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Topology of the set of asymptotically stable minimal systems

RAIMUND J. OBERYt

It is shown that the set of asymptotically stable and minimal single-input—single-
output systems of order n has (n+ 1) connected components. In the case of
asymptotically stable and minimal multiple-input—multiple-output systems, how-
ever, there is only one connected component.

1. Introduction

Glover (1975) and Brockett (1976) pointed out the importance of the topological
and geometric structure of the set of linear systems for system identification. Brockett
(1976) showed that the set of minimal nth-order single-input-single-output (SISO)
systems has (n + 1) pathwise connected components. Glover (1975) had proved that
the set of multiple-input—multiple-output (MIMO) systems, however, has only one
pathwise connected component. Using the canonical form derived by Ober (1987), it is
shown that the same results are true if we restrict ourselves to asymptotically stable
systems. The reason for considering the set of asymptotically stable systems is that in
system identification the model set is normally restricted to this class of systems.

Let L™ denote the set of all n-dimensional minimal state-space systems with p-
dimensional output space and m-dimensional input space and let C5"™ be the subset of
all continuous-time asymptotically stable systems. D2™ denotes the subset of all
discrefe-time asymptotically stable systems.

As:is well known, two systems (4,, B;, C,) and (4,, B;, C,) in LE™ realize the
same transfer function if and only if (4,, B,, C,) and (4,, B,, C,) are equivalent with
respect to system equivalence (write (4,, B;, Cy)~(4,, B;, C,)), ie. if and only if
there exists TeGI(n) such that A, =TA,T"!, B,=TB, and C,=C,T™!. We
therefore consider the quotient space LZ™/~ of LE™ with respect to system
equivalence. Similarly, we shall be considering C2™/~ and Di™/~.

The sets L2™/~, CP™/~ and D2™/~ will be topologized as follows:

Embed L2™ in R™*"™*7P by ‘
(A4, B,C)=(a', d?,...,a" b, ..., b", (c'), ..., (c"))
where &', b, ¢’ are the ith rows of 4, B, C" respectively.

If L2 < R "+ 72 js endowed with the subspace topology, we assume L™/~ to have
the quotient topology. Denote by n: L2™ — L?™/~ the canonical projection. Similar
definitions apply to C2'™/~ and D™/~

Section 2 contains background definitions and results on balanced realizations,
including a characterization of all asymptotically stable and minimal systems of a
given order. The case of SISO systems is treated in § 3, and § 4 contains the results
concerning MIMO systems.
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2. Balanced realizations
In this section continuous- and discrete-time balanced realizations will be defined
as they were introduced by Moore (1981).

2.1. Continuous-time balanced realizations
The definition of a balanced realization for continuous-time systems is as follows.

Definition 2.1 (Moore 1981)
Let (4, B, C) e C2™. (A, B, C) is balanced if for

W, = j exp (At)BBT exp (tA") dt
V]

W, = f exp (ATt)CTC exp (tA) dt
0

we have W, = W, =:X =:diag (64, ..., 0,,).

The positive numbers ¢, ..., 6, are called the singular values of the system (4, B, C).
Denote by C2™b < CE™ the subset of all balanced systems.

Analogously to the continuous-time case, minimal and asymptotically stable
discrete-time systems are said to be balanced if the controllability and observability
gramians are identical and diagonal.

Definition 2.2 (Moore 1981)
Let (4, B, C) e D?'™. (A, B, C) is balanced if for

W= Y A*BBT(A™)
k=0

Wo= 3 (AT}CTCA*
k=0

we have W, =W, =X =:diag (64, ..., 0,).
The positive numbers o,,..., 0, are called the singular values of the system
(4, B, C). Denote by DE'™b = D?™ the subset of all balanced systems.

The following proposition shows that topological results on continuous-time
systems can be carried over to discrete-time systems.

Proposition 2.3
There exists a homeomorphism
T,: Cy™— D™

which preserves system equivalence and maps continuous-time balanced systems to
discrete-time balanced systems. O

Proof
Follows from Proposition 4.1 of Ober (1987).
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The following characterization and parametrization result (Ober 1987) in terms of
a canonical form is central for the remainder of the paper.

Theorem 2.4
The following two statements are equivalent.

ty (4, B, Gecrm

WIth Z = diag (01 In(l)’ 62111(2)’ cesy O'kI"(k))
k
such that o, >6,> ... >0, >0and ) n(j)=n.
=1

There exists a unique T GI(n) such that for

an
(4, B,C):=T(4, B, 0)):= (TAT™*, TB,CT™ )

T

we have:

¥

it

B-matrix
Bl
(1) Partition B= with B/ e Rr@)xm
Bk
then for 1 <j<Kk,
Bi(BY)T = diag (AP 1.1y, A9 Lgys - A Lriiacy» O

such that
A >P> . >4 >0

and
l(j) - - . .
;1 1(j; i) =iro(j) < min (p, m)

(2) For each 1< j <k, B’ has the following structure:
B(j; 1)
i=| | with B e RO for 1<i<I()

B(j; 1)

0
The precise structure of B(J; i) =:(b(J; D)) <s<nz;n 18 given by the indices
1<tsm

1<, )< ;6,2 < ... <t(jsi,r(ji))<m for 1<i<(j)

We have
b(j; Dseqjiiey >0 for all 1<s<r(j;i)

‘ b(j; i)y =0 forall l<t<(j;i,s) and 1<s<r(j;i)
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ie.
0...0  b(j; D1egii,1y
. 0..0 0 ... 0 b(JDagia b(j; D)s
B(j;i)=| . )
. : 0
0 XK 0 0 ea 0 0 cen 0 b(j; i)r(j'i)'(j,r(j;i))
C-matrix
C admits the representation
C=(C' C* .. CY, CieRrx"0®
with

C= (Uj 0) diag ((1({))1/2 Ly s ('15‘8'))1/2 Ly 0,..,0

for unique U’ € RP*"Y such that (U))TU/ =1, , for 1 < j<k.

A-matrix
A admits a partitioning 4 = (A(i, j)); < j<i With A(i, j) e R"@*"P for all 1 <i,j <k,
with the following properties.

(i) Block-diagonal entries A(j, j)
A(j, /), 1 < j<k, can be partitioned as

. A(j9j)11 A(jaj)lZ .. : .
A(]a.]) = [ . .. ’ A(]9])11 € (R'OU)erU)
AGs 021 AU D22

with

. -1 . ; ; o
1) A(j, D= 9. diag (1(1]”'(,';1), cess l%g)lr(j;l(j))) + A(j, D11

J
where A(j, j),, is skew-symmetric.
(2) There exists g(j) € N, g(j)= 1 and a set of indices

(g(js 1), h(j; 1), ..., (g(j; a(7)), h(j; g())) € N x N
with
1=h(j; )< ... <h(j;)<h(j;i+ 1)< ... <n—ru())
1<g(q) < ... <glisi+ 1) <g(f;i) < ... <rel))

such that for A(j, )12 =:(a(Ds)1 <s<ro(p we have
I<e<n(g)—rol))

a( fggiimgy >0 for 1 <i<q(j)
a( gy =0  for t > h(j; i), where 1 <i < q(j)
a(j) =0 for t = h(j; i) and s > g(j; i), where 1 <i< q(})

and all other entries of A(j,j),, are unspecified.

fa

® )
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ie.
B . .
X X e X alfeii2inG.2) 0
x X X 0 0
A( . -) 0
b= X X .. X 0
a(Negamy 0 - O 0
0 o .. O
(3) A(j, )21 = "‘A(]',f)Iz-
; @
0 ()2
—a(j); 0 alis 0
. —a(j)s 0
A(j, )22 =
0 : 0 U Jngi) - rotd)
| ~ Pty -roth U
with

0 0 if i = h(j, 5) for some 1 < s < 4(})
aJ) =
/ >0 otherwise

(ii) Off-diagonal blocks A(i, j), (i # J)

[y o} oo -
A(, j) = [ 0 0 with AG, /) =:(a(i, )a)1 <s<riy € [Rrot) x rold)

1<e<r())

where

1
ai, o= 35— @ bUNE — 0,c(i)] c(j))

where b(i), is the sth row of B’ and c(i), is the sth column of C'. O
Note that the map I': C2™ - CE™
(4, B,0)~(4,B,0)=T(4, B,0)

defines a canonical form on C?™ with respect to system equivalence.
Specializing to the SISO case we obtain the following.
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Corollary 2.5
The following two statements are equivalent.

(D (4,b,0eCyt
with
T =diag (o, Iy, 021n2)s s Oulugey)
k
such that ¢, >0, > ... >6; >0and Y n(j)=n.
j=1

(I)  There exists a unique T€ GI(n) such that for
(4, b,¢):= T(4, b, &):= (TAT ™1, Th, T~ 1¢)
we have the following.
(WEBE= (b, 0. .-, 055,00 01 b 0Ees()
n(1) n(2) nk)
with b; >0 for 1 < j <Kk,
(i) e=1s:5:.0; ., 0 5555, 0, -.0 . s b i0F 50
%}__/kz 2“3? i il ,,?,:} ;)
where s,= +1for 1 <i<k.
(iti) For A = (A(i, ) <ij<x> Al j) € R "), we have the following.
(1) Block diagonal entries A(j,j) forall 1<j<k

a(i,j) o : :

—a(i)),. 001 e : 0

5 — ()2 0 ()3

A(j,j) =

0 : : 0 “(f)nm—l
"95(f]n(j}—1 0

with a(j, j) = — b} [20;,
a(j); >0 foralll<i<n(j)—1
(2) Off-diagonal block A(i,j) forall 1 < i,j<k, i#]

Al el
0 0 20
AN =Py | =8 AG )T
0 0 0
with
e =l
a(i, j) = mbsb;‘

Remark
Note that for (A, b, ¢) as given above we have

L= ¢ —5b




Asymptotically stable minimal systems 269

where
S = diag (1 Lnq1ys S21n(2ys -+ o> Scdngy)
and
Iy =diag(+1, —1, +1,..) € RO <"

This ‘sign symmetry’ of (A4, b, ¢) will be important in the characterization of the
connected components for SISO systems.

3. SISO systems
The Cauchy index of the transfer function of a system will be a major tool in the
treatment of the connectivity problem for SISO systems.

Definition 3.1

Let p(x) and q(x) be relatively prime polynomials with real coefficients. The
Cauchy index CI(g(x)) of g(x) = p(x)/q(x) is defined as the number of jumps from — o0
to + oo less the number of jumps from + oo to — oo of g(x) when x varies from — oo to
+ 0.

A theorem by Anderson (1972) gives a useful characterization of the Cauchy index
for transfer functions. First we need the following definition.

Definition 3.2

Let A be a real symmetric matrix. The signature of A is the difference between the
number of positive and the number of negative eigenvalues.

Theorem 3.3 (Anderson 1972)

Let (4, b,c)e L!'! and consider the transfer function g(s) = c(sI — A)~'b. Then
there exists a unique symmetric matrix P satisfying

PA=A"P, c"=Pb
and the signature of P is equal to CI(g(s)).
Fernando and Nicholson (1983) have pointed out the applicability of this theorem

to balanced realizations. We know that for (A4, b, ¢) € I'(C}'!) there exists a sign matrix
S =diag(sy, S3, ..., 8,), §; = + 1, for 1 <i< n, such that

AT=SA4S, c'=Sb

Thus by Anderson’s result we have that

Cl(g(s)) = ig 5;

where g(s) = c(sI — A)~'b.
Brockett (1976) determined the number of connected components of L'/~ and
characterized those in terms of the Cauchy index of the systems.

Theorem 3.4 (Brockett 1976)

L}1/~ consists of (n + 1) pathwise connected components. Each of these compo-
nents is uniquely determined by the Cauchy index of the corresponding transfer



270 R. J. Ober

functions, i.e. the ith component C,, 0 <i<n, of L}'!/~ is given by

C,={nl((A4, b, &))|(4, b, ¢) € L}**, Cl(c(s] — A)~*b) = n — 2i}

Remark

Theorem 3.4 is a reformulation of Brockett’s original result, using the
homeomorphism between rat (n) and L!'!/~ as given by Byrnes and Duncan (1982).

We can now state the main result of this section.

Theorem 3.5

Cl''/~ consists of (n+ 1) pathwise connected components. Each of these
components is uniquely determined by the Cauchy index of the corresponding
transfer functions, i.e. the ith component C;, 0<i<n, of C!'!/~ is given by

Ci={n((4, b, ¢))|(4, b, ¢) € C}*, CI(c(s] — A)~1b) = n—2i}

Proof

We first have to show that C}''/~ has at least (n+ 1) pathwise connected
components. We show that each of the (n+ 1) connected components of L'/~
contains an element of C!'!/~.

Let 0 < j < n, then we can choose s; = +1, 1 < i < n, such that Z s;=n—2j. Now
parametrize (A, b, ¢) by =
¥ =diag (0,,0,,...,0,)=diag(n,n—1,..., 1)
b=(by, by, ... b,)=(,...,1)F

S =diag (s;, 55, ..., Sy)

5:5;0;+ ;|1 <i,j<n

C=(Slb1, S2b2, sevy snbn)

By Corollary 2.5, (4, b, c)e C}'*, Theorem 3.3 implies that Cl(g(s)) = n— 2j,
where g(s) = c(sI — A)~'b. Since C!'!/~ = L}''/~ we have that C!'!/~ has at least
(n + 1) pathwise connected components.

To show that there are exactly (n + 1) components, we need the following two
lemmas.

ie.

Lemma 3.6
Each system (4, b, &) e ['(C}!) with

-

2=diag (&11,«1), &21'.(2), cany &kIn(k))’ &1 >&2 > ... >&k>0’ n(j)=n

ji=1
and

S = diag (Sl’ SZ, asay Sn) = dlag (51 In(l)’ §ZIn(2)’ crey gkIn(k))
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where §;= +1, and
I:=diag(+1, =1, +1, —1,..) e ROx"0_ 1 <igk,
can be pathwise connected in C!'! with the system (A4, b, ¢), which is parametrized by

X=diag(n,n—1,...,1)

s=§
b=(by,...b) =(1,1,..., )T e R"

Proof

Note that a continuous change in the parameters £, b and o(j);, 1< j<k and
1 <i<n(j) implies a continuous change in the entries of (A4, b,& as long as
G, > 05> ... > 6, > 0. By Corollary 2.5 such perturbations do not change the mini-
mality of (4, b, &) provided that &, > &, > ... > &,>0,b;>0for 1 <i<kand &j);>0
for 1<j<k and 1<i<n(j). So we can assume without loss of generality that
(4, b, & is given in the following standardized form parametrized by

i = dlag (nIn(l)a (n - n(l))In(Z)’ sevs n(k)In(k))
bT=(1,0,..,0,1,0,..,0,..,1,0,...,0)
(1) (2) (k)

and G(j);=1for all 1 <j<k, 1 <i<n(j).
Instead of presenting a detailed but very cumbersome proof, an example is given
which is general enough to indicate clearly all the features of a complete proof.
Consider the system (4, b, &) € C}* which is parametrized by

¥ = diag (6,1;,5,1;)=diag(5,5,5,2,2)
S=diag (5,15, 5,1,), §,5==+1
b=(1,0,0,1,0)
1), = (1), =&2), =1

ie.
[ a,, 0 d;; O]
-1 0 1 0 O
A=| 0 - 00
dyy dy, 1
[ o -1 0|
where
Gy= ey Bj=1,2

§i§jo'1 +&2’

Using Corollary 2.5, we are going to show that there is a continuous path in Ci'!
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connecting (4, b, é) with (4, b, ¢) which is parametrized by
T =diag (5, 4, 3, 2, 1) =:diag (¢,, 03, ..., O5)
b=(1,1,1,1,1)=:(by, by, ..., bs)
S =diag (s;, S3,...,55) =S

We proceed stepwise and first consider the set of singular values of (4, b, c)
corresponding to the first block of identical singular values of (4, b,d), ie. 0, =5,
g,=4,0,=3.

(I) Within this first block of singular values of (4, b, ¢) we also proceed stepwise
and start considering the singular value of least magnitude, i.c. 63 =3.

(i) We show that (4, b, ¢) can be connected in C5'* with (A(1), b(1), ¢(1)) which is given
by

¥(1)=diag(5,4,4,2,1)
b1)=(1,1,0,1,1)

S1)=S
and
a2}, =1
ie.
[a;;, a;;, 0 ay, alﬂ
ay; G;; 1 a4 ass
AH=10 -1 0 O 0
Gy 42 0 a4y ays
| 451 452 0 asy ass |
where
-1 ..
aij =, LJ= la 29 4a 5
5;5;0;+0;

This can be achieved by letting 63— ¢, and by —0 in an appropriate way. Direct
verification shows a suitable way is to define the path

oi()=31—-0)+4t, te[0,1]
byt)=1—1t, tefo,1]

and letting ¢t — 1.

(ii) Next we show that (A(1), b(1), c(1)) can be continuously connected in Ci! with
(A(2), b(2), c(2)) which is parametrized by

2(2) = diag (6,, 6, 0y, 04,05) =diag (5,5,5,2, 1)
b2)=(1,0,0,1,1)
sQ)=§
a(1), = (1), = 1
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ie.
[a,, 0 a;, ays|
—1 01 0 O
AQ2) = 0O -1 0 0 O
s 0 a4y ass
| 351 0 ass ass |

This can again be achieved by appropriately letting o, —» ¢, and b, — 0. Setting
a,()=41—-0)+5¢ te[0,1]
b,t)=1—t, te[0,1]

the result follows by considering the limit as ¢t — 1.

(II) We now consider the next block of singular values, ie. 6,=2 and 65 =1.
The final result follows from the fact that (4(2), b(2), ¢(2)) can be continuously
connected in Ci'! with (4, b, &) by appropriately letting 65— 0, and bs —0. O

Lemma 3.7
Let (4,, by, c,;) e [(C}!) be parametrized by
X, =diag(6,,...,0,)=diag(n,n—1,..., 1)
bT=(,...., ) eR"
S, =diag (51, 535551, —Sp5-ee» Sp)
for some 1<I<n—1and s;= +1, and let (4,, b,, c,) e I(C}'*) be given by
X,=2X,;, by=b;, S,=diag(sy,82,...s =S, S5 ..-» Sp)

then there is a continuous path in C}'!/~ = n(C}'!) connecting n((4,, by, ¢,)) with
n((AZ, b2’ c2))'

Proof
Partition (4,, b;, ¢;), i = 1, 2, conformally according to
Al 1 AIIZ A13
A;=| A Ay, Ab;|, where A, e RUTDxU-D and 4L, e R**?
A31 I.32 A33

bi=(¢1 07 63)
¢;= (e, Eiz c3)

Consider (4,, by, ¢;). By Lemma 3.6 there exists a continuous path in C}'! connecting
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(A,, by, c;) with (4,, b, ¢,), where

é Ay Al Ay
;{1‘—' ‘Zél Ziz fﬁs
A3, A3, Ass
2
51= Zé ’ 51=(01 & 2)
43

with

——1 1 1

Ayp=| 200 |, 3%=H, G=@ 0
10 0

Al,=(a,, 0), ay, the first column of 4},

Ay, =(a;; 0) as, the first column of A4},

- a,
A, = |: SI:I, a,, the first row of 43,

- azs 1
Ay = o I a,; the first row of 43,

Now consider (4,, b,, ¢,). By a similar argument to the one given in the proof of
Lemma 3.6, i.e. by letting a,, ,converge to o, and letting b, converge to zero in an
appropriate way, we can find a continuous path in Cy*! connecting (4,, b,, ¢;) with

(Zz, 52, é,), where
All Z%Z A13
gz = ;431 ,7{%2 ;1%3

~

A31 A§2 A33

4y
52'-' 312, > Ez=(01 5% c3)
43
with
~ o 1 0
A%Z_ 1 —1 ’ Z%: 1 ) 5%=(0 sl)
_ ?o_,
and
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It is easily verified that a state space transformation of the form Q =diag

~ ~ 0 1 Syt ag W i
-, G 1,-1—y), Q= Lol yields the equivalence of the systems (4, 5,,¢,)

and (4,, b,, &,). Thus n((4,, b,, ¢,)) = (45, b,, &,)). Since n: C}t - CL!/~ is con-
tinuous we have established the existence of a continuous path in C}''/~:connecting
7[((A1, bl, cl)) WIth n((AZ’ b2’ CZ))' O

We show now that all systems with a given Cauchy index are pathwise connected
in C11/~. This is done by taking an arbitrary (4, b, &) e [(C}*) whose transfer
function has the Cauchy index CI =p — g, p, g € N, p + g = n, and connecting it to the
standard system (Ag, by, ¢o), Which is given by the parameters

To=diag{(n,n—1,...,1)
bo=(1,...,)TeR"
S0=(Ip’ _Iq)

By Lemma 3.6, (4, b, ¢) can be continuously connected to a system (4, b, ¢) which is
parametrized by

X=diag(n,n—1,...,1)
bT=(1,..,)TeR"
and
5=
where § is the sign matrix associated with (4, b, é).

Lemma 3.7 allows us to swap signs in S such that we can assume S = S,. But this
shows that n((4, b, &) and n((4,, b, Co)) can be pathwise connected. 0

Corollary 3.8

D)/~ has n+ 1 connected components each of them being determined by the
Cauchy index of the corresponding transfer functions.

Proof
T,:C!'* 5 Dl'! is a homeomorphism. But then

ATt ChY~ > Dl ~

is a homeomorphism.
Furthermore T, preserves the sign matrix, i.e. if (4, b, ¢) € C}*! has sign matrix S,
then T,((4, b, ¢)) has the sign symmetry property with sign matrix S. O

4. MIMO systems
Glover (1975) showed that for max (p, m) > 2, LE™/ ~ is pathwise connected. In the
following theorem the same result is established for CZ'™/~.

Theorem 4.1
If max (p, m) = 2 then CP"™/~ is pathwise connected.
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Proof
We need the following three lemmas.

Lemma 4.2
Let (4, B, C) e I(C2™) with £ = diag (5, L1y, ---» 1 uge)
§1
B=| : |, BeRY*™ rank(B/(B)T)= ro(j), for1<j<k
B

C=(C,...,C"
with &7 =(U’  0)(B/(B")")!/2, where (U/)* U’ = 1,,;, for 1 < j<k.
Then (4, B, C) can be pathwise connected in C2™ with (A4, B, C) e I(CZ™), given by
% = diag (L), (1 — H(D)ycay, -rvs 2O e)

1 0 ... 0
Bl
00 ... 0 ,
B=| ' ]|, where B=| |eRO*™ for1<j<k
o . :
00 0
c=(C,...,CY
with
5; . 0
_ 00 ... 0 )
C=| |eRrm s, =t1for1<j<k
00 ..0
For 1 < j< k the jth diagonal block of A4 is given by
[ai) 1 ]
-1t o 1 0
—1 0 . -
AG.)= e R0
0 1
-1 0

Proof
We can assume without loss of generality that &, =n, 5, =n— n(l), ..., 6, = n(k).
We use the notation of Theorem 2.4. For 1 < j < n consider

A(jsj)ll A(j’j)lz
A
() [A(j,j)n A(j,j)n]
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where

-1 . . : -
A(js i1 = 2. diag (44, ..., ifu)) + A(j, D11

with skew-symmetric A(j, j).
Now perturb

‘Z(]’ .])1 1 to

A(j,J)22 to

and

A(j,j2 to

such that A(j, j),, is in canonical form all through the perturbation process.

J

0
- 0 1 0
-1 0
0 1
-1 0
| |
[0 1
-1 o 1 O

2717

By Theorem 2.4, these perturbations, if performed in the given order, define a
continuous path in C2™, So assume that A( J»Jj) is given by

A, )=

20;

J

-1 0

+ _—ldiag (19,49, ...,
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Now we can continuously perturb B/ to
bl

. 0 . .
Bi=| |, where bj is the first row of B

0
without changing the orthogonality of the rows of B’.

This implies a perturbation of C/=(U’ O)B/(B)N)'* to Ci=
(4,0, ..., 0)(b} (b1)T)/* where u} is the first column of U-.

It is now possible to perturb b} to (1,0, ..., 0) without becoming zero. There exists
s;= +1such that ) can be continuously connected with (s;, 0, ..., 0) € R? preserving
the norm of u}.

The perturbations of B and C' imply a perturbation of A(j, j) to

a(j, j)

1
1 o 1O

A(]’J) =

i -1 0_ o
Lemma 4.3
Let (4, B, C) be given as in Lemma 4.2. Then (4, B, C) can be pathwise connected

with the system (4,, By, Co) Which is parametrized by
I,=diag(n,n—1,...,1)

10 .. 0
10 .0
B0= ) . . eRnxm
10 ..0
ST

0
Co= GRPX"

where

ST=(1, ..., 1) diag (5; [1ys -os Scluy), (L, DTER?

Proof
The proof is analogous to the proof of Lemma 3.6. O
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Lemma 4.4
Let (4o, By, Cy) be given as in Lemma 4.3, then (44, By, C,) can be pathwise

connected in C;™ with the system (4,, B, C;) € I'(C5™), which is parametrized by

Z,=diag(n,n—1,...,1)

B, =Bo

11 1

00 ... 0
1= . .

00 0

Proof
We have to consider two cases.

Case 1: p=2. Consider
C=(u',u? ..., u")(diag (AP, A9, ..., APY2 = (ul, u?, ..., u")

where

u=| |eRr forsome §=+1
0
(0] [07]
1
1 1 0
We can perturb « to w'= | 0 [ and &'= | O | can be perturbed to u'=| |.
: : 0
0] [ 0]

This can be done without changing the unit length of u'.

Case 2. p=1.Then C=(§y,$,,...,5,) for some §;=+1,1<i<n
Now perform a state-space transformation with

Q = diag (51’ §2> eets §n)

Then CQ"=(1,1,...,1) and
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Since max (p, m) = 2 we have m > 2. Thus by a similar argument to the one given in
Case 1, we can perturb QB to

1 . 0
0

0B=
10 ... 0

Theorem 2.4 guarantees that in both cases we do not hit non-minimal systems. [J

Combining the previous lemmas, we can find for each system (4, B, C) e I'(C;™) a
continuous path in CZ™ connecting it with the system (4,, B;, C,).

Continuity of the projection n:CZ™— C2™/~ implies that C;"™/~ is pathwise
connected. O

Corollary 4.5
If max (p, m) > 2 then D2™/~ is pathwise connected.

Proof oy
T,: CP™— DP™ is a homeomorphism. o

5. Conclusions

The number of connected components is determined for the set of asymptotically
stable, minimal systems of given order. This is done by using a canonical form and a
parametrization result for balanced realizations. It is believed that this canonical form
can be used to examine further the topology of the set of asymptotically stable
systems.
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