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Balanced realizations: canonical form, parametrization, model

reduction

RAIMUND J. OBERYt

Balanced realizations are used to construct a canonical form for the set of minimal
and asymptotically stable MIMO systems of a given order. A parametrization result
is derived that allows us to show a truncation property of this canonical form.

Notation
R C"
Re (2), Z, |2|
Ccrxm (|Rn x m)
1,
AT
a(A)
'q'max (A) ('q'min (A))
diag (4, Ay, ..., A,)
I,
A>0

n-dimensional real and complex euclidean spaces

real part, complex conjugate and modulus of ze C
space of n x m complex (real) matrices

n x n identity matrix

transpose of 4 € R**"

set of eigenvalues of the matrix A

eigenvalue of 4 € C"*" with maximal (minimal) modulus
block diagonal matrix with A; e C"*™

I,=diag(+1, -1, +1, —1,..)

for positive definite symmetric matrix

A skew-symmetric
@ e R"*" orthogonal
cam (Cpm)

D™ (D7)

1. Introduction

Recently, balanced realizations as defined by Moore (1981) have obtained a great
deal of attention. This is mainly due to their interesting properties with respect to
model reduction (Pernebo and Silverman 1982, Glover 1984).

Maciejowski (1985) has indicated the potential usefulness of balanced realizations
for system identification. In setting up an identification algorithm canonical forms are
of great importance in order to avoid identifiability problems. In § 6 a canonical form
based on balanced realizations is constructed for the set of minimal and asymptotically
stable continuous-time systems. This is an extension to MIMO systems of the canonical
form for SISO systems as derived by Ober (1985). A canonical form for the case of
distinct singular values was given by Kabamba (1985).

Since the canonical form derived in this paper exhibits interesting structural
properties, it is hoped that it will lead to a deeper insight into the structure of the set of
minimal and asymptotically stable systems of a given order. Indeed, it allows us to
determine the number of connected components of this set (Ober 1987 a).

Section 2 contains definitions and preliminary results concerning balanced
realizations. The concept of a canonical form is recalled in § 3.
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A transformation defined in § 4, which is inspired by a bilinear transformation,
allows us to carry over results from continuous-time systems to discrete-time systems.

In § 5, a canonical form is derived for the important case of systems with identical
singular values. This canonical form is then used in § 6 to derive a canonical form for
the general case.

The canonical form for asymptotically stable and minimal systems as derived in
§ 6 exhibits a certain structure. In § 7 the converse problem is considered. It is shown
that if a system has this structure, it is necessarily minimal and asymptotically stable.

The parametrization result in §7 then allows us to prove in §8 a general
truncation property for the canonical form as derived in § 6. Using the transformation
from continous-time systems to discrete-time systems as established in §4, two
alternative model reduction procedures are proposed.

2. Balanced realizations

In this section, continuous and discrete-time balanced realizations will be defined,
as introduced by Moore (1981). For easy reference, some properties of these
realizations will be stated at the same time.

2.1. Continuous-time balanced realizations
Let Ci™={(A4, B,C)e R"*" x R"*™ x R?*"|(A,B, C) is minimal and asymptoti-
cally stable continuous-time system}.

Definition 2.1 (Moore 1981)
Let (A, B, C)e C2™. (A, B, C) is called balanced if for

W, = f exp (At) BBT exp (tAT) dt
0

W, = I exp (ATt) CTC exp (tA) dt

[}

we have W, = W, =:diag (04, ..., 5,).
The positive numbers o, ..., 0, are called the singular values of the system
(4, B, C). Denote by C2™ = C2™ the subset of all balanced systems. O

To talk about balanced realizations is justified by the following theorem.

Theorem 2.2 (Moore 1981)

Let (4, B, C) € C&'™, then there exists T € GL(n) such that (TAT™" TB, CT™!) is
balanced. g

An equivalent characterization of a system to be balanced can be given in terms of
Lyapunov equations. These are a major tool in working with balanced realizations.

Theorem 2.3 (Moore 1981)

Let (4, B, C) e Ci'™, then (A, B, C) is balanced iff there exists a diagonal matrix
Z > 0 such that

AT +XA"= —BBT
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and
ATT+Z4=-C"C
In this case T = W, = W.,. 0

The question of uniqueness of a balanced realization is answered by the following
theorem.

Theorem 2.4 (Moore 1981)
Let (4, B, C) e C&™ with X =diag (6,1,1)s 021na) -+ Okdngy)s 01> 02> ... >0,
k

>0 and _Zl n(j)=n.

J
Then (A4, B, C) is unique up to an orthogonal state-space transformation of the
form

Q =dlag (Qla QZ’ sery Qk)

with orthogonal Q; e R"®x"® for all 1 i< k. a

The following truncation property makes balanced realizations particularly
interesting for model reduction.

Theorem 2.5 (Pernebo and Silverman 1982)
Let (4, B, C) e C&™* be conformally partitioned as follows:

A A B
A=[ H ] B=[ i| C=(C, C,)
Ay Az B,

T, 0
> = , T,eRwxm =12
0 %,

If £, and X, have no eigenvalues in common, then we have (4;;, B;, C;) € C&™* for
i=1,2. |

A generalization of this result will be given in § 8.

The following lemma will be useful later.

Lemma 2.6

Suppose that the system (4, B) satisfies the Lyapunov equation AL + ZAT =
— BBT for some diagonal X > 0. Then

(i) (4, B) is asymptotically stable if and only if (4, B) is controllable.

(ii) Re (4) <0 for all 4 € a(A).

Proof .
See Pernebo and Silverman (1982). 0O
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2.2. Discrete-time balanced realizations

Let D} ={(4, B, C)e R"*" x R**™ x R?*"|(4, B, C) is minimal and asymptoti-
cally stable discrete-time system}.

As in the continuous-time case, the definition of a balanced realization is based on
the equality of the observability and the controllability gramian.

Definition 2.7 (Moore 1981)
Let (4, B, C)e D2™ (4, B, C) is called balanced if for

va= Z AkBBT(AT)k
k=0

u/0= Z (AT)chCAk
k=0

we have W, = W, =:X =:diag (5, ..., 5,).
The positive numbers o, ..., 0, are called the singular values of the system
(4, B, C). Denote by D2"™" < D2™ the subset of all balanced systems. O

For easy reference we mention the results corresponding to those of the
continuous-time case.

Theorem 2.8 (Moore 1981)
Let (4, B, C) € D}'™, then there exists T € GL(n) such that (TAT %, TB, CT"Y) is
balanced. O

Theorem 2.9 (Moore 1981)

Let (4, B, C) e DI'™, then (A, B, C) is balanced iff there exists a diagonal matrix
Z >0 such that

AZA"—X = —BBT
ATZA-T=-C"C
In this case X = W, = W.. -0

Theorem 2.10 (Moore 1981)
Let (4, B,C)e Dp™" with X =diag(011,4y, 651y s Giluy), Where o, >0,
k
>...>0,>0and Y n(j)=n
j=1
Then (4, B, C) is unique up to an orthogonal state-space transformation of the
form

Q= dlag (Ql’ AR Qk)

with orthogonal @, e R*>*"® for all 1 <i<k. w0

Theorem 2.11 (Pernebo and Silverman 1982)
Let (4, B, C) € DI"™" be conformally partitioned as follows:

A A B
A=|: " IZ:I, B=[ I:I, C=(C1 Cz)
Ay, A;, B,
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T = , T,eRwm j=1,2
0 I,

If 4in(Z1) > Aax (Z2), then the subsystem (4, ,, B, C,) is asymptotically stable and
minimal. O

3. Canonical forms

In system identification, we have to find a system describing a given input—output
sequence. It is well known that from an input—output point of view two nth-order
minimal systems can only be distinguished if they are not equivalent as defined below.

Definition 3.1

Two minimal systems (A4,, B;, C,) and (A4,, B,, C,) are called equivalent (write
(A, B;, C,) ~(A;, B,, C,)) if there exists T € GL(n) such that

A1=TA2T-1, BI=TB2 and C1=C27‘_1 D

It is clear that system equivalence is an equivalence relation on C?™ and D™
A unique representation of a linear system can be obtained by deriving a canonical
form.

Definition 3.2

A canonical form for an equivalence relation ‘~’onaset Xisamap [': X - X
which satisfies for all x, y € X:

@) I'(x)~x
(i) x ~ y=T(x) =T(y) - o

In the derivation of canonical forms, so-called invariants often play an important
role.

Definition 3.3
Let S be a set. An invariant for an equivalence relationonaset X isamapl: X » S
which satisfies for all x, y € X:

x ~ y=1(x) = I(y) D

Example 3.4
The map X:C:" > R"

(A,B,C)—’(O'l,...,an)’ 612022... >0n>0

which assigns each system (A, B, C) its set of singular values, is an invariant for system
equivalence.

4. Transformation T,: C5™— D%™

A standard method to relate results for continuous-time systems to discrete-time
systems is to use a matrix transformation induced by a bilinear transformation of
transfer functions (e.g. see Glover 1984).
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The following proposition contains a collection of results which will be used in the
sequel.

Proposition 4.1
(i) The map T,:C?™— Db
(4, B,O)>(U ~ A~ I + A), /20 — 4)™' B, \/2CU - 4)*)
is a bijection with inverse

'1""—1 :Dg,m__) Cg,m

(4,B,C)> (I + A (A~ 1, /2 + A)~'B, /2C(I + A)™ 1)

Moreover, the observability and controllability gramians are invariant
under T,.

(i) T, and T, ! preserve system equivalence, i.e.
(Al, Bl’ Cl) ~ (A2’ B2’ C2)9 (Ai’ Bi, Cl) € Cg,m’ i=12
@7;,((/11 ’ Bla Cl )) ~ T;I(AZa BZ’ CZ))
(iii) T, maps continuous-time balanced systems to discrete-time balanced systems,
ie.
T,(CE™*) = Dpme

Proof

We shall first show that T,((4, B, C))=(4, B, C) is asymptotically stable for
(A, B, C)e C&'™. Let (4, B, C) e C>™. Note that (I — A)~! exists. Now, assume there
exists

xeChx#0,AeC with |=1
such that
Ax=Ax=>(—A) YU+ Ax=ix=>( + Ax=(I — A)ix
=2A1+A)x=(A—1)x
Since x # 0 we have 1 # —1

A—1
A=
A—1 .. . o
But Re [m] =0, which is a contradiction to the asymptotic stability of A.

It can easily be verified (see, for example, Glover 1984) that
APAT —P=—BBT
ATQA-Q=-C"C
where P is the controllability gramian and Q the observability gramian of (4, B, C).
Since A is asymptotically stable this showis that P is the controllability gramian and
Q the observability gramian of (4, B, C). Thus (A4, B, ) is minimal and hence
T.(C2™ < D?™. Similarly, it follows that T, }(D?™) < CP™,
Straightforward calculations show that T, is a bijection with inverse T, ! and that T,
as well as T, ! preserve system equivalence, which shows (i) and (ii).

(iii) follows from the fact that 7, leaves the controllability and observability
gramians invariant. O
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The importance of this transformation in our context lies in the fact that it carries
over canonical forms.

Proposition 4.2

Let I':CP™— C2™" be a canonical form for system equivalence, then [ :D?™
— D?mb defined by I'= T,I'T,"! is a canonical form for system equivalence on D™,

Proof
Let §,,S,e D"

(i) We have
T TS =TT $)~ L' (S)=T(5)~S$,
(1) 81~ 8= T, 1(S))~ T, 1(S2)= (T, (5,)) = I (T, '(52)
=1(8,)=T(,)
18, =T8) =TT (81) = (T, ' (S2)= T, (S1) ~ T, '(S2)
=8, ~85,
Thus " is a canonical form.
For S € D2™ we have T, }(S)e CP™™
=>T(T,}(5)) € C™*=T'(S) € DE™? O

5. Canonical form for C%™ the case of identical singular values

In this section, a canonical form is derived for the set of asymptotically stable
minimal continuous-time systems with identical singular values. This set of systems is
interesting in its own right since the strictly proper part of an asymptotically stable
all-pass transfer function can be characterized by a system with identical singular
values (Glover 1984, Ober 1987 b).

To make the derivation of the canonical form clearer, it is split into three steps.

Step 1
In the first step an arbitrary system (A, B, C) e CE™ with identical singular values
is brought to a balanced form which has interesting symmetry properties.

Proposition 5.1
Let (4, B, ) e C?™ with identical singular values 6, =6, = ... =0,:= 0,0 >0.
Then there exists an equivalent balanced system (A4, B, C) such that

(i) BBT = CTC = dlag (Al I'(l), seey 111'(1), 0, veey 0)
with
A>A>..>4>0,ri)eN for 1<igl

and

_Z’:I r(i) = rank (BB") =:r,
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(i) We have

1
A= gdiag ALy oo 4100, 0, ..., 0) + A4

where A is skew-symmetric.
(iii) The numbers [, n(1), ..., r(I) are invariants for system equivalence.

(iv) The systems which are equivalent to (4, B, C) and have the structure given in
(i) and (ii) are precisely those systems that can be obtained from (4, B, C) by
an orthogonal state-space transformation of the form

Q=diag(Q,,0Q,,....,Q1+,)

with orthogonal Q,e R®*"® for all 1 <i<I+ 1, where we set r(l+1):=
n—ro.

Proof
Assume without loss of generality that (4, B, @) is balanced.

(i) Since X = g1, it follows from the Lyapunov equations that BBT = CT¢,

By Theorem 2.4 we have the freedom to perform an arbitrary orthogonal state-
space transformation. As BBT = 7€ is symmetric and positive semi-definite, there
exists an orthogonal § € R"*" such that

QBBTQ"=QCTCQT =:diag (A, I ), ..., Mg, 0, ..., 0)

with 4, >2,> ... >4,>0 and 21: r(i) = rank (BB™). Thus take (4, B, C):=(QAQ7,
08, CQ™).
(ii) If we consider the Lyapunov equation

AX +3XA"= —BBT

componentwise, we obtain ¢;a; + 0;a;;= —b;b] where b, is the ith row of B and
A=(ay;), <i,j<n-
Since by (i) b;b] =0 for j #i and by assumption g; = g; = 0, we have

o(a;+ a;)=0=>a;=—a; forall i#j

Again from this Lyapunov equation we have for the diagonal of A4 that

1
(all’ A325 05 ann)= _Z(blb}-, bzbg, ceey b,,b,,T)

1 ..
=~ 55 488 (41 Ly, .., 41y, 0, ..., 0)
which implies (ii).

(iii) Let (4,, B,, C,) and (4,, B,, C,) be two equivalent systems such that B, BT and
B, B} have the form given in (i). By Theorem 2.4 there exists an orthogonal Q € R**"
such that B, = QB,. Thus

Bl B-{ = QBZB’;Q—I‘ = diag (}'1 Ir(l)) seey A'IIr(l)’ 0’ ceey 0)

By the uniqueness of the eigenvalue problem and the ordering of the diagonal
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entries of B, BT and B, B}, we have B, B] = B, B]. This shows the invariance of

L (1), ..., (l).
(iv) Let @ € R**" such that
B, BT =(QB,BIQ"=0B,B1Q"<B,BiQ=0B, Bl
<«Q =diag(Q;, ..., @;+) with orthogonal Q; € R®xr® for 1 i<+ 1. O

For the case of SISO systems, we obtain the following corollary.

Corollary 5.2
Let (A4, b, &) e C}* with identical singular values 6, =06, = ... =0,:= 0,6 >0.
Then there exists an equivalent balanced system (4, b, ¢ such that
(i) bbT = cc = diag (4,0, ..., 0), with 4, >0
(i) we have

A= —_—ldiag (24,0,...,0)+ 4
20

where A is skew symmetric.

(iti) the systems equivalent to (4, b, ¢) and having the structure given in (i) and (i)
are precisely those systems that can be obtained from (4, b,c) by an
orthogonal state-space transformation of the form

Q=diag(s;,0), si==1
with orthogonal § € R~ 1x(~1),

Proof
The proof follows immediately, since rank (bb") = 1. )

Step 2

In Step 2, the B-matrix is transformed to its final form. This is achieved by
applying a certain QR-factorization, which will be given in Lemma 5.4.
Lemma 5.3 will frequently be needed.

Lemma 5.3

Let acR", a#0, then there exists orthogonal Qe R"*" such that a'Qt=
(a;,0,...,0), a; >0.

The orthogonal matrices @ preserving the structure of (a;,0,...,0), ie.
(a,,0,...,000T = (b, 0, ..., 0) with b >0, are of the form

1 0 ... 0

0
0=

\=))

0

where § € R*~1*®~1 i5 orthogonal.
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Proof
The first statement is clear. To show that the class of all orthogonal Q such that
@a,...,00Q"=(,0,...,0,b>0

has the described form, first note that necessarily b=a,. Write Q" =(q;;); <ij<n-
Then

(@1,0,...,000" =(q,101, 91281, ---» 41a81)
=q,;=1 and ¢, =..=¢4,=0
From the orthogonality of QT we have
g119;; =0 for 2<i<n and hence ¢;; =0 for2<i<n

T
This shows the postulated structure of Q. 0

Lemma 5.4

Let M € R"*! with rank M = n. Then there exists an orthogonal matrix Q, € R**"
and a set of natural numbers 1 <i; <i, < ... <i, </ such that

0 .. 00 m; x ... x x x
0 .. 0 0 ... 0 my, x
Mo:= Q0M= . .
0 .. o 0 .. 0 0 O0 ..0 m; x

with m;; >0 forall 1<j<n.
M, is unique, i.e. the only orthogonal matrix Q € R"*" such that QM has the
same structure as M, is Q=1,.

Proof

Write M = (m,, m,, ...,m;)), m;e R"for all 1 < j <. Let i; be such that m; # 0 and
m;=0 for all 1 <j<i,. Choose Q; € R"*" such that

My,
leij=: . Wlth mlix >0
0
So

0 0 my,|x x

0
Ml = QIM = ; Mz
0 0

with rank (M,)=n-—1.
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By Lemma 5.3, the orthogonal Q such that

0 ... 0 mylx .. x
0 .. 0

QM1= .
0 0 |x X

have the form

Q =diag (1, Q) with orthogonal Qe Ro-DxE-D

for my;, >0

653

Now proceeding in the same way, we can first bring M, to the desired form. The fact
that rank M = n implies that this process can be continued inductively until the

postulated structure is attained.

O

We can now prove the following proposition, which states the final form of the

B- and C-matrix.

Proposition 5.5

Let (4, B, C) be given in the form derived in Proposition 5.1. Then there exists

Q~=diag Q1) Qi Ir(l+1))

with orthogonal Q; € R"@*"® for all 1 <i<!and a set of integer-valued indices

1<, 1)<, 2)< ... <tli, ) <m for 1<i<l

such that for (4, B, C):= (QAQ", 0B, CQ"), B and C have the following structure.

B-matrix
For
B(1)
= ,  B(i)=(Bi)g) e RrOxm™ for 1<i<l!
(l) 1<s<r(i)
1<t<m

0

we have
(i) >0 forall 1<s< i)

b(i), =0 for all 1 <t <i,s) and 1 <s<r(i)

ie.
[0 ... 0 b))
o ... 0 0 0 ... 0 bi)au2

Bi)=1 . . . . 0 0

[0 ... 0o 0 .0 O

b(Dryeitran -+
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C-matrix
C = (U 0) dlag (ﬁ.%/zlr(l), ceey AII/ZI,(I), 0, cesy 0)
for some unique U € RP*" such that UTU =1,,.
The indices {¢(i, 1), ..., t(i, /(i))}, | < i<, are invariants for system equivalence. The
systems equivalent to (A, B, C) having the derived B-matrix structure are precisely

those systems that can be obtained from (4, B, C) by an orthogonal state-space
transformation of the form Q = diag (I,,, Q,+,) with orthogonal @, € R¢*Dxrt+1)

Proof
Structure of the B-matrix
Write i
B(1)
B=| _
B(l)
o

where B(i) e R®*™ for 1 i<l

Then rank (B(i)) = r(i) since B()B(i) = 41,4, 4;> 0.

Now apply Lemma 5.4 to show that for all 1 < i< there exists an orthogonal
Q; € ROxr® guch that B(i):= Q,B(i) has the desired structure. The invariance of the
indices {t(i, 1), ..., (i, ni))}, 1<i<l, and the last statement also follow from
Lemma 5.4.

Structure of the C-matrix
Since CTC =diag (4, 1,(3)> ---» 4lyqy 0, ..., 0), we can write

C=(C 0), CeRexr
with
C*C = diag (A, L,1y» ---» Alvp)
Normalizing the columns of C we set:
U:= Cdiag (A7 1,4y, ..., & 12 1q)
Then UTU =1, and
C=(C 0)=(U O0)diag(A}?1L,, ..., 4}*1,4,0,...,0)

The uniqueness of U follows in a straightforward way. mi

Specializing to the SISO case we have the following corollary.

Corollary 5.6
Let (4, b, &) be given in the form derived in Corollary 5.2. Then there exists

Q~=diag(s31n—l)a s==1
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~

such that for (4, b, ¢):= (QAQ", 0b, éQ") we have
b=(b,,0,..., 0%, b,>0
c= (slbI’ 0, ceey 0)

The systems equivalent to (A, b, ¢) having the derived b-vector structure are
precisely those systems that can be obtained from (4, b, c) by an orthogonal state-
space transformation of the form Q = diag (1, Q,) with orthogonal @, € R®~V>®~1,

A

Step 3
Here the final structure of the A-matrix is derived. We need the following little
lemma.

Lemma 5.7
Let

A, 0
A—_- e|R(n+m)><(n+m)
0 A,

with arbitrary 4, € R"*" and skew-symmetric 4,, then A has an eigenvalue on the
imaginary axis.

Proof
Since A, is skew-symmetric, there exists we R and xe C™, x #0, such that

A, x = iwx. Setting
0
X= eCctm
x

we have AX = iwX. 0

Proposition 5.8

Let (4, B, €) be given in the form derived in Proposition 5.5. Then there exists
Q =diag(l,,, Q) such that we have for

- A A
A= QAQT=I: 11 12]’ Alleeroxm
A21 A22

-1
)] Ay, =Edlag A1 Ly o /ltIr(t))"'/fu
where A4,, is skew-symmetric,

(2) there exists ge N, ¢ > 1 and a set of indices

(g(1), K1), ..., (g(g), H(g)) e N x N
with
1=h(l)< ... <h(i)<h(ii+ 1)< ... <n—ry
1€g(g)< ... <gli+ ) <gli)< ... <1y
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such that for

Ai; =i(ag)
1$S$ro
1<€t€n—rg
we have
Ay >0 for 1<i<yq
agiy =0 for t> h(i) where 1<i<gq
a, =0 fort>h(i) and s > g(i) where 1 <i<gq
ie.
[ x X .. X x x ]
x X o X Ggoma O
x x x 0 0
A= : : : :
12 X X ... X 0
0 0 0
: L i
3) Ay =—A5,
C)) [ 0 ay ]
-‘az 0 a3 O
A22 = —a3 0
O an—ro
- —an_'o 0 -

with
=0 ifi=h(s) for some 1 <s<gq
a;
>0 otherwise

The indices g, (g(1), h(1)), ..., (g(q), h(g)) are invariants for system equivalence.

The representation (4, B, C):= (QAQ", OB, Q") is unique, i.e. if (4,, B;, C,) is
equivalent to (4, B,C) and is given in the form derived in Steps 1-3, then
(A,,B{,C,)=(4,B,C).

Proof
Write

/'i'=|:l‘1“ {12]’ Z“E[Rroxro
Ay Az
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To derive the desired structure for A,, and A4,,, ie. the indices (g(1), K(1)), ...,
(g(9), h(q)), we proceed stepwise at the same time reducing the freedom to perform an
orthogonal state-space transformation.

(i) Reduction of the freedom to perform a state-space transformation from
Q1 = diag (I,,, 0,), @,eR"r9x=r)  orthogonal, to Q,=diag (1,4, 0,),
0, € R#=ro-Dx(-ro~1) orthogonal.

From Proposition 5.5 we know that all systems equivalent to (4, B, ) having the
structure stated there can be obtained from (4, B, €) by an orthogonal state-space
transformation of the form Q, = diag (I,,, §,), §; € R®~"@*@~r0) orthogonal.

Consider

~

a4
AlZ =.

a,,
where d; is the ith row of 4, ,.

We first have to show that 4,, #0. To do this, note that 4,, is skew-symmetric
(Proposition 5.1). Thus by Lemma 5.7 A,, =0 would contradict the asymptotic
stability of 4. So we can find g(1) such that gy #0 and d;=0 for j > g(1).

By Lemma 5.3, there exists an orthogonal Q, € R®~ o) x n=ro) such that d,,,0] =

(@g1y150, .., 0) for ayyy, >0. Let (4, B, C):=(Q,A0],0,B,CQ]) where Q, =

diag (I,,, Ql ). Writing
A A
AZI A22

we have B
X X .. X |
X
sz—zle—{— g(1)1 0
0 0 .. 0
| 0 0 ... 0]

From Lemma 5.3 and Proposition 5.5, it follows that all systems that are equivalent
to (4, B, C) and have the same structure as (A4, B, C) can be obtained from (4, B, C)
by a state-space transformation of the form

Q,=diag(l, ,,0,), @, eROTo~Dxt-ro=1) grthogonal
This also shows the invariance of the index (g(1), h(1)) := (g(1), 1).

(ii) Reduction of the degree of freedom to perform a state-space transformation
from

=diag(l, +,0,), @, € RO o~ Dx-ro=1) orthogonal
to
Qs =diag (43, @3), @R~ 2x®=r0=2) orthogonal
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Assume that (4, B, €) is given in the form derived in (i). Write

- 1‘711 A, e 0 a
A= ~ ~ ) with A22 = T = € R("—ro)x(n—ro)
Ay Az —a A,

For Q, = diag (I, 0,), §, orthogonal, we have
111 12{12 diag (1, Q'*g)
0 aQ}

Q. ;fQ; = . ~
diag (1, 0,)A4,, .
- Q~2 a’ Qz Ajs Q%

Case 1: a+#0. By Lemma 5.3, there exists an orthogonal Q, such that aQl =
(a5,0,...,0) for a; >0. All orthogonal @, such that (5,0, ..., 0)0% =(43,0,...,0)
with a1>0 are of the form §,=diag(l,0;) with orthogonal
Q~3 e R('l—fo- 2) x (n—ro—2)-

Let (4, B, C):= (QAQT", 0B, CQ™) where @ =diag(l,, 1, @,). It thus follows that
all systems equivalent to (4, B, C) having the same structure as (4, B, C) can be

obtained from (4, B, C) by an orthogonal state-space transformation with Q;=
diag (I,,4 2, 03), 03 € R®ro-2x(1=ro=2),

Case 2: a=0. This implies a, =0. Now write 4,, =:(A4},|4%,), where A}, e R™.

.

We have to show that A2, #0. If we assume A%, =0, then A can be written as

-

. [4u o ;
A =[ (;l i with A,, € R#~ro~ Dx(#=ro=1) gkew-symmetric. Thus by Lemma 5.7
22
we have a contradiction to the asymptotic stability of A. Write
a,
A, =| 1 |, afeR7! for1<i<r,
a,o
Since 42, #0, there exists g(2) such that a,,, 0 and a;= 0 for all j > g(2). From (i)
we have necessarily that g(2) < g(1). Set (g(2), h(2)) := (g(2), 2).
Now choose §, orthogonal such that
a2y Q5 = (@g2pn2)> 0 -+, 0)s  Bgiayn2y >0

and let (4, B, C):= (Q4Q", 0B, CQ") where Q =diag (I,,+,, @>). Then

- X X X ... X7
X X X X
. . X @y 0 .. O
Ay, =4, diag(1,00) = . ‘0
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By the standard argument, we obtain the desired reduction of the freedom to
perform a state-space transformation and the invariance of the index (g(2), 2).

(iii) Starting with Q;=diag(l,,,,,Q3), @3€R" 0~ 2x("r0~2 orthogonal, the
same procedure as in (ii) is repeated inductively until the only freedom to perform a
state-space transformation is given by matrices of the form Q =diag(l,_,, +1).
Thus assume that (4, B, ) has the corresponding form. Write

- 4, Ay, . p 0 a
A= ~ ~ Wlth A22= eszz
A21 A22 —a 0

and 4, = (A1,14%,), A} e RT2,
Assume the last index derived is (g(1), h(171)).

Case 1: a#0. Then q=ri. Let (4, B, C)=(QAQ", 0B, CQ") with Q =diag(l,_,,
sign (a)). Then (4, B, C) has the postulated structure with a,,_, := |al. It follows that
the only orthogonal Q € R"*" preserving the desired structure is Q = I,,.

Case 2: a=0. Then g=m+ 1 and «,_, = 0. Consider A2, as defined above. The
usual argument leads to 42, being non-zero. Write

a,
A,=] 1 |, a;eR forl1<i<r,

a,,

Let g(rii + 1):= g(q) be such that a(g) #0 and a;=0 for j>g(q). The structure of
A, , implies that 1 < g(q) < g(q — 1). So (g(q), h(q)):=(g(g), n —r,) with n—r, = h(q)
> h(q — 1) = h().

Now let Q = diag (I, ,, sign (ag,)). Then (4, B, C):= (QAQ", @B, CQ") has the
desired form with gy, : = |yl By the usual argument, we have the uniqueness of
A which implies the uniqueness of (4, B, C) and the invariance of g and (g(g), h(9))-

This completes the derivation of the structure of A,, and A,, as given in the
statement of the proposition. The properties of A, and A4, follow from Proposition
5.1. O

In the SISO case, we have the following corollary.

Corollary 5.9

Let (4, b, &) be given in the form derived in Corollary 5.6. Then there exists
Q =diag (1, Qy), Qo € R"~1>®~1) orthogonal, such that we have

aq oy
—a; 0  a, O
A=QAQ" = —a, O
0 0 %y
- T %-1 0 _
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Rephrasing the results of Steps 1-3 we arrive at the main result of this section.

Theorem 5.10

The representation constructed in Propositions 5.1, 5.5 and 5.8 defines a
canonical form for the set of minimal and asymptotically stable continuous-time
systems with identical singular values.

6. A canonical form for CZ™ the general case

In this section, a canonical form I",: C2™— C2™? will be derived. This is done by
considering for a system (4, B, C) e C>™ the subsystems corresponding to identical
singular values. It is then possible to bring each of these subsystems to the canonical
form derived in § 5. This already defines a canonical form for (4, B, C).

6.1. MIMO systems

In the following theorem, the canonical form will be stated for arbitrary
dimensions of the input and output spaces.

Theorem 6.1
Let (A4, B, C) e C?™ have singular values 6, >0, > ... >0, >0, with o; having

multiplicity n(j), for 1 <j<k, Z n(j) = n. Then there exists an equivalent system
(4, B, C)=:T((4, B, C)) e Co™? wnth the following properties.

B-matrix
(1) Partition

Bl
Bk
with B/ e R")*™ then for 1 <j<k,

BI(B))" =diag (A9 1 (1), A9 Ls2ys -+-» MO Ly Os <5 0)

such that 29 > A9 > ... > i{},> 0 and
IU) . » * .
.Zl r(j; i) =:r(j) < min (p, m)
(2) For each 1< j<k, B’ has the following structure:
B(j; 1)

j=

B(j; I(j))
0
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with B(j; i) e RU?*™ for 1 <i<l(j). The precise structure of
B(j; i) =:(b(J; Ds)
1

is given by the indices:
1<Hj;i, )<t(j;i,2) < ... <t(ji, r(j;i)) <m for 1 <i<l())
We have
b(j; D)9 >0 forall 1 <s<r(j;i)
b(j; i)y =0 forall 1<t<1t(j;i,s)and 1 <s<r(j;i)

ie.
[0 ... 0 b(j )iz ]
0 ... 0 0 v 00 BOJs Doy - b(j; i)
B(j;i)= 0
[0 .. 0 0 .. 0 0 0 b Dgamstin |
C-matrix

C admits the representation
C=(C* ¢c* ... C", CieRexm
with
C'=(U 0)diag ((AP)?1;y, ..., (A2 154505 0, ..., 0)

for unique U’ € RP*™W such that (U/)"U =1, , for 1 <j<k.

A-matrix

A admits a partitioning 4 = (A(i, /)); < j<x With A(, j) € R"@*"D for all 1 <i,j <k,
with the following properties.
(i) Block diagram entries A(j, j):

A(j, ), 1 €j <k, can be partitioned as

. A(j,j)ll A(j,j)lz R j) j
A(],]) = l: o . , A(],])“ € RroU) xrol)
Az AU D2z

with

. -1 . . ..
1) A(j, s = 9. diag (/1(1])1«1;1), ey 11(8)1,(,';1(,))) + 14(],])11

J
where A(j, j),, is skew-symmetric.
(2) There exists g(j) € N, q(j) > 1 and a set of indices

(5 1), h(j; 1)), ..., (€(J; 9()), h(js q(/)) € N x N
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with

1=h(j; )< ...<h(j;)<h(ji+1)< .. <n—rol)j)
1<g(iq(iN< ... <g(i+1)<glsi)< ... <ro())

such that for

A(j,j)12 = :(a(j)st)l <s<r
12:Sn(()j)—ro(i)

we have
a( g omn >0 for 1<i<q())
A g =0 for t > h(j; i), where 1 < i< q(j)
a(j)e =0 for t > h(j;i) and s > g(j; i), where 1<i<q(j)
ie.

x x o x a( g
x X ... X 0
A(jyz2= x

al J)ej 1m0

0
0
0

0 0
3 A(ja.j)Zl = _A(]',J')-{z
@
0 o)),
—a(j), 0 ()3 0
A(j, )22 = —a(j)s 0
0 0 %y~ rots)
| = %t~ roth 0
with
=0 ifi=~h(j;s) for some 1<s<q())
of j); .
>0 otherwise
(i) Off-diagonal blocks A(i, j), (i # Jj):
AG,j) O N o
A, j) = G.J) with A(i, j) =:(a(i, j)s) e Rro@xroli)
0 0 1858
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where

1
a(i’ j)st = m(ajb(i)s b(]);l' - O'iC(i)IC(j)t)

with b(i), the sth row of B’ and c(i), the sth column of C'.

The so-constructed map I': CP™ — C?™? defined by (4, B, C)»T((4, B, 0)) is a
canonical form for system equivalence on C?™.

Proof
We can assume without loss of generality that (A4, B, ) is balanced with

z = diag (0-1 IH(L), :"fkln(k))'
Partition (A, B, C) as
A=(AG,/)1<ij<x where 4(i,j) e R =0 for 1<i,j<k
-2
B=| : with Bl e R* =™ for 1 <j<k
B
C=(C"...¢% with CleRP*"0 for1<j<k
Now consider for 1 < j < k the subsystem (A( j, j)), B, C?) which is balanced with

identical singular values o; (Theorem 2.5). By Theorem 5.10 there exists @/ € R"0*"0)
such that

(AGj, ), B, CF) := (QPA(j, )(QY)T, Q' B, C(Q)T)
has the desired structure.
Let

(4,B,C) =(Q4Q", 0B, CQ")

where Q = diag (Q?, @2, ..., Q). The uniqueness of the representation (A(j, j), B/, C’)
for 1 < j <k, implies that (4, B, C) is uniquely defined.

It remains to be shown that A(i, j), (i # j), has the required structure.

Let A, j) =:(a(i, j)«)

1 <s<n(i)
1 €t<n(j)

Considering the Lyapunov equations component-wise and using the notation
introduced in the statement of the theorem, we obtain

oja(i’j)n + aia(j’ i)u = _b(l)sb(]);r
aa(j, s + 0:a(i, f)a = — (i c(j);
ai, j)s

a(J, s

aifa] 1 [0 —o][bDb0
a(jids]| =05 | —ai o; ]| DTk
The result follows by noting that
b(j);=0 and c(j),=0 for ry(j)<s<n(j) a

Solving for l: :| we obtain:
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6.2. SISO systems

As an illustration, the previous theorem is now specialized to the case of SISO
systems, which is interesting in its own right. Here the structure of the canonical form

is considerably simpler.

Corollary 6.2

Let (4, b, & e C}'! have singular values ¢, > g, > ... >0, >0 with multiplicities
k

n(1), ..., n(k), Z n(j)=n.

j=1
Then there exists a canonical form (4, b, ¢) := T'((4, b, &) € C1'1** of (4, b, &) such
that
) BT =(b,,0,..,0,b,,0,...,0, ..., 0, .., )
n(1) n(2) n(k)
with b; >0 for 1 <j<k.
(ll) c= (slbl, 0, ceey 0, Ezbz,& ...ﬁ, ooy Ekbk, 0, ceey 0)
n(1) n(2) n(k)

where s;= +1 for 1 <i<k.

(i) For 4 =(A(, j)); <ij<k> A, J) € R "9 we have the following.

(1) Block-diagonal entries A(}j, j):
forall 1 <j<k

[ a(j,j) ik
—al(j), 0 a(j)2
—a(j), 0 a(j)s

0

—b?

20,

with a(j, j) =

0

- “(j)n(j) -1

a(j);>0 forall 1<i<n(j)—1

(2) Off-diagonal block A(i, j):
forall 1<i,j<k,i#j:

ai,j 0 ... 0
N 0 0 ... 0
AG, j)= .
0 O 0
. . -1
with a(i, j) = ————b;b;.

sisj0,+0'j

= S.'sjA(j, i)T

“(j)n(j) -1
0
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Wilson and Kumar (1983) have shown that each system (A, b,0eCi! is
equivalent to a system (4, b, ¢) e Ci'** having a particular sign symmetry, ie. there
exists S = diag (5,55, ..., 5,), 5; = + 1 for 1 <i<n, such that

AT =SAS
cT=Sb

The following proposition shows that the canonical form derived for SISO
systems also has this sign symmetry.

Proposition 6.3

Let (4,b,c)eT (Cl 1), then (4, b, c) has the sign symmetry with the sign matrix
S =diag (s, 1), 52 I,,m, v S T,u) where sl, ..., S are the signs appearing in the
parametrization of c, and [, = diag (1, — ) e Rkx*,

7. Parametrization

Theorem 6.2 shows that each system in C?™ can be represented in a particular
form. The following theorem shows that the converse is also true, i.e. each system
which has such a form is automatically balanced, minimal and asymptotically stable.
In fact, the theorem can be formulated in a slightly more general form.

Theorem 7.1

Let (A, B, C) e R**" x R**™ x RP*" be parametrized in the following way.
Let X =diag (01,4, 621a2)s > Oxlngy) be such that 6, >0,> ... >0,>0 and

k
Y n(j)=n.
i=1
B-matrix
For all 1 <j<k, B’ e R"*™ js constructed such that
B/(B))' = diag (Y, 49, ..., 49,0, ..., 0)
with 49 > 0 for all 1 <i<ro(j) < nl())-
Bl
Set B:= | :
B*
C-matrix
For all 1 <j<klet Cfe RP*") be such that
C'=(U’ 0)B(B)")'"

where U’ e RP*"U such that (U/)TU/ =1
Set C=(C* C* .. C".

ro(j)*
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A-matrix
A admits a partitioning 4 = (A(, })); <; ;< With
AG, ) e RMOx"D) for all 1<i,j<k
where the blocks are parametrized as shown below.
(i) Block-diagonal entries A(j, j):
A(j, j) can be partitioned as

A1y AGL) -
A(j’j)=[ PR LRI ith 4G, )y, € R0
A(js )21 A, )2z

-1 .. oo . L L. L
(1) Set AGj, )11 = 5~ diag (4, 4, .., Hop) + AU Jus- A()yy an arbitrarily
parametrized skew-symmetric matrix.

(2) For 1< ¢(j)<min (n — ro(j), ro(j), 4(j) € N, choose a set of indices
(8(js 1), h(j; 1)), ..., (8(Js a(/)), h(j; g(j))) e N x N
such that
1=h(j; 1)< ... <h(j; ) <h(j;i+ 1)< ... <n—rs(j)
1<g(ig) < ... <glii+ 1) <g(j;i) < ... <ro(j)

Let A(j, )12 =:(a(j)s:) be such that
1<s<ro(j
1<

(<R rol
a(j)g(j;i)h(j;i) #0 for 1 <i<q())
a( j)g;ne=0  for t > h(j; i) where 1 <i<q(j)
a(j)y =0 for t > h(j; i) and s> g(j; i), where 1 <i < q())

(3) Set A(j, )21 := —AT(j, )12

(4) Set
[ 0 (/)2 ]
—a(j), 0 s .. 0
—aj); O
A(j, J)22:= s
0 0 8 fngi) - roti)
L — (D= roti U
with

_V#0 ifi#h(j;s) for all 1 <s<q(j)
a(j)

€ R otherwise

(i) Off-diagonal blocks A(i, j):
Set
A(, J) := (a(i, j)): A, j<k i

<n(i)
<n(j)
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with
.o 1 » » T » T -
a(i, j)oe = —5——= (0;b(0)b( j)i — 0:¢i)s c(j):)
O'i - 0]
where b( j), is the sth row of B and c( j), is the sth column of C’.

Then the so-defined system (A4, B, C) is in CZ™? with observability and controlla-
bility gramian X.

Proof

It is straightforward to check that (4, B, C) and X satisfy the Lyapunov equations as
given in Theorem 2.3.

To show the asymptotic stability of 4, we show first that A(j, j) is asymptotically
stable for all 1< j < k. Since

0;A(j, )+ 0;AT(j, j) = — B (B) (*)

it follows from Lemma 2.6 that Re (1) <0 for all A € a(A4).

By constructing a contradiction, we show that Re (4)<0 for all 4 € a(A(j, J))
Assume that there exists A=iw, we R, and x € C"?, x #0 such that A(j, j)x=Ax
= iwx. From (*) we obtain

_ T BI(B)Tx = 0,(xT Aj, j)x + £ Aj, )Tx) = 0,(iwxTx + iwXTx) =0
=(B)'x=0
= B/(B)Tx =0
But
B/(B))T = diag (A9, ..., 49, 0, ..., 0)
with 19’ > 0 for all 1 <i<ro(j). So x=(0 X)T with £e C"V 770,
Now write
AL = [A(j,f)u A D12

Ve .. ’ A(j,j)“epro(.i)xro(i)
A(j, )21 A(]J)zzil

Since
. o 0 . 0
AGD| _j=w]
X X
we have
A(j, J')lzJE =0
and

A(J, j)22 X = iwx

This allows us to show component-wise that X =0.
erte x~T = (xl, X2y eees xn(j)-,ou)).
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Owing to the specific structure of A(j,j);, we obtain from A(j, j);,X =0 that

Ae(jmn X1 =0

=x; =0 since ay; ;. #0

From
0 0
.. X2 . X2
A(f, )22 . =mw .
Xn(j) - ro(i) Xn(j) —ro(j)

we obtain by considering the first component of A(j,j),,X that
#(j)2x; =iw0=0

Case 1: o j), #0. This implies x, = 0.

Case2: afj), =0.Then(g(j; 2), h(j; 2)) = (g(J; 2), 2) and by assumption ay ;s .z # 0.
Thus

- : n
. gm0 X2
AG, %= =0
0
| 0 _
=>x2 = 0

Now proceed inductively to show that x; =0 for 3 <i < n(j) — ro(j) by considering

A(j, 22X =1wx i afj); #0
and
A J)12X=0 if a(j);=0
This shows that X =0, and hence x =0.

Thus we have the asymptotic stability of (A(j,j), B/, C/). Controllability of
(A(j, j), B?) follows from Lemma 2.6. The same argument shows controllability
of (A7, (C’)") and hence observability of (C’, A(j, ). Thus we have minimality of
(4(j, )), B', CY).

The result is now a consequence of Proposition 4 in Kabamba (1985). 1

The above parametrization result is particularly interesting from the point of
view that the parameters can be continuously varied within a region, which is given
in a straightforward way, without hitting a non-minimal system. This is in contrast
to other canonical forms, like the controller canonical form, where the regions of
non-minimality are defined by complicated algebraic equations.

8. Model reduction
The next theorem is a generalization of the truncation result given in Theorem
2.5 to the case when a system is given in balanced canonical form.
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Theorem 8.1

Let (A, B, C) be parametrized as in Theorem 7.1 with observability gramian X =
diag (Z,, X,), T, € R*** for 1 <k < n. Let (4, B, C) be partitioned accordingly, i.e.

All AIZ kxk Bl
A= ’ AIIE[R x B= and C=(C1 C2)
A21 A22 B2
Then

(i) (41, By, Cy) e CF™
(ii) If £, and X, have no eigenvalues in common then also (4,,, B;, C;) € cemb,
(iii) For (4, B, C) e I',(C2™), we have (4,,, B;, C;) e [,(CP™).

Proof
The truncations fulfil the assumptions of Theorem 7.1. O

Via the transformation T}, two alternative model reduction procedures are introduced.

Proposition 8.2

Let I',=T.I,T,”!: D7 —» D?™" be the canonical form induced by I,:CE™
—CPmb Let (A, B,C)el,(D2™) have observability gramian X =diag(Z,,X,),
T, e Rk for 1<k<n.

Proof
Note that (4, B, §) e I,(C>™). By Proposition 8.1 (4,,, B, C,) e [ (C;™). The
result follows from Proposition 4.1. 0

Similarly, the truncation property for discrete-time balanced systems leads to
another model reduction procedure for continuous-time systems.

Proposition 8.3

Let (4, B, C) € C®™® with observability gramian X =diag (Z;,Z,), X, e R**¥,
for 1<k<n, such that 6,.,,(X,) > 0mu(Z2). As in Proposition 8.2, partition
T,((4, B, C)) =:(4, B, ) according to Z. Then

(41,,B,,Cy):= Tl‘c-l((zll’ Eu 61))6 e
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Proof
Apply Theorem 2.11 and Propositions 8.1 and 4.1. g

anih

9. Conclusions

Using balanced realizations, a canonical form has been derived for the set of
minimal and asymptotically stable MIMO systems of given order n.

A parametrization result showed that systems of a particular form are necessarily
asymptotically stable and minimal. This permitted us to show that the canonical
form has a certain truncation property.

Two alternative approaches to model reduction have been suggested.
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