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Abstract

A survey of results is presented that show how system
theoretic notions play an important role in NMR spec-
troscopy.

1 Introduction

The purpose of the paper is to show results that illus-
trate how system and control theoretic methods can be
used to better understand and solve fundamental prob-
lems in NMR spectroscopy.

In the paper [9] the following system theoretic setup
was introduced to describe one- and multi-dimensional
NMR experiments (for a general introduction to NMR
experimentation see e.g. [2]). [1]). The basic relation-
ship between inputs u to the system, i.e. the excitation
signals or in particular the radio frequency pulses and
the measured output y, i.e. the measured induced mag-
netization, is described by a bilinear system,

(t) = Aa(t) + ur ()N13(2) + ua () Noa(t) + -
coe + bug () + bous(t), (R)

y(t) = cx(t),
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z(to) = o, where z is a state vector, A, N;, N, are
square matrices, by and by are column vectors and ¢ is
a row vector. The state space X is an n-dimensional
Euclidean space, i.e. X = C", for some n > 1. In the
description of the system (R) we also assume that A has
all its eigenvalues in the open left half plane to ensure
the stability of the system, i.e. the fact the NMR sys-
tem relaxes to the equilibrium state x = 0. Moreover,
we assume that N; and N, are skew-hermitian.

It is to be expected that assuming that no relaxation
is present significantly simplifies the analysis. In this
special case it is often more convenient to work with
the equivalent biliniear system ([9])

(t) = Az(t) + u1 () Ny 2(t) + ua(t) Noz(t) (NR)

y(t) = cz(?),

where 2(t) = z(t) + veq, With ve, the vector representa-
tion of the equilibrium density matrix. The assumption
that relaxation can be neglected translates to the as-
sumption that A is skew-hermitian. In addition, we also
assume in the description of the system (NR), the as-
sumption that N7 and N, are skew-hermitian are made
as it is made in the description of the system (R).

These bilinear systems (R) and (NR) were derived from
the master equation which in the case of (R) includes



a general relaxation super'operator. In most of the
standard approaches to NMR which use super opera-
tor formulations, relaxation is ignored, especially dur-
ing the application of inputs. In our approach, however,
a relaxation term is always included in the bilinear sys-
tem (NR). In addition, note that in contrast to other
approaches of describing NMR' experimentation no as-
sumptions such as the hard pulse approximation are
made concerning the class of input functions that are
considered. The classes of input functions that will be
considered are discussed later.

One of the purposes of this paper is to illustrate that
basic notions of systems and control theory such as the
reachable states of the system (R) or (NR) are of fun-
damental importance in the description of NMR ex-
periments. For the system (R), given an initial state
z9 = 0 at time %o a state z; is called reachable (from
xq) if there exists an input u(t), t > to, such u(t;) = 21
for some t; > to. Note that what we call reachability
here is often also referred to as controllability. For a
one-dimensional pulse experiment it is shown in Sec-
tion 2 that the reachable states from O of the bilinear
system (R) completely characterize all possible spectra.
To characterize all possible spectra of a two dimensional
experiment of a particular system an associated bilinear
system has to be introduced whose state space is the
space of square matrices. All two dimensional spectra
are then determined by the set of reachable states of
the bilinear system (R) and the associated system.

Recently Lie theoretic methods have been introduced
to give precise answers to the question as to when a
quantum control system is reachable ([12]). In quantum
computation such methods are also of relevance. For
example, Lyod [7] discusses how generically any two
gates are universal for quantum computation. In [11]
it is shown that the notion of universality is the same
as that of the reachability of an associated quantum
control system.

The present paper includes a survey of system theoretic
aspects of results that are presented in [9],[10],[8].

2 Reachability and NMR experiments

As a means of introduction to this section we will first
consider the case of one-dimensional experiments. The
free induction decay (fid) of a typical one dimensional
NMR pulse experiment is given by

S(t) = ce(t_tM)AIOY t2>tm,

where g is the state of the system at time ¢,,, the time
when the measurements start. The obtained spectrum
(ignoring sampling effects etc), i.e. the Fourier trans-
form of the fid is then given by

G(w) := c(2miwl — A) "z, weR
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It is therefore clear that the only influence that an ex-
perimenter has on the outcome of the experiment is
through the vector zo.

We are therefore interested in the set of all states that
the system can attain, i.e. the set of reachable states.
In this paper three classes of input functions will be
considered: i) Admissible inputs: These inputs satisfy
the conditions of Caratheodory’s theorem for existence
and uniqueness of solutions to the corresponding initial
value problem. Let us denote this class by the symbol
U,q; ii) Piecewise constant inputs: These are inputs
which are concatenations of constant inputs. These will
be denoted by Uy,; iii) Smooth inputs: These are in-
puts which are C'°, i.e. infinitely often continuously
differentiable functions of time. These will be denoted
by Us. Note that the latter two classes are contained
in the first class and that the second is dense (see [3] for
details of the topology) in the first. In Section 3 con-
sequences of the choice of the class of input functions
will be further discussed.

Our definition of reachability will be based on the
largest class of inputs for which a solution for the sys-
tem can be obtained. A state zs of the system is said
to be reachable from the state z; if there exists an ad-
uy(t) )
uz(t) )’
t1 <t < tg, such that if the system is in state z; at
time ¢;, the input u will drive the system to state z»
at time t,. The set of all states which are reachable
from the state z; by an admissibile input is denoted by
R%(z;). Similarly, we denote by RP°(z;) (R*°(z1))
the set of states that are reachable from z; by piece-
wise constant (smooth) inputs. We will often drop the
superscript and write R(z;) for R%¢(x1). In the study
of NMR systems it is usually assumed (although not al-
ways satisfied in practice) that the system is in equilib-
rium i.e. in state 0, when the experiment is started. We
are therefore particularly interested in R(0). It should
also be pointed out that the notions of reachable state
and reachability or often also referred to as controllable
state and controllability.

missible input u, i.e. u € Uyq with u(t)

We can describe the set of all possible one-dimensional
NMR spectra (within our framework and without phase

cycling) by
{c(@miwl — A)71z | z € R(0)}.

In the above discussion we considered admissible input
functions or excitation signals. In practice excitation
signals are in many situations radio frequency pulses.
With a suitable coordinate transformation they can of-
ten be translated to constant inputs (see e.g. [2],[9]).
This is, however, not central to our current study. We
are interested in constant or piecewise constant inputs
since they are of importance from a theoretical point of



view since the bilinear system of equations has an an-
alytical solution in the case of constant/piecewise con-
stant inputs. In many situations there is no loss of gen-
erality in restricting the inputs to piecewise constant
ones for the purposes of calculating the reachable sets.
A precise statement appears in the next section.

U2(t)
the bilinear system for to > t > to + At, it was shown
in [9] that the solution to the bilinear system is given
by

If a constant input ( u () ) = ( Zl ) is appliéd to
2

z(t) = ertra(to) + (A4 — 1) A, b,

for tog >t > to + At, where Ap := A+ w1 Ny + uz2 N,
and b, := byu; + baus. Here,; as in the remainder of
the paper, we assume that A, is invertible whenever
we write A1, )

If a system is in state z(to) at time ¢, when the 'pulse’
input is started, the pulse will move the system to the
state

z(to + At) = Pz(tp) + 2z

at time to + At where P = e2t4r and z = (ePt4r —
I)A;'b,. Note that this representation also includes
the case in which no pulse has been applied. In this case
z = 0 and P = eAtA, This solution is more complicated
than the ’usual’ unitary evolution since relaxation is
specifically included here.

This ’affine’ structure implies that the effect of a se-
quence of k pulses is to move an initial state z(to) to
the state .

Tz(to) + e,

where T = Py P, --- P, and
er =PiPy_y- - Pozy+PyPry -+ Pazo+- - A+ Prag_1+2i,

with P; = %4 and z; = (e®i4 — )A;'b,, j =
1,...,k.

The three blocks of pulses that often characterize a two-
dimensional experiment are therefore determined by
three matrices T;,T> and T3 and three vectors ej, e; and
e3. Here the notation is such that the pair (T}, e;) de-
" scribes the preparation block of pulses, (T3,es) stands
for any possible pulses in the middle of the evolution
period and (T3, e3) describes the pulses during the mix-
ing period. In this paper we will only consider the case
where T5 = I and e; = 0, i.e. the case when no pulses
are applied in the center of the evolution period. More-
over, we shall assume that before each scan the system
is in equilibrium, i.e. zg = 0. Note that any pulse
within a block of pulses during which no input signal is
applied is formally also considered to be a pulse with
zero level input. Hence ([9]) the free induction decay of
such a system is given by

s(t1, t2) = cet*4Tzetr e, + cef2ie;,  t1,t2 > 0.

In the above expression as usual ¢; stands for the mea-
sured time and ¢ for the length of the evolution period.
The spectrum of a two-dimensional experiment is given
by

G(w1 5 W2) = c(27riw1 I—A)‘1T3(27ring—A)‘lel +(50((JJ1)63

wi,ws € R. The term dp{w;)es arises from the term
cet*4 in the time domain data. Note that since it is
independent of ¢, it in fact shows up as a constant
in the ¢; time direction. In any practical situation this
term would be removed before Fourier transforming the
data, since it is common practice to remove a constant
level in a signal before the Fourier transform is carried
out. We can therefore assume that the spectrum is
given by i
G(wl,W2) =

c(2miwn I — A) I T3(2miwe I — A) ey,

w1, w2 € R. As pointed out above, the matrix T3 which
determines the pattern of cross peaks in the spectrum

- is given by T3 = Py --- P, for some k > 1, where P; =

elti=ti=1)(A+ulNi+ulN2) for 0 < #g < ; < --- < ty, and
u{,ué €R, j=1,...,k. It is important to note that
T3 and e; are independent of each other. We denote by
RT the set of all matrices T3 as defined above.

A key observation for our derivation is that R7 can be
seen to be the set of reachable states from the identity
matrix of the system

U = AU 4+ uy N1U + uy NoU, (MR)

driven by piecewise constant inputs. The state space
here is the space of square matrices C**", i.e. U(t) €
C**" for t > tg. The matrices A, Ny and N, are defined
as in the case of the system (R), i.e. A is a square matrix
whose only constraint is the stability assumption that
all its eigenvalues are in the open left half plane. The
matrices N1 and N, are assumed to be skew-hermitian.

We will also investigate the situation in which we as-
sume that relaxation is negligable. In this case we con-
sider the system

U = AU + uyNiU + uaNoU, (NMR)

in which again the matrices N; and N» are assumed
to be skew-hermitian as in the system (MR). But in
this case we now assume that the A matrix is skew-
hermitian. In the next Section we will analyze the sys-
tems (MR) and (MNR) in order to investigate the set
RT of matrices T3 which determine the cross-peak pat-
terns of two-dimensional spectra.

3 Properties of the set of reachable states

Before going on to an analysis of the sets of reachable
states for the systems that are considered in this paper

1372



we will quote results that explain the role of the differ-
ent classes of inputs on the set of reachable states. Since
piecewise constant controls are attractive from many
standpoints (especially for the application at hand) and
these are dense in U,4, a reasonable question is whether
every state that is reachable from z via an admissible
control is also reachable from x via a piecewise constant
or smooth control. It turns out that this is nearly so
(see [3],[4],[5]). Of course, if it took T units of time to
reach a state y from z via a certain admissible control,
it is not necessary that it also takes exactly T units
of time to reach y from z via a piecewise constant or
smooth control.

Theorem 1 Consider the systems (R), (NR), (MR)
and (MNR).

1. Assume that z is in the interior (relative to the
topology of O(x)) of the reachable set R*4(x) due
to admissible inputs. Then

(a) R4 (x) is open in O(z).

(b) every state which is in R°%(z) is also reach-
able from = via a piecewise constant input,
i.e.

R (z) = RP¢(x).

. Let y be reachable by piecewise constant inputs
from = and assume that y is in the interior of the
set of reachable states from x, i.e. assume that
y € int(R¥%(x)), then y can also be reached from
x by smooth inputs, i.e. y € R>®(x). :

In our effort to obtain properties of the state of reach-
able states we are first going to consider the most gen-
eral system description, i.e. the bilinear system (R)
which describes the NMR dynamics including relax-
ation. The first main fact about reachable sets is part
2 of the following theorem (see e.g. [5]) shows that the
set of reachable states from a point z is not merely a
subset of the orbit through x but a ’large’ subset, since
R(z) contains a non-empty open subset of the orbit.

"Theorem 2 Consider the system (R). Let x € C*,
then

1. R%*(z) (and hence RP(z) and R>®(z)) is con-
tained in the immersed submanifold O(z) of C*.
Here O(z) is the orbit of the system through x.

. there exists a non-empty open subset A of O(z)
(in the topology of O(x)) which is contained in
RPe(x), i.e. AC RP(z) C R*(x).

3. RPe(z) = R (z) = R®(z) = C" if dim(A(z)) =
2n, where A is the involutive distribution gener-
ated by Az, N1z and Naz for z € C*.

From physical considerations it is unlikely that the con-
ditions of part 3.) of the Theorem are satisfied in a typ-
ical situation, since one would expect the set of reach-
able states to be bounded. It is not known (to us)
whether the appropriate statement is still true in the
event that the distribution has lower dimension, i.e.
whether the reachable set through zo equals the orbit
through z.

Significantly more can be said for the system (NR), i.e.
the bilinear system which describes the NMR dynamics

-assuming no relaxation is present.

Theorem 3 Consider the system (NR). Let x € C*,
z #0. Then

1. O(x) = R(z) = R*(z) = RP(z) = R®(x), i.e.
the set of states reachable from x equals the orbit
O(z) of the system (NR) through x. In particular,
R(z) has the structure of an immersed submani-

fold of C*.

Let Syq| be the sphere in C* of radius ||z||. Let
A be the involutive distribution generated by Az,
Niz and Noz, 2 € C*. If dimA(z) =n — 1, then
R((L‘) = 0(2‘) = S||w||-

Here as in other parts of this paper, we also formulate
the results for initial states which are not constrained
to have unit length. This is of course no restriction and
may be useful since in some parts of the NMR literature
it is not assumed that the density matrix is normalized.

We now address the problem of characterizing the set
RT of the matrices T3 which determine the cross peak
patterns in a two-dimensional experiment. As pointed
out in Section 2 this problem is related to the problem
of the characterization of the set of reachable states of

the system (MR).
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Theorem 4 Consider the system (MR). Then

1. RT = R*(I), where RP(I) is the set of reach-
able states with piecewise constant inputs of the
system (MR) from the identity matriz I.

. RI) and hence RT = RP°(I) is contained in
the immersed submanifold O(I) of C**™. Here
O(I) is the orbit of the system (MR) throught the

identity matriz 1.

the interior int(RT) of RT is non-empty. IfI €
int(RT) then

RT = R*(I) = RP*(I) = R(I). |

there exists an open subset A of O(I) (open in the
orbit topology of O(I)) which is contained in RT .



As before, if it is assumed that relaxation can be ne-
glected, stronger results can be obtained also in the
characterization of the set R7. Denote by U{n) the
subset of C**" of n x n unitary matrices. It is easily
verified that if the initial condition of this system is a
unitary matrix then then the state of the system will
evolve in U(n)." The analysis of the system (MNR) is
very similar to the analysis that was carried out in [12].

Theorem 5 Consider the system (MNR). Then

k’r = R(I) = RP(I) = R>(I) = O(I).

In particular, RT has the structure of an im-
mersed submanifold of U(n).

2. Suppose that the unique connected Lie group G
having the Lie algebra L generated by the matrices
A, N1 and N is compact, then

RT = R(I) = O(I) = G.
In particular, if the dimension of L is n? then

RT =R(I) =0(I) = G = U(n).

Proof: 1.) Since A, N; and N, ar skew-hermitian,
this follows from the discussion on the controllability
of nonlinear systems on Lie groups in [5] in conjuction
with Theorem 1.

2.) The first part is the content of a theorem in [6]. The
second part follows from the fact that the dimension
of the vector space of n x n (complex) skew-hermitian
matrices is n2. Hence, dimensional arguments imply
that the Lie algebra generated by the matrices A, N;
and N; equals the Lie algebra of n X n skew-hermitian
matrices. Therefore G has to be U(n). n

Recall that if it is possible to check whether the Lie
group G is compact by checking whether the Killing
form of the Lie algebra L is negative definite. Alterna-
tively, if one knew in advance that G is closed then G
would be automatically compact.

Corollary 1 Consider system (NR) and the corre-
sponding system (MNR). Let x € C*, © # 0. Let G
be as in the theorem. If RT = G and G acts transi-
tively on S|z, in particular if G = U(n) then the set
of reachable states R(z) of the system (NR) from x is
Sijall-

The proof of this Corollary is based on an important
observation, which gives a second interpretation of the

system (MNR). Explaining this point is not only of rele-
vance for an understanding of the proof of the Corollary
but may also lead to a further clarification of the nature
of the set RT of the matrices T3 that determine the
cross-peak patterns of a two-dimensional NMR spec-
trum. In fact the system (MNR) also describes the
evolution of the infinitesimal generator corresponding -
to the system (NR) that describes the dynamics of the
NMR system. If the reachable set R nvr(I) of the sys-
tem (MNR) from the identity matrix equals some group
G, then the reachable R xg(z¢) of the system N R from
the state zp in the sphere S equals the orbit of the
group G through zo, i.e. Ryr(zo) = {gz0 | 9 € G}.
Of course, except for some special cases a simple de-
scription of the orbit is not possible. Nevertheless, this
represents an improvement over the general situation.
In the event that the group G turns out to be a group
acting transitively on S, then we can assert that for
any ro € S the reachable set from z is all of S, i.e
Rnr(zo) = S. A complete list of the classical matrix
Lie groups which act transitively on the sphere is known
and of course includes U(n) and SU(n).
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