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The problem of generalizing the concept of balanced realizations to infinite-
dimensional continuous-time systems is considered. The approach taken is based
on the generalization of a parametrization of finite dimensional balanced
realizations. Using semigroup theory an existence theorem and approximation
results are derived.

0. Introduction

BALANCED realizations for finite-dimensional linear systems as introduced by B.
C. Moore (1981) have attracted a great deal of attention, mainly due to their
interesting properties with respect to model reduction. These properties suggest
that balanced realizations could be useful in considering the important problem of
the analysis and approximation of infinite-dimensional systems.

While Young (1985) and Curtain (1985) developed a realization theory for
discrete-time infinite-dimensional systems in terms of balanced realizations,
Curtain & Glover (1985) as well as Glover et al. (1986) considered the
continuous-time problem for classes of systems with compact Hankel operators.
In this paper a ‘parametrization’ approach is taken to the generalization of the
concept of balanced realizations to infinite-dimensional continuous-time systems.
The way an infinite-dimensional system will be parametrized is a direct
generalization of a parametrization of finite-dimensional balanced realizations. A
justification of this approach is given by a result of Glover & Curtain (1986)
which shows that balanced realizations of a certain class of systems admit such a
parametrization. The motivation behind this approach is that it facilitates the
investigations of structural properties of the approximation of infinite-dimensional
balanced realizations.

The approximation results in Glover et al. (1986) are based on a decomposition
result for nuclear Hankel operators, whereas, in this paper, it is the Trotter—Kato
theorem for the approximation of strongly continuous semigroups of operators
which is the basis of the approximation results. An advantage of this approach is
that it allows us to consider the approximation of systems whose Hankel operator
does not necessarily satisfy a compactness condition. It further allows us to
construct infinite-dimensional systems with a prescribed set of singular values
(Ober, 1986b).

In Section 1, definitions and results for finite-dimensional balanced realizations
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are reviewed. The generalization of a Lyapunov equation to the infinite-
dimensional setting is investigated in Section 2. Section 3 contains the proof of
the central result of this paper, which states that an infinite-dimensional matrix
parametrized in a ‘balanced’ way gives rise to a generator of a strongly continuous
semigroup of contractions. The problem of the approximation of infinite-
dimensional balanced realizations is considered in Section 4. A characterization
result for selfadjoint infinite-dimensional systems is contained in Section 5.

¢* denotes the complex Hilbert space of square-summabie sequences, where
the scalar product is defined by

(x,y) = 2 £

for x = (x;);=1 and y = (¥;);>1 € €>. We denote by L*[0,®) the space of square-
integrable functions on [0, ©). A strongly continuous semigroup of operators with
generator (A, ©(A)) will be denoted by (€“),,. The restriction of an operator to
a set Z is denoted by A |'#. For standard techniques in semigroup theory, refer to
Pazy (1983); for Hilbert-space arguments, see Weidmann (1980).

1. Finite-dimensional balanced realizations
B. C. Moore (1981) gave the following definition.

DeriNiioN 1.1 Let (4, b, ¢') be a continuous-time minimal asymptotically
stable single-input single-output system of order n, i.e.

X =Ax+bu, AeR™" beR"
y=c'x, ceR™.
Then (A, b, ¢") is called balanced if
f e“bbTe dr = f e“ecTe dt=:3,
0 0

where 3 =diag (04, . . ., 0,) > 0. The positive numbers gy, . . ., o, are called the
singular values of (A, b, c¢"). O

To talk about balanced realizations is justified by the following theorem.

TueOREM 1.2 (Moore, 1981) Let (A, b,c') be a continuous-time minimal
asymptotically stable system of order n, then there exists a nonsingular T € R**"
such that (TAT™, Tb, ¢'T™") is balanced. O

An equivalent definition of balance can be given in terms of Lyapunov
equations. These are a major tool in working with balanced realizations.

THEOREM 1.3 (Moore, 1981) Let (A, b, ¢') be given as in Theorem 1.2. Then
(A, b, ¢") is balanced if and only if there exists a diagonal matrix = >0 such that

AS+3AT=—bb", A'Z+3A=-cc".
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In this case,
3= j e“bbTe dt = f e“ece dr. O
0

0
For the case of distinct singular values, the following characterization can be

given. It is a special case of a canonical form in terms of balanced realizations
(Ober, 1986a).

TueoReM 1.4 Let (A, b, ¢") e R x R™*' X R'™". Then (A, b, c") is a minimal
balanced realization of an asymptotically stable system with distinct singular values
oy, ..., O, if and only if

b=[b1,...,b,,]T, b;#0 forl<i=<n,

c=[s1b1,...,5.b0.]", si=%1 fori<isn,
§;8;0; + Ojl1<ij=n

The concept of a dissipative operator is important in semigroup theory (Pazy,
1983).

DernmioN 1.5 Let (A, D(A)) be an operator on a complex Hilbert space. A is
called dissipative if

Re(Ax,x) <0 forallxe D). O

The following theorem, which will be needed later, shows the dissipativeness of
an A-matrix as parametrized above.

A= [ —blbl ] ’
Sis]'ai + aj 1=i,j=n

where b; e R, s;= £1, and 0,>0, for 1<i<n, and 0, 0; fori#j. Then A is a
dissipative operator on C".

Proof. Let x € C". Then Re (Ax, x) =4((A + A")x, x). We have
AS+3AT=-bb", A'Z+IZA=-cc,
where ¢=:S5b. Thus
(A+ANZ+Z(A+AT)=—(bb" +cc").

Let Ao R be an eigenvalue of the symmetric matrix A + A", with eigenvector
x;#0; then

THEOREM 1.6 Let

(%0, (A + AT)Zx,) + (xo, Z(A + AT)xo)
= ((A + Ao, Zxo) + (xo, Z(A +AT)xo)
= 2Ao{x0, Zxo)
= —(xo, (bbT + cc")xy) <0
> A =0
Thus A + AT is negative semidefinite, which implies the result. [
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2. A Lyapunov equation for infinite-dimensional systems

The characterization of finite-dimensional balanced realizations, as given in
Theorem 1.4, is taken as the starting point for the generalization of the concept of
balanced realizations to infinite-dimensional systems. This approach is further
motivated by a result (Glover & Curtain, 1986) in the connection of the
derivation of a balanced realization for a certain class of systems. It follows easily
from their result that a balanced realization (A, b, ¢") of such a system can be
parametrized as

b=[b1,b2,...]T, b,¢0 forlSi<°°,
C=[s1b1, 32b2, “ e ]T, §; = +1 for 1$l<w,

and the generator A has a matrix representation given by

A= [i] .
8;8;0; + Ojl1=i j<x

In what follows, we will thus be concerned with the examination of infinite-
dimensional systems that can be associated with the matrix-triple (A4, b, ch),
where

b=[b1,b2,..-]T€€2, biER forlsi<0°,
C=[S1b1, S2b2, [P ]T, §; = +1 for 1$i<w,

A= [_—_QL] ,
S,'S}-Ui + O'j 1=i,j<o

such that (0;);», is a bounded sequence of distinct positive numbers.

Note that we have the formal identity AT = SAS for S := diag (s, 52, . . . ).

The next two sections will be concerned with showing that the matrix A can be
associated with a generator of a strongly continuous semigroup of operators.

We will need the following assumptions on the choice of parameters: the
sequences, (b;)i=1, (8§:)i=1, and (0;);>; are such that

(A) the rows and columns of A are in ¢
(B) AZX defines a bounded operator on ¢2.

In what follows, we will assume (A) and (B).

ExamrLE 2.1 Conditions (A) and (B) are fulfilled if (s;);»; is constant for all
ieN, ie s==1.

Proof. Let
roof. b

ai = _b‘(—]-—-)
S,'Sjo,' + Gj 1=j<oo

be the ith column of A. Then
© 2

12 b} o bf _
llal13 = b3 Zm ;;lz

j=1

IIbIIz<°°

-%Iw
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Thus the columns of A are in ¢2 Similarly, it follows that the rows of A are in €%
Let AZ=: [dijlléi,j<°°' Then 'dlll = |b,b]|/(1 + 0',/0']) = |b,b,|. Thus

2 2 a5<3 b} 3, bi<w,
j=1i=1 i=1  j=1

which implies that AY is Hilbert—-Schmidt (Weidmann, 1980: Thm 6.22) and
hence bounded. 0O

ExaMmrLE 2.2 Conditions (A) and (B) are fulfilled if 0, > 0,>- - - >0 and (5,);»1
is constant for all but finitely many i € N.

Proof. With the notation as in the previous example,

o b2
=03 >
lla:ll2 ;(sisjai+ai)z (i=1)
< bM||b|3< (for some M > 0)

since the assumptions imply that lim inf;_,., (s;5;0; + 0;) exists. Thus the columns
of A are in ¢2. Similarly, it follows that the rows of A are in ¢2

Write AY=:[G;]1<ij<= With

580, + 0;  8;5,0;/0;+1

(1=i,j<w).

Then

-

2 2 a5<e

j=li=1

since inf {(s;5;(0,/0;) + 1) : 1<i,j <} >0 and b =[b,, b, ... |" € ¢*. Applying
Theorem 6.22 of Weidmann (1980), we obtain the result. [1

We are now going to define several operators in connection with the matrix
A= [aij]lsi,j<m.
(i) Let

. 2.
Amin . @min —>{ix- (2 a,-,-xj) )
j=1 1<i<o

with D= D(An) =span {e; : 1 <i <o}, where ¢; is the ith element of the
standard basis of ¢2.

(ii) A is defined to be such that D(A,,,) is the maximal possible domain of
definition for the A-matrix, i.e.

Anax: D(Apar) = 21 x> (2 a,-,-x,) ,
j=1 1=i<o

with

j=1

D(Amax) = {x = (X)1<i<= € € (Z a,-,-x,-) € 6’2}.
1=i<ec
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Note that, if x = (X;)1<j<e € ¢2, then (X721 @;%;)1=i<w €Xists, since the rows of A
are in 2.
(iii) AL, and AL, are defined analogously for AT, the transpose of A.

We shall denote the adjoint and closure of the operator A, (resp. AlL,) by
Aminand AS, (resp. ALY and ATS), and similarly for A, and AL,

In what follows, it will be important to know whether A, ;,, and A,,, are

closable and in what way they relate to AL, and Al,, and to each other.

Applying standard techniques of matrix operators (Weidmann, 1980) to our case,
we obtain the following proposition.
PROPOSITION 2.3 A%, . =Al . and A, =ALE.
Proof. An, and AL, are formal adjoints; i.e. we have
(Amin®, ¥) = (x, Apiry) for xe D(Amn) and ye D(AL).
Thus Al .. c AX,.
To show D(Amin) € D(Anax), let x € D(A%,). Since e; € D(Ap,) for 1<i <o,

we have
(ei; Ax:inx) = <Aminei) x>

@
= <2 a;:¢;, x>
j=1

=> a;; (e, x) forallieN.
j=1
Thus ! )
ATl = 3, (3 a6y x) ) = 14 el <o
i=1 \j=1
Hence xeD(A5.). So Al =A%, The statement A, =ALY follows
similarly. O
Thus A, and AL, are closed, which implies that A,;, and AL, are closable
with closures AS;, € Al and ALS c AT,
Next, two possible generalizations of the Lyapunov equation for finite-
dimensional balanced realizations
AZ +3AT=—bb"

are considered:
(i) (% AmaxZy) +(x, ZAL.y) = —(x, bb"y) forall x,ye D(AmL..),

(i) (ZAnak, y) + (x, ZAL.y) = —(x,bb"y) forall x,ye D(AL.,).

Note that these two equations are not automatically equivalent. The next
proposition shows that the identity (i) holds.

PRroPOSITION 2.4
(1) If x € D(A].0), then Zx € D(Apmar).
(2) For all xe D(A],.,), we have (Ap.,Z + ZA%,)x=—bb"x, where X and
bb" are both interpreted as matrix operators on ¢2.
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Proof. Since the rows and columns of the matrix A, as defined above, are in €2,
the matrices A and AT can be considered as operators

, AT:->CVixe- (2 a,-,x,-) .
1=i<o

1si<wm j=1

A : (2‘—')CN X (21 aijx]')
<
Consider
S:CNoCV x> (04X, 02, . .. ).

Since sup {g;: 1 <i <o} <o, we have that =[¢? is a bounded operator on ¢
Thus the map ‘

AS+3AT: *>CV:x—>(AZ+ZA I =AZx +3A'x

is well defined.
For x € £, the ith component of (AX + ZA")x is given by

Z Qa;;0;X; + o; 2 a;ix; = Z ai]'(s,'sio,' + O'])xl (Since a; = SiS]-aj,')
j=1 j=1 j=1
= — Y bibx;=—(e;, bb'x).
i=1
Thus we have that A + ZAT= —bb", as an operator, mapping ¢~ into C".

Let x € D(AL.,). Since X : £2— ¢2, we have ZA],.x € ¢>. From bb'x € £* it
follows that

ASx=-3ATx - bb'x € {?,
i.e. 2x € D(Amax), Which proves the proposition. [

Whereas the previous proposition holds even without imposing condition (B),
we need this condition to prove the next result.

PROPOSITION 2.5
(ZAR.x, y) +(Zx, Aqaxy) = —(x, bb"y)
for all x,y € D(Afax)-
Proof. By Proposition 2.4, we know that
(%, ApaxZy ) + (x, ZALy) = —(x, bbTy) forall x,ye D(AmL.0).
It remains to be shown that
(¥, ApaxZy) = (ZATx, y)  forall x,y e D(Ana)-
Let P, be the projection
Poilxi, X2y ooy Xy Xpars - - - ' [x0, o0 00 0,1 I

then

(%, ApaxZy) = lim (x, A;x 2P,y )
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since we have, by assumption (B), that (AZ D(A%.0) = (Amax) (D(AL) is
bounded. Thus

)

(x, ApaxZy) = lim 2 Z a;;0;y;X; = il_fg <ZALax-V, Pn)’)

n—® 1 j=1

=(ZAl.x,y). O

3. The matrix A as the generator of a semigroup

In this section, the question will be considered whether the infinite-dimensional
A-matrix defined in Section 2 gives rise to a strongly continuous semigroup of
operators.

The following two propositions are the cornerstones of the main theorem.

PropositioN 3.1 AS,, is dissipative.

Proof. We first show that A, is dissipative. Let

d [ _blb] ]
n
8;:8;0; + Ojl1<ij=<n

By Theorem 1.6, we know that A, is dissipative. For x = (X;)1<i<w € Dpin, We
have

forneN.

Re (Apinx, x) =Re (A,%,, %,) <0

for n sufficiently large, where ¥, = [x,, e x,,]T.
The fact that AS,, is dissipative now follows from Thm 4.5, p. 15, of Pazy
(1983) 0O

The next proposition strongly relies on the results of the previous section.
PRroPOSITION 3.2
(I - Agn)D(AS) = €

Proof. We show that (I — AS5.)®min= (I — Amin)Omin is dense in ¢% The
statement then follows from Lemma 2.10, p. 52, of Nagel (1986).

Assume [(I — Apmin) Dmin]€ # €%; then there exists xo = (X;)1<i<~ € €> such that
x,#0 and

<y7 x()) =0 forall ye (I _Amin)@min-
So, especially, ((I — Amin)e,, Xo) =0 for all n e N. But
((I —Amin)eny xO) = (en) x0> - <Aminen) x0>

-]
=x,,—2a,—,,x,-=0
j=1
> Xx,= 0, ay,x; forallneN.
n T i
=

Thus xo € D(AL.x) and Al .. xo = Xo.
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From Proposition 2.5, it follows that
(ZATaxX0, X0) + (2X0, Amax¥o) = 2(Zx0, Xo)
= —{(xo, bb"x,),
which is a contradiction to x,#0. 0O
We are now in a position to state the main theorem.

THEOREM 3.3 AZS,, generates a semigroup of contractions.

Proof. The result follows from Proposition 3.1 and Proposition 3.2 by applying
the Lumer-Phillips criterion; see Theorem 4.3, p. 14, of Pazy (1983). O
Remark. Theorem 3.3 implies that A%, is the generator of the semigroup of the
balanced realization derived in Curtain & Glover (1985), provided that b € ¢ and
the parameters (b,);=1, (0;)i>1, and (s;);=; satisfy the above conditions (A) and
(B). O

The previous result allows us to clarify the relationship between AS, Amaxs
ATC d AT
min, al max*

ProrosITION 3.4
(l) An(iin = Amax and A;ncn = A:x-lax
(i) Apax = Al*.

In the special case where S = 1, we have Agnu = Amax-
Proof. (i) We know that AS;, € Apay. TO show that Ay, < A, let
¥ = AmaxX, x € D(Apax)-

Since (I — ASn)Dmin is dense in ¢2, there exists a sequence (X,)1<n<e I Din
such that

Zn= (I—Agin)xn——)x —y= (I_Algm)x (n—)oo)_

Since AS;, generates a semigroup of contractions, 1 is not a spectral value of A4,
i.e. (I —AS,) ! exists and is bounded. Thus,

Xpn = (I _Argin)_lzn_) (I - Agin —I(I - Ancm:in)x =x (n_> °°):
Arginxn_:xn_zn_)x_(x_y):y (n_>°°)'

So y = AS,.x; hence Ap.. = ASy,. The identity ALS = Af., follows similarly.
(ii) From (i) we have that ALS = Ap... But

A, =ArE=ATCH=AT* 0O
Remark. In view of this result, we shall write A:=A_., =AS, and, similarly,
AT:=AL, =AlC.

For the case $=+I, i.e. when the A-matrix is symmetric, we have the
following stability property.
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THEOREM 3.5 Assume (8;)1<i<« is constant and b; #0 for 1 <i <o, Then
ex—0 as t—> forxe -

Before we can prove this theorem, we need the following two lemmas.

LemMa 3.6 Forall s=0and x,y € D(AT), we have

L (e4'x, b)(b, e“'y) dt = —[(Ee‘ATx, e“"'y)]f),
where (€"),mo is the adjoint semigroup of (€*)so, which is generated by
T

A'.
Proof. We have

d . .
@ (Ze'x, ey) = (ZATey, ey ) + (Zex, ATey)

= —(Ze“'x, bbTe"'y) = —(Ze“'x, b) (b, e“'y)

for x,y € D(AT). The last equality holds by Proposition 2.5. Note that x € D(AT)
implies that e“'x e D(A") for 0 <t <, The result follows by integration. O

Lemma 3.7 Assume S= I Then 0 is not an eigenvalue of A if b;#0 for all
ieN.

Proof. Assume there exists xo€ D(A), with x,#0, such that Ax,=0. By
Theorem 2.4(d), p. 5, of Pazy (1983), we have

t
f e Axy ds = e“xy — xo,
0

which implies that e“x, =x, for all ¢ € [0, ). By Lemma 3.6, we obtain

f (b, e“xo)|* dt = L (B, x0) > dt = —[(Ze*xo, e“xo) ],
= —[(Zxo, xo) ]}, (for all s =0)
=0
> (b, x)=0.
Applying the Lyapunov equation, it follows that
ASx,+ ZAxo=AZxg=—bb"x,=0.

Thus the closed nullspace of A is invariant under 2. But the closed invariant
subspaces of X are of the form

span®{e;:i e #} for some index set $ = N.

Hence Ae; =0 for some i€ $. So, (b, e)=>b,=0 for some ie.$, which is a
contradiction to the assumptions on . U

Proof of Theorem 3.5. Since A is selfadjoint, the result follows from Thm 22.3.2
of Hille & Phillips (1957). O
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4, Finite-dimensional approximations

In this section, finite-dimensional approximations of an infinite-dimensional
balanced system are considered.
Let (A, b, c") be the balanced system constructed in the previous section, i.e.

—b.b,
A=[4] N b=[b1, bz,...]Tegz, b,-GR,
$:8;0; + Ojlisi,j<o
T =diag(0y, 03,...), S=diag(sy, s, ...), s==1,
c'=>b"S,
such that conditions (A) and (B) are satisfied.
For n €N, let A, be parametrized in the same way by

b,:=[by,...,b,,00,...], £,:=% §:=8.

Since A, (n € N) has only finitely many nonzero entries, A, defines a bounded
operator on /2. Because the parameters of A, satisfy the conditions of Theorem
3.3, A, (n eN) generates a semigroup of contractions.

Note that (A, b,, &) :=(A,, b,, b1S) can be interpreted as an n-dimensional
system. If moreover b,#0, for 1<i=<n, then Theorem 1.4 shows that
(A,, b,, &) can be considered as an n-dimensional asymptotically stable minimal
system.

The following theorem of the Trotter—Kato type is the key result in this
section.

THEOREM 4.1  Let the operator A (=AS.,) be given as in Theorem 3.3. Then, for
(A,) =1 defined as above, we have

edrix—sely (n—w,t=0,xe ).
The limit is uniform in t for t in bounded intervals.

Proof. Since lim,,_,., A,e; = Ae; for all i e N, we have that

lim A,x = Ax

n-—»o

for all x€ Dy, In the proof of Proposition 3.2, we have shown that
(I = A)Dpin = (I — Apin)Dmin is dense in ¢* Since A, generates a semigroup of
contractions for all n € N, we have the result by applying Thm 4.5, p. 88, of Pazy
(1983). O

For a system (A, b, ¢"), the observability operator 6—if it exists—is defined by
0: > LH0,x): x—(t— (c, e“x)).
The reachability operator R—if it exists—is given as
R:L*[0,®)—>¢*:u Hf e“bu(r) dt.
0

In order to relate the observability operator to the reachability operator, we need
the following Lemma.
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LEMMA 4.2 Let A be given as in Theorem 3.3. Then
SAS=AT, Se“S=e“T.

Proof. We  have A|Dupin=S(A"Dmin)S =S(A™Dnin)S. Thus A=
(A1 Dmin)® = [S(AT[Dpin)SI¢ = S(ATI Dpin)°S = SATS. The second statement
follows from the remarks on similar semigroups of Nagel (1986), p. 13. O

THEOREM 4.3 Let (A, b, ¢") be an infinite-dimensional balanced system, with A
as in Theorem 3.3. Then:

(i) 0 and R are bounded.

(ii) R=S6*.
(iii) If (64)n=1 and (R,),= are the observability and reachability operators of the
approximating systems (A,, b,,, €1),=1, then

6,— 0 weakly, R,— R weakly.

(iv) If we have, moreover,

j e“bbTe dt = f e“'ec’e dt = 3 = diag (0, 03, . . .)

(] 0
then
6,— 0 strongly, R,— R strongly.
Proof. Let x € ¢%; then

[ 10,307 = [ 1Ga,, eor)
0 0

= <x, ( f e g Elethn dt)x>
0

=(x, 3,x) (where X, =diag(0y,...,0,0,0,...)
= (x, Zx) ’

for all n € N. This implies that the 6, are uniformly bounded.
For 0<a <b <o, Theorem 4.1 gives

[ 0n) 010, ) = [ (@ e )
- fm (€, e“x) 1y, p)(2) dt

- fo B()(1) e, o1(1) d
where ’
1 ifrefa,b],
0 otherwise.

g, 51(2) ={

Since the sequence (0,),=; is uniformly bounded, this implies that 8 is bounded
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and that
6,— 0 weakly.
Thus
60— 6* weakly.
To show the corresponding results for the reachability operators we prove (ii).
The adjoint of the observability operator is given by
6* :L0,0)— ¢*:u '—>f e“eu(r) dt
0
But
6*(u) = f e“eu(t)ydt=S5 J e“SSbu(t)dt =S f e“bu(t) dt
(} 0 0

= SR(u).
Thus we have the boundedness of R, and that
R,=86;,— R =56* weakly.

To show that 8, — 6 strongly, it is sufficient to show that, for x € £?, we have
lim sup, . [|0.(x)|| <1|6(x)||. Now

10G)IB= [ I, o) ae=(x, ([ eecet dr)x)
0 0
= (x, 26)

= ||6,(x)|I3 forall neN.

Since (||6,))s=1 is bounded, we have that (||R,|)s=1= (||S05]|)s=1 is bounded.
Thus it is sufficient to show that

Rn(lla ,b])_)R(l[a ,b]) O=a<b< ).
But

Rn(lla » b]) = f ednbnl(a ,b](t) dr— f erAbl[a , b](t) dt,
0 0

by Theorem 4.1. 0O

CoroLLARY 4.4 Let (A, b, c") be given as in Theorem 4.3. Then, for the impulse
responses h,(t) = (&,, e“*b,) of the approximating systems, we have

h, ()= h(t) = {c, e“b) weakly in L*[0,x).

If moreover

I e“bb e dr = [ e“ec’e dt = X = diag (0y, 03, . . .) >0,
0 0
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then
h,()—>h(t) in L0, ).
Proof. The result follows by noting that h(t) = 8(b)(¢) for t e [0,»). O

The Hankel operator of a system is of great importance in model reduction. It
is defined as:

H:LY0,0)>L0,®): u—>H(@u)= (s '—>f h(t +s)u(t) dt),
(1]
where h(f) = (¢, e“*b) is the impulse response of (A, b, ¢'). Note that H can be

factored as H = 6R.

COROLLARY 4.5 Let (A, b, ¢") be given as in Theorem 4.3. For the sequence
(H,)n=1 of the Hankel operators of the approximating systems, we have

H,— H weakly.
If we have moreover

j e“bbTe™" dt = f e“'ec’e dt = T = diag (04, 0, . . .),
0 0

then
H,—H strongly. O

5. A Characterization for infinite-dimensional balanced realizations

For the case of symmetric systems, we are going to prove a result analogous to
the characterization of finite-dimensional balanced realizations as given in Theorem
1.4. We need the following statements on the solution of the Lyapunov equation.

ProposiTion 5.1 (i) If f e“bb"e*"" dt exists and is bounded, then it solves the
Lyapunov equation

(Xx, ATy) + (XATx, y)=—(x,bb"y) foral x,yeDA"),

provided (b e“x) =0 for x e D(AT).
(ii) If e4'x— 0 as t— o, where x € D(ALax), then the Lyapunov equation

(Xx, ATy) + (XATx, y) = —(x, bb"y) forall x,yeD(A")
has at most one bounded solution.
Proof.

@) <<f° e4phTe AT dt)AT : y> + <(£c e“bbTe’ dt)x, AT}’>

f((e'AA e'y) + (e“'x, bbTe'ATy)) dr
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= f aqt (e“'x, bbTe"'y) dt
0

=lim [(e“’x, bbTe“'y)|; = —(x, bbTy) forall x,y e D).

(i) Assume X; and X, are bounded and solve the Lyapunov equation. Then

(XaATx, y) + (Xax, ATy) =0 forall x,yeD(A").

where X, = X; — X,. Now consider
d% (Xae“'x, e4'y) = (X, ATe"x, e1y) + (Xpe'y, ATe"'y)
=0 for te[0,») and x,y e D(AT).
Note that x € D(A") implies that e“’x € D(AT) for ¢ € [0, ©). Hence
(Xax,y) = <XACOATx: COAT)’>
= (X ex, e4"y) forte[0,x).

By the asymptotic stability of (e”"),..,, however, we have

(Xpx, y) = }LIE(XAe‘ATx, e“’y) =0 forall x,y e DA").

Since D(AT) is dense in €* and X, is bounded, we have X, =0. 0O

For the case of a selfadjoint generator, we can now formulate a characteriza-
tion result similar to the finite-dimensional case.

TaeorReM 5.2 Let (A, D(A)) be an operator on €* such that e, € D(A) for all

i eN. Assume b = (b;);», € ¢>. Then the following two statements are equivalent:
(I) A has a matrix representation

= ] b;#0 forl<i<m,
0; + 0= j<o

2

with 0< 0, <M < for all i e N, and o, +# o; for all i #}j.
(II) The closure A® of A exists and has the properties: ’
(i) AC is selfadjoint and generates a semigroup of contractions (€4%),zo.

(ii)
f e“4°bb " dt = diag (0y, 05, . . .),
0

with 0< 0, <M < for all i e N, and o0, +# 0; for all i #}j.
Proof. (I)=> (II). Statement (i) follows from Theorem 3.3. and Proposition 3.4.

- The identity f e“bbTe"  dt = diag (o4, 03, . . .) =: X follows from Proposition
0
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o0

5.1 and Proposition 3.5, provided we show that j e“°bb"e“° dt is a bounded
0

operator on ¢ This is a consequence of the fact that

RR*= J e“°pbTe " dt

0

and the boundedness of R (Theorem 4.3).
(I1)=> (I). We first show that e“x—0 as t— (x € ¢?). This follows from
Theorem 22.3.2 of Hille & Phillips (1957) if 0 is not an eigenvalue of A°.
Assume that there exists x, € D(A®) such that A, =0. Then, as in the proof
of Lemma 3.7, we have e“‘x, = x, for t € [0, ). Hence

<xO, X‘:o) = <x0, I C‘AcbbTelAC dtx0>

0

= [(1B ey ar=[ (b xo) Pt
0 0
_ {0 if (b, xo) =0,
"l otherwise,
which implies that x, = 0. For x,y € D(A®) we have
(A, Zy) + (Zx, A%)

= <A°x, ( f " eappTe® dt>y> + <( f e“°pb"e" dt)x, ACy>
0 0

= J ) ({e“°A%, bbTe“y) + (ex, bb"e**ACy)) dt
0

= L ) (d% (e“’x, bbTe‘Acy)) de
= lim [(e%%,b) (B, 49y = ~(3, B) (b, ).

Since e; € D(A) < D(AC) for all i € N, the result follows by considering
(Ae;, Ze;) + (Ze;, Ae;) = —(e;, b) (b, ¢;).

Then oja; + 0,a; = —b,b;, giving a; = —b;b;/(0; + 0;) where a;:=(Ae;, ¢;) for
1=i,j <. To show that b; #0 for all i € N, assume that b,)# 0 for some i; e N.
Since A has the matrix representation

o[22
o; + 0; 1<i,i<eo,

it follows that A%, = 0. This is in contraction to A€ having zero kernel (.

6. Concluding remarks

In this paper, results were derived for the existence, characterization, and
approximation of infinite-dimensional balanced systems. The definition of an
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infinite-dimensional realization was based on a generalization of a parametriza-
tion for finite-dimensional balanced systems. We restricted ourselves to the case
where the input and output vectors are bounded. The more general case of
unbounded input and output vectors will be considered in a later publication.
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