
)
ρdρ.

The first derivative was derived in [41] and is given by

∂ log qz0(x1, x2)

∂z0
= 2

Uz0U̇z0 + Vz0 V̇z0

U2
z0 + V 2

z0
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where

U̇z0 :=
∂Uz0

∂z0
=

∫ 1

0
J0 (αrρ) cos

(
Wz0ρ

2
)
Wρ3dρ,

V̇z0 :=
∂Vz0

∂z0
= −

∫ 1

0
J0 (αrρ) sin

(
Wz0ρ

2
)
Wρ3dρ.

The second derivative with respect to z0 is given by

∂2 log qz0(x1, x2)

∂z20
= 2

Uz0Üz0 + U̇2
z0 + Vz0 V̈z0 + V̇ 2

z0

U2
z0 + V 2

z0

−
(
∂ log qz0(x1, x2)

∂z0

)2

,

where

Üz0 :=
∂2Uz0

∂z20
= −

∫ 1

0
J0 (αrρ) cos

(
Wz0ρ

2
)
W 2ρ5dρ,

V̈z0 :=
∂2Vz0

∂z20
= −

∫ 1

0
J0 (αrρ) sin

(
Wz0ρ

2
)
W 2ρ5dρ.

The potential function depends only on z0, so any cross terms in the FIM and OIM between
z0 and either σ2 or b will be zero.

The OIM is estimated for the diffusion (σ2), drift (b) coefficients, and optical axis location
(z0) using the SMC-FS algorithm with 500 particles for 2040 datasets, where the molecule
trajectories are simulated using the same parameters as for the 2D Gaussian and Airy profiles,
and the observations are generated according to the Born and Wolf model with parameters as
in Example 2.2 (i.e., z0 = 1 µm). Then, the limit of accuracy for mean photon counts ranging
from 10 to 1250 is computed, and the results are displayed in Figure 6. Once again, there is
an inverse square root decay of the limit of accuracy with respect to the mean photon count
for all hyperparameters considered.

5.3. Limit of accuracy of the separation distance between two molecules for the Airy
profile. Being able to estimate the distance of separation between two closely spaced molecules
is an important aspect of single-molecule microscopy. In the past, Rayleigh’s criterion [4] has
been used to define the minimum distance between two point sources such that they can
be distinguished in the image. However, [48] treated the separation distance problem as a
statistical estimation task and derived the CRLB (or inverse of the FIM) for the mean square
error of the separation distance estimate. It was shown that Rayleigh’s minimum distance
can be surpassed by capturing more photons, e.g., by observing the molecules for a longer
period. So far, the limit of accuracy has been derived only for static molecules. In this
experiment, we apply our methodology to estimate the limit of accuracy for the locations and
separation distance between two molecules that are not static but diffusing independently at
their respective stationary distributions, as illustrated in Figure 7.

Let Xt = (Xt,1, Xt,2)
⊺ be the cartesian coordinates of a moving molecule with stationary

distribution N (x0, σ
2I2×2) for all t, where x0 is referred to as the mean state. The continuous

time dynamics are given by

dXt = (x0 −Xt)dt+
√
2σdBt.(5.1)
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Figure 6. Evolution of the estimated limit accuracy for mean photon counts ranging from 10 to 1250. The
limit of accuracy is estimated for the diffusion (σ2), drift (b) coefficients, and optical axis location (z0) for an
out-of-focus molecule with stochastic trajectory. The estimates are obtained by taking the square root of the
inverse of the FIM, obtained by estimating the OIM using the SMC-FS algorithm with 500 particles for 2040
simulated datasets. To generate each dataset, the molecule trajectories are simulated according to the SDE in
Example 2.1 for the interval [0, 0.2] seconds, with σ2 = 1 µm2/s, b = −10 s−1, and initial location Gaussian
distributed with mean x0 = (5.5, 5.5)⊺ µm and covariance P0 = 10−2I2×2 µm2. The observations are generated
according to the Born and Wolf model with parameters as in Example 2.2, where z0 = 1 µm. An inverse square
root curve (orange) is fitted to the resulting estimated limits of accuracy for comparison.
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Figure 7. Examples of two molecules diffusing independently at a mean separation distance of (a) 0.01 µm
with diffusion coefficient σ2 = 10−4 µm2/s and (b) 0.1 µm with σ2 = 10−3 µm2/s. For an Airy distributed
photon detection profile with nα = 1.4 and λe = 0.52 µm, Rayleigh’s resolution limit is ≈ 0.227 µm. Increasing
the value of the diffusion coefficient σ2 will often lead to the molecule trajectories overlapping.

From subsection 2.1, it is straightforward to establish the solution to this SDE, which yields
the conditional pdf fx0

∆ of Xk+1 at the (k + 1)th discrete segment, given Xk = x at the kth
segment, as

Xk+1|(Xk = x) = Φ∆x+ a∆ +Wx, Wx ∼ N (0, R∆),

where Φ∆ = e−∆, a∆ = x0(1− e−∆) and R∆ = σ2(1− e−2∆)I2×2.
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In this experiment, consider two independently diffusing molecules whose states are
(Xt, Vt), where Xt is the state of the first molecule and Vt is the state of the second. As-
sume that the initial state of each molecule is the same as its corresponding mean state,
i.e., (x0, v0) =: θ = (θ1, θ2, θ3, θ4)

⊺, and is nonrandom but unknown and to be estimated.
The conditional probability density function of (Xk+1, Vk+1) given (Xk, Vk) = (xk, vk) is
fx0
∆ (xk+1|xk)fv0

∆ (vk+1|vk) owing to their independent motions.

Let θ̂ = (θ̂1(Y1:n), θ̂2(Y1:n), θ̂3(Y1:n), θ̂4(Y1:n))
⊺ denote an estimate of θ given observations

Y1:n. Recall that the FIM, denoted In(θ), is given by

In(θ) = E
[
∇ log pθ(Y1:n) ∇ log pθ(Y1:n)

T
]
.

For any scalar-valued function D(θ) ∈ R, we can estimate D(θ) using D(θ̂) where θ̂ is the
estimate of θ. Assuming the estimate is unbiased, we have the following CRLB for the function
D:

E
[(

D(θ̂)−D(θ)
)2

]
≥ ∇D(θ)⊺In(θ)−1∇D(θ),(5.2)

where ∇D(θ) := (∂D/∂θ1, . . . , ∂D/∂θ4)
⊺. For example, to estimate the separation between

the two molecules we have D(θ) =
√

(θ1 − θ3)
2 + (θ2 − θ4)

2, and as a result

∇D(θ) =
1

D(θ)


θ1 − θ3
θ2 − θ4

−(θ1 − θ3)
−(θ2 − θ4)

 .

This experiment is essentially the dynamic version of the experiments on estimating the sep-
aration of two static molecules by [50]. The key difference here is that the molecules are
diffusing. The observations Y1:n are generated as in [50], i.e., according to the following mix-
ture:

Gk(xk, vk) =

{
1−∆λθ if yk = ∅,
λxg(yk|xk) + λvg(yk|vk) otherwise,

(5.3)

where g is the photon distribution profile given in (2.7) and λθ = λx + λv. The measurement
model considered in this experiment is the Airy profile (2.8), but it is straightforward to also
apply the methodology to the 2D Gaussian profile and the Born and Wolf model.

In the first part of the experiment, we analytically replicate results similar to those in [48,
50] for two static molecules, then observe how introducing diffusion affects the progression of
the limit of accuracy δD(θ) for the separation distance (obtained using (5.2)), as this separation
distance between the two molecules increases. We set λx = λv = λ for simplicity. Evaluating
δD(θ) analytically for the static case is performed as in [48], with a mean photon count, denoted
Nphot, of 3000. For the dynamic case, the molecules are observed during an interval of [0, 1]
seconds with the same mean photon count, and for diffusion coefficients σ2 varying from
5 × 10−3 to 10−4 µm2/s. The parameters of the Airy profile are unchanged (i.e., nα = 1.4,
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λe = 0.52 µm), as is the lateral magnification matrix (M = 100I2×2). The estimate of the
limit of accuracy is obtained by estimating the OIM for the mean locations x0 and v0 via
the SMC-FS algorithm for 640 to 1024 datasets then applying (5.2). The resulting estimated
limits of accuracy δ̂D(θ) are given in Figure 8(a). The second part of the experiment involves
similarly estimating the limits of accuracy δD(θ) for various separation distances, but this time
the diffusion coefficient remains fixed, i.e., σ2 = 10−4 µm2/s, and the mean photon count Nphot

is set to vary between 100 and 4500. The resulting estimated limits of accuracy are given in
Figure 8(b).
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Figure 8. Comparison of the evolution of the estimated limit accuracy for separation distances rang-
ing from 20×10−3 to 2 µm for various (a) diffusion coefficient (σ2) values and (b) mean photon counts
(Nphot). The limit of accuracy for the separation distance δD(θ), where θ = (x0, v0) = (θ1, θ2, θ3, θ4), is
estimated using the square root of the CRLB obtained using (5.2) (in the dynamic case) and evaluated
using analytical results from [48] (in the static case). The estimates of In(θ) in (5.2) are obtained by
running the SMC-FS algorithm with 500 particles for 640 to 1024 simulated datasets. For the dynamic
case, the molecule trajectories are initialized at their respective mean locations x0 and v0 and each is
propagated according to its corresponding SDE (5.1) during an interval of [0, 1] seconds with (a) fixed
and mean photon count Nphot = 3000 and (b) fixed diffusion coefficient σ2 = 10−4 µm2/s. The obser-
vations are generated according to a mixture of Airy profiles (5.3) with parameters as in Example 2.2.
This is repeated for (a) σ2 varying from 10−3 to 10−4 µm2/s and (b) Nphot varying from 100 to 4500.
Finally, an inverse square root curve is fitted to each of the resulting sets of estimated limits of accuracy
for comparison purposes. Note that the pink set of estimates and their corresponding solid fitted curve
in (a) coincide with those in (b). In (b), the horizontal lines correspond to the equivalent mean photon

counts and represent the distances Hsto
Nphot

between the limits of accuracy δ̂sto,locx0
and δ̂sto,locv0 for the

mean locations x0 and v0 of each individual object, estimated independently for each molecule using the
SMC-FS algorithm. Note that any variation in estimates for low separation distances is due to Monte
Carlo error and can be reduced by increasing the number of simulated datasets.
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As the separation distance D(θ) gets closer to zero, the limit of accuracy increases, indi-
cating that estimates would become less accurate. Additionally, an inverse square root curve
was fit to each set of estimated limits of accuracy in Figures 8(a) and 8(b). This is consistent
with results in [48] that showed an inverse square root relationship between separation dis-
tance and δstaticD(θ) for two static molecules and indicates that these results can be generalized

to dynamic molecules. Additionally, in [40], it is suggested that the limit of accuracy for the
location of a static molecule, known as localization accuracy and denoted δloc, is of the form

σa√
Nphot

, where Nphot is the mean photon count and σa the standard deviation of the photon

detection profile. The interpretation for this is that the quality of location estimates of a
single static molecule deteriorates as the measurement uncertainty σa increases. Now in [50],
it is proven that the limit of accuracy for the separation distance between two molecules δstaticD(θ)
and the localization accuracy for each of these molecules are related as follows:

Hsta
Nphot

:= lim
D(θ)→∞

δstaticD(θ) =

√(
δsta,locx0

)2
+

(
δsta,locv0

)2
,(5.4)

where δsta,locx0 and δsta,locv0 denote the localization accuracy for the first and second (static)
molecules observed independently with cumulative mean photon count Nphot, respectively.
Even though the separation distance goes to infinity, its limit of accuracy δD(θ) remains finite.
This means that as D(θ) → ∞, evaluating the limit of accuracy for the separation distance
between two (static) molecules becomes equivalent to two independent localization accuracy
problems. It also means that δstaticD(θ) is similarly affected by measurement uncertainty σa, as
are the localization accuracies for the two molecules.

In this experiment, the introduction of diffusion negatively affects the improvement in
estimation accuracy as the mean distance of separation between the two molecules increases.
This is shown in Figure 8(a) by the more and more slowly decaying limits of accuracy as the
value of σ2 increases and in Figure 9(a) by the linearly increasing trend in δ̂D(θ) for all values
of D(θ) as σ increases. As a result, the diffusion coefficient in the dynamic model can be
translated into additional observation uncertainty which affects δD(θ) in a way reminiscent of
how σa affects δstaticD(θ) . More generally, from our numerical results, we observe the relationship
for our dynamic application behaves qualitatively as√

σ2
a + σ2

Nphot
,

where, as above, σa is the standard deviation of the photon detection process, also known as
measurement uncertainty.

We now investigate the relationship between δD(θ) and the dynamic equivalent to the
localization accuracy, namely the limit of accuracy for the mean locations x0 and v0 of each
individual, stochastically moving molecule, denoted δsto,locx0 and δsto,locv0 , respectively. The limits
δsto,locx0 and δsto,locv0 can be estimated independently by repeatedly taking the mean estimated
OIM for x0 and v0 based on two separate sets of 640 simulated datasets (one for each molecule)
for mean photon counts ranging from 50 to 2250 (half of Nphot each, given we have λx = λv = λ
under current settings). The distance

Hsto
Nphot

:=

√(
δsto,locx0

)2
+
(
δsto,locv0

)2
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Figure 9. Evolution of the estimated limit of accuracy for the separation distance δD(θ) (obtained using

(5.2)) between two stochastically moving molecules observed simultaneously for (a) σ ranging from
√
10−4 to√

5× 10−3 µm s−1/2 and (b) Nphot ranging from 100 to 4500. Estimates are obtained through the same
algorithm and parameters as in (a) Figure 8(a) and (b) Figure 8(b), with separation distances ranging from
20×10−3 to 2 µm. In (b), inverse square root curves are fitted to the resulting estimates δ̂D(θ) for comparison.

between the limits of accuracy δsto,locx0 and δsto,locv0 of each individual object with various (cu-
mulative) mean photon counts Nphot is illustrated as horizontal lines in Figure 8(b), which
appear to act as asymptotes, thus indicating that the relationship in (5.4) can be generalized
to stochastically moving molecules. While the introduction of diffusion leads to less accurate
estimates, Figure 8(b) displays a stronger decay in the limit of accuracy as the mean photon
count Nphot increases, thus indicating that increasing the mean photon count Nphot improves
those estimates, as was the case for static molecules in [48]. This is reinforced in Figure 9(b),
which also suggests that the relationship between δD(θ) and Nphot is an inverse square root.
This is also a generalization to the dynamic case of results in [48], which showed an inverse
square root relationship between δstaticD(θ) and Nphot for two static molecules.

In summary, this experiment employs the numerical framework developed in this paper for
estimating the FIM of parameters of dynamic molecules using SMC in order to gain insights
into generalizing results from [49, 50] about the effects of separation distance, measurement
uncertainty, and mean photon count to a context in which the two molecules considered
follow an SDE rather than being static. These effects, as well at that of the measurement
uncertainty, can all be observed by applying our methodology and are summarized in Table 2.
We also summarize in Table 2 the results on the limits of accuracy for the drift and diffusion
coefficients of a single stochastically moving molecule observed via the 2D Gaussian, Airy
profiles, and the Born and Wolf model from subsections 5.1 and 5.2. Note that the limits
of accuracy for the mean locations of each molecule, denoted δθ := (δθ1 , δθ2 , δθ3 , δθ4)

⊺, can
also be estimated as part of our methodology (as their FIM is required for (5.2)) and return
similar relationships with separation distance, mean photon count, diffusion coefficient, and
measurement uncertainty as δD(θ) (not reported here).
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Table 2
Summary of the qualitative relationships between the limits of accuracy (or standard deviation of parameter

estimates) δθ := (δθ1 , δθ2 , δθ3 , δθ4)
⊺ and δD(θ) for the mean locations θ = (x0, v0) = (θ1, θ2, θ3, θ4)

⊺ and separa-
tion distance D(θ), respectively, of two stochastically diffusing molecules observed simultaneously. Also included
in the table is the relationship between mean photon count and the limits of accuracy for the hyperparameters
of the SDE trajectory (drift b and diffusion σ2 coefficients) and photon detection process (optical axis location
z0) of a single molecule. Note that when we increase the mean photon count Nphot, the observation interval
length remains fixed.

Limit of accuracy δ Qualitative dependence Reference

δϑ = std(ϑ̂) Parameter Relationship

δD(θ), δθ D(θ) separation distance O
(
D(θ)−1/2

)
Figure 8

δD(θ), δθ σ2 diffusion coefficient O (σ) Figure 9(a)
δD(θ), δθ σ2

a measurement uncertainty O (σa) [48, 40]

δD(θ), δθ Nphot mean photon count O
(
N

−1/2
phot

)
Figure 9(b)

δσ2 , δb, δz0 Nphot mean photon count O
(
N

−1/2
phot

)
Figure 5, Figure 6

In this section, results on the relationship between the limits of accuracy for various
parameters and the mean photon count Nphot have been extended from a single static [40, 10,
41] or deterministically moving molecule [60] to a molecule whose trajectory follows an SDE.
Additionally, insights have been gained into generalizing results for the optical microscope
resolution problem, which considers the separation distance between two static molecules
[48, 49], to two stochastically diffusing molecules. The qualitative relationships observed and
summarized in Table 2 are important in an experimental design context, as they provide
information on how the accuracy of parameter estimates is affected by various experimental

setups. For example, the O(N
−1/2
phot ) relationship between limits of accuracy and mean photon

count indicates that quadrupling the number of photons can help halve the standard deviation
of parameter estimates.

6. Conclusion. In this paper, we introduced an SMC approach to performing parameter
inference when tracking a molecule with stochastic trajectory for a fixed time interval. The
three main aspects of this fundamental model in single-molecule microscopy were the true
location of the molecule in the object space, which follows a linear SDE, the Poisson distributed
arrival process of the photons it emits on the detector in the image space, and the arrival
location of those photons on the detector, which follows either a 2D Gaussian, the Airy
profile, or the Born and Wolf model.

First of all, we discretized the time interval in order to formulate the problem as a discrete-
time state space model, in which all states are equally spaced in time, but a number of
observations are marked as missing. From this, SMC methods were applied for parameter
inference. A general forward smoothing algorithm was employed to estimate the score and
OIM of the data regardless of the distribution of the photon locations. For the first time,
this allowed for the estimation of the FIM and hence the limit of accuracy (square root of
the CRLB), which could not be done before for the Airy profile and the Born and Wolf
model, and could only be achieved analytically for a specific set of photon detection times
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for the 2D Gaussian profile. The methodology was subsequently applied to characterize the
precision limits for estimating the separation distance between two moving molecules, thus
providing new insights into results for the static case from [50]. The outcome of our numerical
work was summarized in Table 2, which sums up the qualitative behaviors of the limits of
accuracy as functions of the mean photon count, separation distance, diffusion coefficient, and
measurement uncertainty.

Although for the first time a method has been described to estimate the limit of accuracy
for the hyperparameters of dynamic single molecules with nonuniform observation times and
complex measurement models, such as the Airy profile or the Born and Wolf model, there is
scope to use the techniques developed here to provide a wider range of more computationally
efficient approaches. Indeed, an advantage of the straightforward state space model formula-
tion of the problem is access to the vast range of filtering and smoothing algorithms available.
While we employed forward smoothing, any kind of particle smoothing algorithm would be
suitable, and indeed, the SMC-FS algorithm of [16] employed for forward smoothing, even
though it mitigates issues related to path degeneracy, is of O(N2) complexity. For example,
the PaRIS algorithm of [46] can reduce the complexity of the algorithm to linear.
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