
Stochastic Framework

We consider a stochastic framework that is based on an optical microscope setup, which consists of

the object of interest, the microscope optics, and a detector that captures the image of the object.

Here, the object of interest is a pair of point sources (e.g. single molecules) and we consider imaging

experiments that capture photons during a fixed acquisition time interval. Our approach to calculate

the resolution measure is based on the theory concerning the Cramer-Rao lower bound (see e.g., refs. 1

and 2). The task of determining the distance of separation d between two point sources is a parameter

estimation problem. The distance of separation is obtained by using an unbiased estimation procedure,

and the performance of this estimator is given by the standard deviation of the distance estimates

assuming repeated experiments. According to the Cramer-Rao lower bound (1, 2), the (co)variance

of any unbiased estimator θ̂ of an unknown parameter θ is always greater than or equal to the inverse

Fisher information matrix, i.e.,

Cov(θ̂) ≥ I−1(θ).

An important property of the Fisher information matrix is that it is independent of how the param-

eter is estimated and only depends on the statistical description of the acquired data. Because the

performance of an unbiased estimator is given by its standard deviation, the above inequality implies

that the square root (of the corresponding leading diagonal entry) of the inverse Fisher information

matrix provides a lower bound to the performance of any unbiased estimator of θ. Hence we define

the resolution measure as the square root (of the corresponding leading diagonal entry) of the inverse

Fisher information matrix that corresponds to the distance estimation problem.

Image Detection Process

The acquired data is assumed to consist of the time points and the spatial coordinates of the detected

photons from the two point sources, which is modeled as a space-time random process (1) and is

referred to as the image detection process. A detailed description of this process has been given
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elsewhere (3), and for completeness we give a brief description. The temporal part describes the time

points of the detected photons and is modeled as an inhomogeneous Poisson process with intensity

function Λθ. The spatial part describes the distribution of the detected photons over the detector and

is modeled as a sequence of independent and identically distributed random variables with density

function fθ,τ . The temporal and spatial components are assumed to be mutually independent of each

other. Here, τ denotes the time and θ denotes the unknown parameter that we want to estimate from

the acquired data, which, in the present case, is the distance of separation d between the point sources.

Fisher Information Matrix for the Image Detection Process. The Fisher information matrix

of the image detection process is given by (1, 3)

I(θ) =

∫ t

t0

∫

R
2

1

Λθ(τ)fθ,τ (r)

(

∂[Λθ(τ)fθ,τ (r)]

∂θ

)T ∂[Λθ(τ)fθ,τ (r)]

∂θ
drdτ, θ ∈ Θ, [1]

where [t0, t] denotes the time interval during which the data is acquired. In Eq. 1, we make no specific

assumptions about the functional form of fθ,τ or Λθ. Therefore Eq. 1 provides a general expression

for I(θ) that is applicable to a wide variety of imaging conditions, such as polarized or unpolarized

excitation and detection, total internal reflection mode of illumination, imaging under defocus, etc.

In the present case where our object of interest is a pair of point sources, Λθ and fθ,τ can be written

as (see ref. 3)

Λθ(τ) := Λ1(τ) + Λ2(τ), τ ≥ t0, θ ∈ Θ, [2]

fθ,τ (r) :=
ǫ1
θ(τ)

M2
q1

(

x

M
+

d

2
,

y

M

)

+
ǫ2
θ(τ)

M2
q2

(

x

M
− d

2
,

y

M

)

, r := (x, y) ∈ R
2, θ ∈ Θ, τ ≥ t0,[3]

where Θ denotes the parameter space and ǫi
θ(τ) := Λi(τ)/Λθ(τ), τ ≥ t0, θ ∈ Θ, i = 1, 2. In Eqs. 2 and

3, Λ1 and Λ2 denote the photon detection rate of the two point sources, M denotes the total lateral

magnification of the microscope setup, d denotes the distance of separation between the point sources,

and q1 and q2 denote the image functions of the two point sources. An image function q describes the

image of an object at unit lateral magnification when the center of the object is located at the origin

of the coordinate axes in the specimen plane. The function q is normalized to satisfy the integral

2



identity
∫

R
2 q(x, y)dxdy = 1 (see ref. 3 for details). In Eq. 3 we consider an arrangement (potentially

after a suitable translation of the coordinate axes) in which the point sources lie along the x axis in

the specimen plane and are equidistant from the origin of the coordinate axes. Substituting for fθ,τ

and Λθ in Eq. 1, the Fisher information matrix is given by

I(θ) =

∫ t

t0

∫

R
2

1
Λ1(τ)
M2 q1

(

x
M

+ d
2 , y

M

)

+ Λ2(τ)
M2 q2

(

x
M

− d
2 , y

M

)
×

(

Λ1(τ)

M2

∂q1

(

x
M

+ d
2 , y

M

)

∂d
+

Λ2(τ)

M2

∂q2

(

x
M

− d
2 , y

M

)

∂d

)2

dxdydτ

=

∫ t

t0

∫

R
2

1

Λ1(τ)q1

(

x
M

+ d
2 , y

M

)

+ Λ2(τ)q2

(

x
M

− d
2 , y

M

)×

(

Λ1(τ)

2

∂q1

(

x
M

+ d
2 , y

M

)

∂x
− Λ2(τ)

2

∂q2

(

x
M

− d
2 , y

M

)

∂x

)2

dxdydτ

=
1

4

∫ t

t0

∫

R
2

1

Λ1(τ)q1(x + d
2 , y) + Λ2(τ)q2(x − d

2 , y)
×

(

Λ1(τ)
∂q1(x + d

2 , y)

∂x
− Λ2(τ)

∂q2(x − d
2 , y)

∂x

)2

dxdydτ. [4]

Inverting Eq. 4 and taking the square root, we obtain the expression for the g-FREM.

Derivation of the FREM. Rayleigh’s resolution criterion considers two identical, self-luminous,

in-focus point sources that are imaged with a conventional wide-field optical microscope. Here we

derive the expression of the fundamental resolution measure with similar assumptions. We assume the

two point sources to have equal, constant intensities i.e., Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0, and identical

image functions i.e., q1 = q2. According to optical diffraction theory (4), the image of an in-focus

point source is described by the Airy profile, which is given by

qi(x, y) :=
J2

1 (α
√

x2 + y2)

π(x2 + y2)
, (x, y) ∈ R

2, i = 1, 2, [5]

where J1 denotes the first order Bessel function of the first kind, α := 2πna/λ, na denotes the numerical

aperture of the objective lens, and λ denotes the wavelength of the detected photons. Using the well
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known recurrence relations for Bessel functions (see e.g., ref. 5, pp. 17 and 18), the partial derivative

of qi with respect to x is given by ∂qi(x, y)/∂x = −2αxJ1(α
√

x2 + y2)J2(α
√

x2 + y2)/(π(x2 + y2)
3
2 ),

(x, y) ∈ R
2, i = 1, 2, where α = 2πna/λ, and J2 denotes the second-order Bessel function of the first

kind. Substituting for qi(x, y) and ∂qi(x, y)/∂x in Eq. 4 and setting Λi(τ) = Λ0, for i = 1, 2, we get

I(d) =
Λ0 · (t − t0)

4

∫

R
2

1

J2

1
(α
√

(x+ d

2
)2+y2)

π((x+ d

2
)2+y2)

+
J2

1
(α
√

(x−d

2
)2+y2)

π((x−d

2
)2+y2)

×






−2α(x +

d

2
)
J1(α

√

(x + d
2 )2 + y2)J2(α

√

(x + d
2 )2 + y2)

π
(

(x + d
2 )2 + y2

)
3

2

−(−2α)(x − d

2
)
J1(α

√

(x − d
2 )2 + y2)J2(α

√

(x − d
2 )2 + y2)

π
(

(x − d
2 )2 + y2

)
3

2







2

dxdy

=
α2Λ0(t − t0)

π

∫

R
2

1
J2

1
(αr01)

r2

01

+
J2

1
(αr02)

r2

02

[

(x +
d

2
)
J1(αr01)J2(αr01)

r3
01

− (x − d

2
)
J1(αr02)J2(αr02)

r3
02

]2

dxdy

=
4n2

a

λ2
π · Λ0 · (t − t0) · Γ0(d),

where r01 :=
√

(x + d/2)2 + y2, (x, y) ∈ R
2, r02 :=

√

(x − d/2)2 + y2, (x, y) ∈ R
2 and Γ0 be given by

Γ0(d) =

∫

R
2

1
J2
1 (αr01)

r2
01

+
J2
1 (αr02)

r2
02

(

(x +
d

2
)
J1(αr01)J2(αr01)

r3
01

− (x − d

2
)
J1(αr02)J2(αr02)

r3
02

)2

dxdy.

Note that the Fisher information matrix I(d) is a scalar quantity. The FREM is obtained by taking

the square root of the inverse Fisher information matrix (i.e, 1/I(d)), and is given by

δd :=
1

√

I(d)
=

1
√

4π · Λ0 · (t − t0) · Γ0(d)

λ

na
.

Extension to Non-Poissonian Statistics. The derivation of the Fisher information matrix given

in Eq. 4 assumes the time points of the detected photons in the acquired data to be Poisson dis-

tributed. We next consider the scenario in which the times points of the detected photons are de-

scribed by a general counting process {N(τ), τ ≥ t0} that has finite first and second moment, i.e.,
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0 ≤ E[N(τ)], E[N2(τ)] < ∞. Analogous to eq. 4, the spatial and temporal components of the ac-

quired data are assumed to be independent of each other. The general expression of the FREM for

the case of non-Poissonian photon statistics is then given by




E[N(t)]

4

∫

R
2

1

q1(x + d
2 , y) + q2(x − d

2 , y)

(

∂q1(x + d
2 , y)

∂x
− ∂q2(x − d

2 , y)

∂x

)2

dxdy





− 1
2

, [6]

where q1 and q2 denote the image functions of the two point sources and d denotes the distance of

separation.

Effects of Pixelation and Noise

In the Section Image Detection Process, it was assumed that the detector records the time points and

the spatial coordinates of the detected photons, which was described by an image detection process.

However, current imaging detectors have pixels, and the acquired data only consists of the number

of detected photons at each pixel. For a pixelated detector {C1, . . . , CNp} with Np pixels, the photon

count at the kth pixel is independently Poisson distributed. We consider two types of additive noise

sources, namely Poisson and Gaussian noise source. Poisson noise is used to model the effect of

spurious light sources such as autofluorescence, and Gaussian noise is used to model measurement

noise such as readout noise in the detector (also see ref. 6).

Hence the data acquired by a pixelated detector during the time interval [t0, t] is described by

a sequence of independent random variables {Iθ,1, . . . ,Iθ,Np
}, where Iθ,k := Sθ,k + Bk + Wk, k =

1, . . . , Np, θ ∈ Θ, and Sθ,k, Bk and Wk are random variables such that {Sθ,1, . . . , Sθ,Np
}, {B1, . . . , BNp}

and {W1, . . . ,WNp} are mutually independent and independent of each other. The random variable

Sθ,k is Poisson distributed with mean µθ(k, t) and describes the total number of detected photons at

the kth pixel from the two point sources. The random variable Bk is Poisson distributed with mean

β(k, t) and describes the total number of detected photons at the kth pixel from spurious sources. The

random variable Wk is Gaussian distributed with mean ηk and standard deviation σw,k and describes

the measurement noise at the kth pixel. We assume that β(k, t), ηk and σw,k are independent of θ,

for θ ∈ Θ and k = 1, . . . , Np.
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Fisher Information Matrix for a Pixelated Detector. In the absence of Gaussian noise (i.e.,

Wk = 0, k = 1, . . . , Np), the Fisher information matrix for a pixelated detector corresponding to the

time interval [t0, t] is given by (see ref. 3 for details)

I(θ) :=

Np
∑

k=1

1

µθ(k, t) + β(k, t)

(

∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ
, θ ∈ Θ,

where µθ(k, t) (β(k, t)) denotes mean number of detected photons at the kth pixel from the two point

(spurious) sources. Setting β(k, t) = 0 in the above equation, we obtain an expression for the Fisher

information matrix of a pixelated detector in the absence of additive noise sources. In the presence of

Gaussian noise, the Fisher information matrix is given by (see ref. 3 for details)

I(θ) :=

Np
∑

k=1

(

∂µθ(k, t)

∂θ

)T ∂µθ(k, t)

∂θ



















∫

R





∑∞
l=1

[νθ(k,t)]l−1e−νθ(k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

„

z−l−ηk
σw,k

«2




2

pθ,k(z)
dz − 1



















,

where θ ∈ Θ, νθ(k, t) := µθ(k, t) + β(k, t), k = 1, . . . , Np, θ ∈ Θ, µθ and β are as given above, and

pθ,k(z) :=
1√

2πσw,k

∞
∑

l=0

[νθ(k, t)]le−νθ(k,t)

l!
e
− 1

2

„

z−l−ηk
σw,k

«2

, θ ∈ Θ, z ∈ R. [7]

Analogous to Eq. 1, the above equations of the Fisher information matrix for a pixelated detector are

applicable to a wide variety of imaging conditions. To calculate the Fisher information matrix in the

present context, we require the analytical expression for µθ(k, t) (and ∂µθ(k, t)/∂θ), which is given

in Eq. 8. In addition, the numerical values of the noise parameters β(k, t), ηk and σw,k need to be

known, which depend on the experimental setup.

The Generalized PREM. For the derivation of the g-PREM, we consider a geometry shown in Fig.

5, where the two point sources are located at arbitrary locations P1 and P2 on the specimen plane.

Here (x0, y0) denotes the coordinates of the point P1, d denotes the distance of separation between the

point sources and φ denotes the angle of inclination of the line segment joining the two point sources

with respect to the x axis. The coordinates of the point P2 are given by (x0 + d cos φ, y0 + d sin φ). In

a practical situation, in addition to d, the other parameters, namely x0, y0 and φ are also unknown
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and therefore must be estimated along with d. Hence the unknown parameter vector is given by

θ := (x0, y0, d, φ). The general expression for µθ is given by

µθ(k, t) := µ1
θ(k, t) + µ2

θ(k, t), θ ∈ Θ, k = 1, . . . , Np, [8]

where, for θ ∈ Θ and k = 1, . . . , Np,

µ1
θ(k, t) :=

1

M2

∫ t

t0

Λ1(τ)dτ

∫

Ck

q1

( x

M
− x0,

y

M
− y0

)

dxdy, [9]

µ2
θ(k, t) :=

1

M2

∫ t

t0

Λ2(τ)dτ

∫

Ck

q2

( x

M
− x0 − d cos φ,

y

M
− y0 − d sin φ

)

dxdy. [10]

In Eqs. 8 - 10, Ck denotes the kth pixel, [t0, t] denotes the acquisition time interval, M denotes the

magnification of the microscope setup, Λ1(τ) and Λ2(τ), τ ≥ t0, denote the photon detection rates of

the point sources, and q1 and q2 denote the image functions of the point sources.

Because the parameter θ is a 1 × 4 vector, by definition the Fisher information matrix I(θ) is a

4 × 4 matrix. The g-PREM is given by the square root of the leading diagonal entry in I−1(θ) that

corresponds to the distance parameter d. In the present case, this is the third leading diagonal entry,

i.e.,
√

[I−1(θ)]33, as d is the third component of θ.

Derivation of the PREM. The PREM is a special case of the g-PREM in which the photon detection

rates of the point sources are assumed to be a constant, i.e., Λ1(τ) = Λ2(τ) = Λ0, τ ≥ t0, and image

functions of the point sources are assumed to be the Airy profile. In the Section Analytical expression

of µθ (Analytical expression of ∂µθ/∂θ), we give the analytical expression for µθ(k, t) (∂µθ(k, t)/∂θ)

in terms of the Airy profile, which is required for the calculation of the PREM.

Analytical expression of µθ. For the Airy profile, we have

µθ(k, t) := µ1
θ(k, t) + µ2

θ(k, t), k = 1, . . . , Np, θ ∈ Θ, [11]

where, for θ ∈ Θ and k = 1, . . . , Np,

µ1
θ(k, t) := Λ0(t − t0)

∫

Ck

J2
1 (a
√

(x − Mx0)2 + (y − My0)2)

π((x − Mx0)2 + (y − My0)2)
dxdy, [12]

7



µ2
θ(k, t) := Λ0(t − t0)

∫

Ck

J2
1 (a
√

(x − Mx0 − Md cos φ)2 + (y − My0 − Md sin φ)2)

π((x − Mx0 − Md cos φ)2 + (y − My0 − Md sin φ)2)
dxdy, [13]

with a = 2πna/(λM), na denoting the numerical aperture of the objective lens and λ denoting the

wavelength of the photons.

Analytical expression of ∂µθ/∂θ. For θ = (x0, y0, d, φ) ∈ Θ, let µθ be given by Eq. 11, r01 :=

M(x0, y0), r02 := M(x0 + d cos φ, y0 + d sin φ) and a = 2πna/(λM). For M > 0, define ||r − r01|| :=

√

(x − Mx0)2 + (y − My0)2

and ||r − r02|| =
√

(x − Mx0 − Md cos φ)2 + (y − My0 − Md sin φ)2, where r = (x, y) ∈ R
2. Then

∂µθ(k, t)

∂θ
:=

[

∂µθ(k, t)

∂x0

∂µθ(k, t)

∂y0

∂µθ(k, t)

∂d

∂µθ(k, t)

∂φ

]

, k = 1, . . . , Np, θ ∈ Θ,

where the entries of the row vector in the above equation are given below:

∂µθ(k, t)

∂x0
= 2aMΛ0(t − t0)

(∫

Ck

(x − Mx0)
J1(a||r − r01||)J2(a||r − r01||)

π||r − r01||3
dr

+

∫

Ck

(x − Mx0 − Md cos φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

∂µθ(k, t)

∂y0
= 2aMΛ0(t − t0)

(∫

Ck

(y − My0)
J1(a||r − r01||)J2(a||r − r01||)

π||r − r01||3
dr

+

∫

Ck

(y − My0 − Md sin φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

∂µθ(k, t)

∂d
= 2aMΛ0(t − t0)

(

cos φ

∫

Ck

(x − Mx0 − Md cos φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

+ sin φ

∫

Ck

(y − My0 − Md sin φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

∂µθ(k, t)

∂φ
= 2aMΛ0(t − t0)

(

−d sin φ

∫

Ck

(x − Mx0 − Md cos φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

+d cos φ

∫

Ck

(y − My0 − Md sin φ)
J1(a||r − r02||)J2(a||r − r02||)

π||r − r02||3
dr

)

,

with r = (x, y) ∈ R
2, dr := dxdy, θ ∈ Θ and k = 1, . . . , Np.
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Calculation of the Resolution Measure When Additional Spatial Information Is Present.

This section discusses the calculation of the Fisher information matrix for the global estimation prob-

lem of determining the unknown parameter θ from data acquired before and after the first photobleach-

ing event for a single-molecule pair that exhibits a double-step photobleaching behavior. Without loss

of generality, the location coordinates of the single molecule that photobleaches first are set to be

(x0 + d cos φ, y0 + d sin φ) and the location coordinates of the single molecule that photobleaches last

are set to be (x0, y0). The data acquired before and after the first photobleaching event are mutually

independent and therefore the Fisher information matrix for the global estimation problem can be

written as

Itot(θ) := I(θ) + Ia(θ), θ ∈ Θ.

In the above equation, I(θ) and Ia(θ) denote the Fisher information matrices that are calculated

for the problem of estimating the unknown parameter θ from data acquired before and after the first

photobleaching event, respectively. The expressions of I(θ) for a pixelated detector in the presence and

absence of noise sources are given in Section Fisher information matrix for a pixelated detector. The

matrix Ia(θ) is of the form Ia(θ) :=

[

Il(θ) 0
0 0

]

, θ ∈ Θ, where Il(θ) denotes the Fisher information

matrix for the problem of determining the location (x0, y0) of a single molecule. In the absence of

Gaussian noise Il(θ) is given by

Il(θ) =

Np
∑

k=1

1

µ1
θ(k, t) + β1(k, t)







∂µ1
θ
(k,t)

∂x0

∂µ1
θ
(k,t)

∂y0







(

∂µ1
θ(k, t)

∂x0

∂µ1
θ(k, t)

∂y0

)

, θ ∈ Θ,

where µ1
θ(k, t) is given in Eq. 12, β1(k, t) denotes the mean of the additive Poisson noise in the kth

pixel, and the partial derivatives ∂µ1
θ(k, t)/∂x0 and ∂µ1

θ(k, t)/∂y0 are given by

∂µ1
θ(k, t)

∂ζ0
= 2aMΛ0(t − t0)

∫

Ck

(ζ − Mζ0)
J1(a||r − r01||)J2(a||r − r01||)

π||r − r01||3
dr, [14]

for ζ ∈ {x, y}, θ ∈ Θ, k = 1, . . . , Np and ||r − r01|| :=
√

(x − Mx0)2 + (y − My0)2. In the presence of
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Gaussian noise, Il(θ) is given by

Il(θ) =

Np
∑

k=1







∂µ1
θ
(k,t)

∂x0

∂µ1
θ
(k,t)

∂y0







(

∂µ1
θ(k, t)

∂x0

∂µ1
θ(k, t)

∂y0

)

×



















∫

R





∑∞
l=1

[ν1
θ
(k,t)]l−1e−ν1

θ
(k,t)

(l−1)! · 1√
2πσw,k

e
− 1

2

„

z−l−ηk
σw,k

«2




2

p1
θ,k(z)

dz − 1



















, θ ∈ Θ,

where ν1
θ (k, t) := µ1

θ(k, t) + β1(k, t), k = 1, . . . , Np, θ ∈ Θ, µ1
θ is given in Eq. 12, β1 is given above,

∂µ1
θ(k, t)/∂x0 and ∂µ1

θ(k, t)/∂y0 are given in Eq. 14, and the expression for p1
θ,k is analogous to that

given in Eq. 7, but with the term νθ(k, t) in Eq. 7 replaced by ν1
θ (k, t).

Maximum-Likelihood Estimation

The estimation of the unknown parameters is carried out on the data that is contained in a pixel

array. We first consider the scenario when the pixel array is extracted from an individual image,

which contains photons from both point sources. The log-likelihood function for the data in the pixel

array is given by

ln(L(θ | z1, . . . , zNp)) := ln





Np
∏

k=1

pθ,k(zk)



 =

Np
∑

k=1

ln(pθ,k(zk)), θ ∈ Θ, [15]

where Np denotes the total number of pixels in the pixel array, zk denotes the detected photon count

at the kth pixel in the pixel array, and pθ,k denotes the probability density function of zk that is

given by Eq. 7, k = 1, . . . , Np. For the distance estimation problem with the data acquired by a

pixelated detector in the presence of noise sources, the vector of unknown parameters is set to be

θ = (x0, y0, d, φ) (see Fig. 5) and the image function of the point source is assumed to be the Airy

profile. The maximum-likelihood estimate of θ is obtained by substituting the expression for µθ given

by Eq. 11 in pθ,k (Eq. 7) and determining the value of θ that maximizes the log-likelihood function

ln(L(θ)).

10



We next consider the scenario when the pixel array is obtained by adding N1 pixel arrays, which are

extracted from N1 individual images that contain photons from both point sources. The log-likelihood

function for the data in the summed pixel array is given by

ln(L̃(θ | z̃1, . . . , z̃Np)) :=

Np
∑

k=1

ln(p̃θ,k(z̃k)), θ ∈ Θ, [16]

where z̃k denotes the detected photon count at the kth pixel in the summed pixel array and p̃θ,k

denotes the density function of z̃k, k = 1, . . . , Np, which is given by

p̃θ,k(z) :=
1√

2πσ̃w,k

∞
∑

l=0

[ν̃θ(k, t)]le−ν̃θ(k,t)

l!
e
− 1

2

„

z−l−η̃k
σ̃w,k

«2

, θ ∈ Θ, z ∈ R. [17]

In Eq. 17, ν̃θ(k, t) := N1(µθ(k, t) + β(k, t)), η̃k = N1ηk, and σ̃w,k =
√

N1σw,k, k = 1, . . . , Np,

θ ∈ Θ, where µθ(k, t) (β(k, t)) denotes the mean photon count at the kth pixel from the point sources

(scattering-noise sources) in the individual pixel array, ηk and σ2
w,k denote the mean and the variance

of the readout noise at the kth pixel, respectively, in the individual pixel array. For the distance

estimation problem, the maximum-likelihood estimate of θ = (x0, y0, d, φ) is obtained by substituting

the expression for µθ given by Eq. 11 in p̃θ,k (Eq. 17) and determining the value of θ that maximizes

the log-likelihood function ln(L̃(θ)).

If the point sources exhibit a double step photobleaching behavior, the images acquired after the

first photobleaching event can also be used to estimate θ. Here, the experimental data that is used to

estimate θ consists of two summed pixel arrays. One of the summed pixel arrays is obtained by adding

N1 pixel arrays that are extracted from N1 individual images acquired before the first photobleaching

event (i.e., images that contain photons from both point sources). In this summed pixel array the

detected photon count at the kth pixel is denoted as z̃k, k = 1, . . . , Np, where Np denotes the total

number of pixels. The other summed pixel array is obtained by adding N2 pixel arrays that are

extracted from N2 individual images acquired after the first photobleaching event and z̃1
k denotes

the detected photon count at the kth pixel in this summed pixel array. The log-likelihood function

ln(LT (θ)) for the data contained in the two summed pixel arrays is given by

ln(LT (θ) | z̃1, . . . , z̃Np ; z̃
1
1 , . . . , z̃1

Np
)) := ln(L̃(θ | z̃1, . . . , z̃Np))+ ln(L̃1(θ | z̃1

1 , . . . , z̃1
Np

)), θ ∈ Θ,[18]
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where ln(L̃) (ln(L̃1)) denotes the log-likelihood function corresponding to {z̃1, . . . , z̃Np} ({z̃1
1 , . . . , z̃1

Np
)}).

The expression for ln(L̃) is given in Eq. 16, and the expression for ln(L̃1) is given by ln(L̃1(θ |

z̃1
1 , . . . , z̃1

Np
)) :=

∑Np

k=1 ln(p̃1
θ,k(z̃

1
k)), θ ∈ Θ, where p̃1

θ,k denotes the density function of z̃1
k that is given

by

p̃1
θ,k(z) :=

1√
2πσ̃1

w,k

∞
∑

l=0

[ν̃1
θ (k, t)]le−ν̃1

θ
(k,t)

l!
e
− 1

2

 

z−l−η̃1
k

σ̃1
w,k

!2

, θ ∈ Θ, z ∈ R. [19]

In Eq. 19, ν̃1
θ (k, t) := N2(µ

1
θ(k, t) + β1(k, t)), η̃1

k = N2η
1
k, and σ̃1

w,k =
√

N2σ
1
w,k, k = 1, . . . , Np, θ ∈ Θ,

where µ1
θ(k, t) (β1(k, t)) denotes the mean photon count at the kth pixel from one of the point sources

(scattering noise sources) in the pixel array that is extracted from the image acquired after the first

photobleaching event, and η1
k and (σ1

w,k)
2 denote the mean and the variance of the readout noise at

the kth pixel, respectively in the pixel array that is extracted from the image acquired after the first

photobleaching event. Thus, for the distance estimation problem, the maximum-likelihood estimate

of θ = (x0, y0, d, φ) from the two summed pixel arrays is obtained by substituting the expression for

µθ given by Eq. 11 in p̃θ,k (Eq. 17) and substituting the expression for µ1
θ given by Eq. 12 in p̃1

θ,k

(Eq. 19), and then determining the value of θ that maximizes the log-likelihood function ln(LT (θ)).

We note that Eqs. 15, 16 and 18 can be used to obtain the maximum-likelihood estimate of θ

in a wide variety of imaging conditions. For instance, consider the scenario when the image function

of the point source is described by a profile that is different from the Airy profile. In this case, we

use Eq. 8 (Eq. 9) to obtain an expression for µθ (µ1
θ) in terms of the desired image profile, and then

maximize the corresponding log-likelihood function to obtain the maximum-likelihood estimate. In

all of the above cases, the maximum-likelihood estimation is carried with the optimization toolbox of

MATLAB in the MIATool software environment (software available on request).
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