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C) Antibody-based

Therapy

Production and Manipulation of
Antibodies and T-Cell Receptors
sing Recombinant DNA Technology

E. Sally Ward

The antigen receptors of B and T cells are responsible
for mediating immune recognition and, therefore, play
a critical role in defense against pathegens such as
bacteria and viruses. The high specificity of these
receptors makes them attractive for use as reagenlts in
diagnosis and therapy (1). Understanding the antibody-
antigen and T-cell receptor (TCR)—-peptide-major
histocompatibility complex (MHC) interactions at the
molecular level is of central importance in immunol-
ogy. For the production of large amounts of an anti
body in clonal {orm, the development of hybridoma
technology (2) followed by recombinant expression
systems (3-5) has proven invaluable for analyses of
antibody structure and interaction with cognate anti-
gen. For TCRs, however, the invariably membrane
bound TCR has proven more difficult to produce as a
soluble molecule, and only recently have efficient
systermns been described

This review describes the recent developments in
the field of antibody engineering using Escherichia cold
as a host for expression. In addition (o mammalian
systems, E. li systems have also been developed 1o
produce soluble TCRs for use in structure-function
studies and immunotherapy, and work in this area is
briecfly discussed

THE ANTIBODY MOLECULE

The antibody molecule is composed of discrete do
mains that are linked together by relatively flexible
peptides (6=11). The length of the hinge region is
variable from one isotype to another. allecting the
flexibility of the Fab arms relative to the Fe portion
Segmental flexibility has been shown to be important

lor gammaglobulins (immunoglobulin G, or 1gG) to
carry ot complement fixation (12, 13). but more
recently it has been demonstrated that complement-
mediated cell lysis can be carried out by a hinge-
deleted 1gG (14), The immunoglobulin (Ig) domains
are made up of antiparallel 8 sheets that are pinned
together by an intramolecular disulphide bridge, and
this structure is called the immunoglobulin fold. Pro-
teins that are made ap of 1g-like domains constitute the
immunoglobulin superfamily (15) and usually differ in
the number and length of the strands in the two B8
sheets and in the size and conformation of the loops
that link the ends of the strands. These different
members have been classified into groups called sets
(15), of which there are currently 4 {16). For the
variable domains, which are members of the V set and
confer the antigen-binding specificity and atfinity on
the Ig molecule, the 8 sirands support the hypervariable
loops or complementarity-determining regions (CDRs)
There are three CDRs per variable domain, and it is
residues within and Janking these loops that are
involved in interacting with antigen on antibody-
antigen contact (17-21). The almost unlimited poten-
rial to generate variable region diversity by somatic
recombination of ¥, (D) and I elements, imprecise
joining of these segments, and N-addition (22) resulis
i aV gene repertoire of enormous diversity in any one
individual. Superimposed on this germline diversity is
the process of affinity maturation (23. 24). which
results in the selection. after somatic mutation, of B cell
clones that produce antibodies of higher atfinity from a
pool of background lower affinity clones

The antibody heavy- and light-chain variable (VH
and VL, respectively) domains constitute the Fy [rag-
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Fv scFv VH Minibody MARU
FIGURE 25.1 The “minimal” units af antigen binding,
Each immunoglobidin V domain is represented by large
ellipsords, with complemerntarity-determining region (CDR)
loops represertted by small ellipsoids. The sinale-chain
linker peptide in the single-chain Fv (scFv) (84, 85) is
represeited by a single line. The minibody (32, 33), a 61-
residue trumcated VH domain has only two CDR loops
(corresponding to CORID and 2). (MRU = minimal
recogmition wmit) (30, 31).

ment, which is conventionally regarded as the minimal
unit of antigen binding (25, 26). However, VH domains
(27=29) and CDR-derived peptides {30, 31) with reason-
able affinities for cognate antigen have been described
(Fig 25.1). Protein engineering has also been used 1o de-
sign and build @ minibody composed of 61 amino acids
using the Ig VH domain as a template (32; 33). This 61-
residue all- 8 variable domain has a novel 8 sheet
scaffold and hypervariable regions corresponding to
CDR1 and 2. This scaffold may prove 1o be particularly
useful for the de novo design of antigen-binding sites.

The constant regions of 18Gs are involved in effector
functions, for example, complement fixation and bind-
ing to Fe receptors to perform antibody-dependent cell-
mediated eytotoxicity (ADCC) (34), Antibodies of differ-
ent isotypes differ in their ability to mediate ADCC and
fix complement (35, 36); therelore, genetic engineering
can be used 1o perform isorype switching in vitro 1o
produce an antibody with the desired effector functions
{35). The serum persistence of the murine IgGl mole-
cule is controlled by sequences locared at the C,2-C,3
domain interface (37), and this region overlaps with
the binding site for Staphylococcal protein A (8). The
identification of this region as being involved in the
contral of the pharmacokinetics of antibodies may
allow the clearance rates of therapeutic 1gGs 1o be
manipulated. Another function of the constant region
that is of value, particularly for lower affinity anti-
bodies, is to hold the two Fab amms together, resulting
in the generation of a higher avidity antibody.

EXPRESSION OF ANTIBODIES IN ESCHERICHIA COLL:
THE BINDING SITE

Genetic manipulaton of the antigen-binding site of
antibodies has been greatly assisted by the development

336 » BIOLOGIC AGENTS

of prokaryotic expression systems that result in the
secretion of either Fv or Fab fragmenis or single VH
domains into the periplasmic space (27, 38, 39). Belore
this, attempts (o express antlbody fragments in E. coli
resulted in limited success, although more recently a
number of systems for intracellular expression, isola-
tion of the antibody [ragments, denaturation, and
refolding have been reported (40). For secretion sys-
tems, the exported antibody fragments can be isolated
from either the periplasm (38) or, as a result of leakage
into the culture medivm, from the supernatant (27).
Culture supernatants can, therefore, be screened di-
rectly for the presence of binding activities. This avoids
the need for lysis of the bacteria followed by refolding
of the recombinant protein, which is clearly not
attractive for the analysis of large numbers of clones.

USE OF THE POLYMERASE CHAIN REACTION FOR THE
ISOLATION OF ANTIBODY V DOMAIN GENES

Antibody VH and VL domain genes can now be
isolated from antibody-producing cells for a number of
different species using the polymerase chain reaction
(PCR) (41) and primers designed 1o anneal to the 5°
end of the VH/VL gene and JH/JL regions or Cul/Cx
regions (27, 42-47). Primers that anneal 1o the secre-
tion leader sequences can also be used (43, 45). but
generally these are not as convenient for in-frame
ligation of the isolated 1g genes into Fv or Fab
expression plasmids. Using the primers, V genes can be
isolated from hybridomas for expression and sequence
analysis (42, 43, 45). A more challenging direction is 1o
use the primers to generate diverse repertoires of Ig V
genes that can be isolated in a single step (27, 46).
These genes can then be used to generate libraries ol
antibody Fv or Fab fragments {from which clones
producing the desired antigen-binding specificity can
be isolated by screening (27, 46) or, more recently, by
selection using bacteriophage display (48-30).

Bacteriophage display

The extension of peptide display libraries (51) to the
display of proteins on the surface of bacteriophage has
resulted in systems (48-50, 52) in which Fv or Fab
fragments can be rapidly isolated {rom diverse V gene
libraries by selection. Belore this, libraries were
screened by either growing up recombinant clones and
analyzing culture supernatants (27) or probing colony
lifts with labeled antigens (46). Both methods suffer
limitations in the numbers of clones that can be easily
screened. As an alternative, phage display allows selec-
tion from library sizes of almost unlimited numbers
that approach the size of the immune repertoire (53.
54). The limitation has now switched 10 the generation
of large numbers of recombinant clones and the use of




the PCR to generate highly diverse libraries without
biases toward particular Ig gene families. The [ormer
can be overcome, in part at least, by using electro-
poration to generate clones with extremely high trans-
formation frequencies and the latter by the judicious
choice of primers.

Isolation of antigen-binding specificities: the generation
of antibodies for therapy

Using the methods just described, Fv and Fab frag-
ments with binding specificities toward an array of
hapten and protein antigens have been isolated from
both mice and humans (53-62). Many of these anti-
bodies are of therapeutic value and, for example, have
neutralizing activity against viruses (58, 59, 62). The
advantage of prior immunization is that it improves the
chances of isolating high-affinity, somatically mutated
antibodies. However, for humans, immunization is
generally not possible for obvious reasons. and only in
the cases of infected patients {e.g.. HIV infected: 58,
60) or vaccinated people are “immunized” donors
available. For use in therapy, it has become clear that
antibodies of human origin are preferable because of
the anti-lg or anti-idiotypic response (4) that ocours
after treatment with either rodent antibodies or simple
chimeric antibodies (the latter composed of rodent V
regions linked to human constant regions) (63, 64),
respectively. In building antibodies for therapy, human
constant regions of the appropriate allotype should be
used to avoid antiallowypic responses (63). To generate
high-affinity human antibodies for use in therapy,
several approaches have been described. These involve
the isolation of either Fv or Fab fragments, which can
then be used 1o rebuild complete antibodies or the
isolation of complete human antibodies in one step, as
follows.

1. To immunize mice and isolate the binding specificity
of choice from Ig gene libraries, The CDR loops (and if
necessary, flanking regions) can then be grafted onto
human V gene frameworks to produce a humanized
antibody (66-72). However, this is usually not straight-
forward and to produce a humanized antibody that has
the same affinity as the parent rodent antibody, it 15
frequently necessary to mutate flanking framework
region residues (e.g., 67, 70). The effects of framework
mutations on the affinity of an antilysozyme antibody
has been analyzed in detail by Foote and Winter (73).
Furthermore, lor antigens that are not immunogenic
{e.g., highly conserved cellular proteins), rodent anti-
bodies cannot be raised and as a result there is no
“donor” antibody available.

2. To lsolate antibodies from human-derived “one-pot”
libraries (1) and. il necessary, to improve the affinities
by rounds of mutagenesis followed by selection. In this

approach, large libraries (approximately 10" members)
of V genes derived from humans are assembled as scFv
fragments and displayed on the surface of phage, From
these libraries, scPv fragments with reasonable affinities
for binding o antigen can be isolated. The affinities can
be further improved by using the scFv genes as tem-
plates for point mutagenesis (74, 75), insertion of
random cassettes into regions corresponding to CDRs
(76, 77} or chain shufiling (78-80).

3. To repopulate severe combined immunodeficency
mice with human peripheral blood lymphocytes (PBLs)
{81). In this approach. the PBLs were immunized in
vitro belore injection into mice, and mice were also
immunized after transfer of the PBLs. Fab fragments
with specificities for hepatitis B core antigen and
tetanus toxoid were isolated wsing recombinant meth-
ods (81).

4. Transgenic mice that have human g gene miniloc
have been described (82, 83). The human genes are
rearranged into a functionally active form. and immuni-
#ation with human CD4 (82) or tetanus toxin (83)
results in a normal response to antigen that involves
both class switching and somatic mutation. These
transgenic animals promise 1o provide a rich source of
antibodies of human origin. Furthemore, bacteriophage
display systems could be used in concert with these
systems 1o rapidly isolate and express the binding
specificities in clonal form.

In vitro somatic maturation using bacteriophage display
Diversity of V gene repertoires can be increased using
the PCR to either insert random point mutations (74,
75) ar synthetic CDRs (76, 77). The randomly mu-
tated ¥V genes can subsequently be expressed as scFvs
or Fabs on the surface of bacterinphage and higher
affinity variants selected by panning. Using PCR con-
ditions designed to insert random point mutations the
affinity of a murine ant-4-hydroxy-5-iodo-3-
nitrophenacetyl-caproic acid antibody was increased
4-fold (74) and that ol a murine antiprogesterone
antibody 30-fold (75). The PCR mutagenesis can be
followed by rounds of selection using conditions de-
signed to select for antibodies with lower off rates
{74}, This approach has clear implications for the
improvement of affinities of any amibody of interes:
but should be of particular utility in increasing the
affinity of low-affinity human antibodies derived from
*naive” libraries or for antibodies that recognize anti-
gens of low immunogenicity.

To generate junctional diversity in vitro, PCR or
cassette mutagenesis can be used to insert CDR3s (and
ather CDRs) of random sequences (76, 77) 1o generaie
semisynthetic ¥V gene librarles. Again, this approach is
of particular value for the generation of antibodies of
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human origin and has to date been applied 10 isolate
antibodies that recognize both protein and hapten
antigens (76, 77).

Single-chain Fvs or Fabs?

The availability of cloning systems for bacieriophage
display of either scFv or Fab {ragments prompis the
question as 1o whether it is preferable to express scFyvs
or Fabs using E. coli as a host. Originally, scFy frag-
menis were designed to covalently link the VH and VL
domains to avoid dissodation (84, 85), For some Fy
fragments, covalent linkage has proven necessary, as
the VH-VL association constant appears to vary widely
from one Fy to the next. An alternative approach o
using a single-chain linker is to insert cysteine residues
at positions in the VH and VL domains that are pre-
dicted or known to be close 1o each other (86-88). The
coexpression results in the production of —5-5=linked
heteradimers, and these may be more resistant 1o
thermal denaturation than scFv fragments (86). How-
ever, {or cloning of Pv fragmenis as libraries on the
surface of bacteriophage, it is clearly more straightfor-
ward 1o link the VH and VL domains by a single-chain
linker. There are examples of Fy fragments for which
the VH-VL association constant is relatively stable and,
il this is the case. has advantages as unlinked Fv
fragments may be expressed in much higher yields
than the corresponding scFyv fragments (80). The in
vivo stability of these unlinked Fv fragments, however,
is questionable, and because unlinked domains may
dissociare and bind nonspecifically to other proteins
(89) with undesirable side elfects, covalently linked
VH-VL dimers are prelerable for use in therapy and
diagnosis.

S¢FVY fragments have a tendency to dimerize or
aggregate to form higher order multimers (54, 20, 91).
Dimerization is in some cases an advantage because it
increases the valency of the fragment (see later discus-
sion). However, for high-resolution structural studies
aggregation of scFv fragments can cause problems,
although to date, the x-ray structures of several scFyv
fragments are underway or solved (91, 92). It has been
suggested that steric strain of the linker causes this
aggregation, which indicates that for some scPv frag-
ments at least, lengthening the linker may alleviate this
effect (91).

The expression of Fab fragments avoids the potential
problems of scPv multimerization, but in some cases,
deletion of light chains has been observed during
selection of Fab-bearing bacteriophage (75) from reper-
toires. In addition, it has been shown that antibodies of
high affinities can be made by renaturation of light
chains with repenoires of heavy chains displayed on
the surface of phage (93) or by recombination of
diverse heavy- and light-chain repertoires in bacteria
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(94). Clearly, these powerful approaches for the isola-
tion of high-affinity antibodies of human origin are not
possible using scFv display libraries, and the use of Fab
expression systems has obvious advantages. Thus, the
choice between scFv and Fab fragments depends on the
approach that will be used 1o generate the binding
specificity; alter isolation ol fragments with the desired
aflinity and specificity, it is straightforward to use
genetic manipulation to interconvert the two types of
fragments,

Uses of scFv and Fab fragments in therapy: extension to
bivalent and bispecific fragments

The rapid clearance rates of (s¢)Pyv and Fab fragments
(89, 95) indicates that they are suitable for use as
imaging reagents and in therapeutic situations in which
the typically long hall-life of a complete 186G molecule
is not needed. For imaging, rapid clearance is an
advantage because it reduces background. For higher
avidity [ragments, bivalent {sc)Fv and Fab fragments
can be produced using a variety of recombinant ap-
proaches that can readily be extended to the produc-
tion of bispecific Fab and (sc)Fv fragments by the
fullowing methodologies:

1. —8-5-linked dimers: An extra cysteine residue has
been engineered into the C-termini of each of the Cyl
domains of two Fab fragments of different specificities
{96). The Fab fragments were expressed separately,
purified from the periplasm, and chemically coupled 1o
each other in vitro. More récently, coexpression of
bivalent Fab fragments with repeated Cys-Pro-Pro mo-
tifs (97) has been shown to result in the production of
high yields of bispecific Fab fragments in E. coli. A
similar approach has been used 1o produce bivalent Fy
fragments (89).

2. Dimerization domains: scFv fragments have been
extended at the C-terminus with “dimerization do-
mains,” which are composed of a hinge region linked
to helixes. The helix was derived from either a helical
segment [rom a parallel coiled coil of a leucine zipper
or from a single helix in a designed four-helix bundle
(98). The latter dimerization domain results in the
generation of bivalent scPv fragments with higher
avidity than the lormer, and this has been suggested to
be due to better association of the four-helix bundle in
dilute solutions or berter spatial orientation of the scFv
Iragments for binding because of the different direc-
tionality of the four-helix bundle versus the leucine
zipper (98). More recently, a different approach toward
the generation of a dimerization domain was used by
McGregor and colleagues (99). who tagged scFv frag-
ments with Ig Cx domains 1o drive their association
into dimers.




VHa-Via

VHb-VLb

FIGURE 25.2 Schematic representation of “diabodies™ (90),
bivalent scFv fragments that are produced by association of a
heavy-chain variable (VH) domain from one seFv with a
lght-chain variable (VL) domain of another: a and b
represent two different specificities, and expression of the
hybrid scFv fragments as shown can produce a bispecific
diabody made up of Fv fragments with specificities a and b.

3. Diabodies: the observation that scFv fragments with
15-amino-acid linker sequences have a tendency to
dimerize, presumably because of steric strain in the
monomeric scPv, suggested that dimer formation could
be further enhanced by variation of the linker length.
Bispecific scFv fragments have been produced by link-
ing the VH and VL domains of two different antibodies
to form “crossover” chains {90) (Fig 25.2). The linker
length was reduced to 5, 10 amino acids and no linker
(i.e., for the latter, direct linkage of the VH to the VL
domain). Molecular modeling indicated that formation
of dimers in the latter construct was sterically possible
(90). For these bivalent fragments with different linker
lengths, binding to the appropriate antigens was ob-
served, and kinetic measurements indicated that the
*no-linker” version has significantly lower off rates,
demonstrating that the forced packing of the two scFv
{ragments can result in an advantageous (with respect
to affinity} alteration in the binding site (90),

REBUILDING THE FVS AND FAB FRAGMENTS FOR
EXPRESSION AS COMPLETE IMMUNOGLOBULINS

For use in therapy, it is frequently desirable to use IgGs
with effector functions such as complement fixation
and ADCC, Furthermore, the Fc region of the antibody
confers long serum persistence on the IgG molecule
{100}. The extremely short half-lives of Fv and Fab
fragments in serum makes them unattractive for use il
long half-lives are required, for example, in the treat-
ment of tumors. To circumvent the problem of short
half-life, higher doses and continuous infusion are
necessary and from an economic standpoint this is
unattractive.

The human IgGl isotype has been identified as the
isotype of choice for building antibodies with high
activity in complement fixation and ADCC in therapy

{35, 36). Glycosylation of the Fe is necessary for
binding to FcRy1 (101}, and for this reason the host for
expression of the complete antibodies should be capa-
ble of recognizing the N-linked glycosylation site on the
C,2 domain. A wide range of hosts, including insect
cells (102) and tobacco plants (103}, are now available
for the expression of complete glycosylated antibodies
(104). '

Using toxins as effector functions

As an alternative to the Fc region, toxins can be linked
to the recombinant Fv or Fab fragments and the re-
solting chimeras expressed in E. coli. However, these Fy
or Fab-toxin chimeras have the disadvantage that they
are cleared quickly, and, although it may be possible ro
overcome this by linking a dimeric C,,2 domain to the
comstruct (105, 106}, the recombinant protein then
approaches the size of a complete antibody. In this case,
it may, therefore, be more straightforward to attach the
toxin chemically to the complete antibody after expres-
sion in one of the host cells previously mentioned, and
such immunotoxins are now being used in clinical
trials {107},

EXPRESSION OF FC FRAGMENTS IN ESCHERICHIA COLI

Escherichia coli can be used to secrete recombinant Fe
[ragments of the murine [gG1 isotype. These fragments
bind to staphylococcal protein A (SpA) and have the
same biologic half-life as the complete glycosylated
IgG1 molecule (37), indicating that they are correctly
folded. Pharmacokinetic analyses of Fc derivatives that
have been mutated at the C,2-C,;3 domain interface
have resulted in the identification of the region of the
murine IgGl molecule that controls the catabolic rate
{37). This region, designated the catabolic site, overlaps
with the SpA-binding site (8§) and, more recently, the
site involved in binding to the neonatal transfer recep-
tor, FcRn (108, 109). The residues that are involved in
catabolism control are conserved in both human and
murine isotypes (110) and are distinet from those
involved in binding to FcRs (111-114) and Clq (115).
This indicates that it will be possible 1o modulate the
¢learance rates of therapeutic antibodies by muta-
genesis without affecting the other effector functions of
the IgG molecule. -

THE T-CELL RECEPTOR

The majority of TCRs are made up of a polymorphic
afi heterodimer, and a much smaller proportion are

v# TCRs, the function of which is less clear (116).
Molecular modeling has been used 1o demonsirate that
the extracellular regions of the invariably membrane-
bound TCR resemble an Ig Fab (117-119). However,
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the nature of the of TCR-antigen interaction differs in
a lundamental way to that of antibody and antigen.
TCRs recognize peptide antigens bound to the groove
of aclass 1{120) or class IT (121) major histocompatibil-
ity molecule and are, therefore, MHC restricted (122)
{Fig 25.3), These peprides are generally derived from
intracellularly expressed antigen or exogenous antigen
for class 1 and class 1l presentation. respectively. Thus,
aff TCRs recognize sequential epitopes, whereas anti-
bodies can recognize sequential and conformational or
discontinuous epitopes.

Both experimental (123) and theoretical (sequence)
(124} analyses indicate that aff TCRs recognize antigén
presenting in a different way to ¥8 TCRs (123) and the
y8 TCR-antigen interaction resembles that of an anti-
body with antigen (123}, The recognition of transfec-
tomas by two y8 T-cell clones is not dependent on the
class T or class U pathways (123), and the rules for ¥5
TCR recognition are as yer unclear. Thus, despite the
interesting fearures of y6 TCRs, in the following sections
the discussion is limited to the better characterized a8
TCRs.

Expression of soluble T-cell receptors

The proposed structural sirnilarities shared by the
extracellular domains of TCRs and a Fab [ragment
(117-119) suggested that it would be straightforward
1o express TCRs in soluble form. However, this has
proved not 1o be the case, and only after years of effort
have systems for the elfident expression of TCRs in
both mammalian and prokaryotic systems been de-
scribed (125-135). The reasons for the difficulty in
“solubilizing” the TCR are not clear (136), but the
repart thar the binding specificity of a TCR cannot be
transferred tw an antibody by grafting of the puative
CDR loops of TCRs onto an Ig variable domain rame-
work (137) indicates that there are distinet structural
differences berween TCRs and lgs, That this is indeed
the case has recently been demonstrated by the solu-

FIGURE 25.3 T-cell recognition of antigenic peptide
complexed with class I or class Il major histocompatibility
complex (MHC) proteins on the surface of an antigen-
presenting cell (APC). The four extracellular domains af the
TCR are represented by harched ellipsoids,
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tion of the x-ray crystallographic structures of a VB-Cj3
fragment (138, 1383) and a Va domain (139, 139a)
derived from rwo distinet TCRs.

Mammalian systems

Initial attempts to express TORs in soluble form by
linking the Ve or V2 domain 1o the 1g C,1 or CL domain
were unsuccessiul in producing heterodimers (125).
V- Cx dimers that may resemble light-chain dimers can
be expressed in high yields (126), and VB-C 3 fragments
that bind 1o superantigens can be secreted in the absence
of CD3 components (127). However, for studies of TCR
recognition, the af heterodimer is of foremost interest.
The first report of the expression of a TCR heterodimer
in soluble form using mammalian cells involved the
production of VE-Cf and Ve-Ca polypeptides as a
phosphatidylinositel-linked dimer that could be cleaved
from the cell surface of the CHO cell transfectants using
phospholipase C (128). Subsequently, soluble TCRs
have been expressed as secreted Va-Ca-C:VE-CA-Cr
heterodimers from myeloma cells {129) and linked to
the { chain of the CD3 complex in a basophilic leukemic
line (130). In the Va-Ca-Cx:V B-CB-Ck heterodimers, it
is likely that the a-B association is driven by the Cx
domains. The yields of the TCRs vary from one system o
another, but it is currently unclear whether this is due to
differences in TCR sequences or the nature of the system
being used.

Use of Escherichia coli

The reports of expression of secreted Fv and Fab
fragments using E. coli as a host suggested that these
systems could be extended 1o the production of soluble
TCRs. However, to date only two systems have been
described that result in the production of TCR V regions
in soluble, secreted form (131, 132, 132a). To stabilize
the Va-VB domain interaction, the Ve and VB domains
are linked by a 15-amino-acid linker peptide that is the
same as that used by Huston and colleagues (85) for the
production of an scFv fragment. In several reports, the
single-chain TCRs (s¢TCRs, Va linked to VB domain by
a peptide, with the VB domain either at the C-terminus
or N-terminus of the Va domain) are isolated, dena-
tured, and refolded (133~135). In the study of Novotny
and colleagues (133), it was necessary 1o mutate several
exposed hydrophobic residues 1o more hydrophilic
ones 1o obtain a refolded TCR that is soluble. This
s¢TCR has been shown to bind 10 fluorescein-MHC,
which is the same specificity as that of the parent
hybridoma (this TCR has antihapten specificity rather
than the more conventional antipeptide specificity),
Site-directed mutagenesis has been used to define the
interaction of the seluble TCR with cognate antigen
{140}, and residues in the putative CDR loops appear 1o

'
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be involved, indicating structural similarities between
antibody and TCR recognition,

AFFINITY OF THE T-CELL RECEPTOR-PEPTIDE-MA.JOR
HISTOCOMPATIBILITY COMPLEX INTERACTION

To date, several mammalian-expressed TCRs have been
used in studies to derermine the affinity of the interac-
tion of TCRs with cognate peptide-MHC (141-143%)
and, in one case. with superantigen (144). In all cases,
the affinity ol the TCR-peptide-MHC interaction is
low (of the order of 5 % 107°-10"" M), and this
explains the difficulty in deteciing the interaction of a
soluble monovalent TCR with peptide-MHC. In vivo,
the TCR-peptide-MHC interaction is stabilized by high
valency and interactions of T-cell surface markers with
cognate surface markers on antigen-presenting cells. It
has been estimated that for a T cell to be activated, 60
to 300 TCR-peptide-MHC interactions are necessary
per T cell (145, 146), indicating a highly multivalent
interaction. The low alfinity of TCRs is probably
general (although there may be some exceptions) and
siggests that, for use of TCRs as blocking or targeting
apents in therapy, multivalency will be required.

WHAT CAN SOLUBLE T-CELL RECEPTORS
BE USED FOR?

Generation of anti-T-cell receptor antibodies

Studles in T-cell biology such as analyses of TCR
repertoires at the expression level would be greatly
assisted by the availability of a panel of antibodies that
are specific for TCRs of particular V-region families.
Before the expression of soluble TCRs, the production
of anti-TCR antibodies was hindered by the lack of
purified protein for use as an immunogen. This prob-
lem can be overcome by using, for example. transfec-
tomas expressing hybrid human-murine TCRs (147} or
TCR-CD3 { chain chimeras {148) to immunize mice.
Alternatively, soluble TCRs (149-151; Popov §, per-
sonal communication, 1995] have been used and
shown to be efficacious as immunogens to generate
anti-Ve, VB domain antibodies that recognize native

T cells. Such approaches have obvious applications in
the production of anti-V-region family and anticlono-
typic amntibodies.

Uses in vaccination for therapy of T-cell
mediated autoimmunity

Soluble TCRs also have uses as vaccinating reagents for
the treatment of diseases that are mediated by oligo-
clonal populations of pathogenic T cells. Examples of
such diseases are multiple sclerosis and rheumatoid
arthritis, although it is not clear as to the extent of

oligoclonality insofar as different V gene usages have
been reparted (152-157). Animal models for both these
diseases are available, and the disease models are
characterized by oligoclonal T-cell responses against
immunodominant epitopes (158~160). The use of
peptides derived from the putative CDRs of oligoclonal
TCRs has been shown to prevent experimental allergic
encephalomyelitisin Lewisrats (161, 162), but an
independent study indicates that this approach can
exacerbate disease (163). Recently, soluble Va domains
(163a) and scTCRs (Kumar V, Sercarz E, personal
communication) have been shown to be effective in
blocking murine collagen—induced arthritis and experi-
mental allergic encephalomyelitis, respectively. Thus,
the general efficacy of vaccination using TCR V regions
or peptides thereol is currently an area of active
investigation.

Structural studies and affinity measurements

Soluble TCRs have obvious uses in both high-resolution
structiral studies and in analyses of TCR-peptide-MHC
interactions. To date. despite intensive effort, the struc-
ture of an af TCR has not been reported, but progress
toward this aim for individual ¥3-CB and Vo [ragments
has been described by Mariuzza and colleagues (138,
138a, 139, 139a). The reasons for the difficulty in
crystallization of TCRs are not obvious but may be
related to inhomogeneities in soluble TCR preparations
because of heterogeneous glycosylation. For this reason,
the use of material expressed by recombinant E. coli cells
(131-135) offers clear advantages.

The study of TCR-peptide-MHC interactions is of
kiey interest in a number of areas. For example, it is not
clear whether the absolute affinity {as monovalent
TCR-pepride-MHC complexes) of the interaction deter-
mines the outcome in terms of activation, anergy
induction, deletion. or antagonism (164). Elegant ex-
periments demotistrate that avidity plays a role in
positive or negative selection (165—167), but these
studies do not directly address questions concerning the
riole of the absolute affinity of a monovalent TCR-
peptide-MHC interaction in determining the response
of the T cell. Such questions become particularly
relevant in the design of peptide analogues (reviewed
in 168) for therapy or vaccination because affinity
might be a predictive measure of efficacy.”
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