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The Parametrization of Linear Systems using Balanced Realizations:
Relaxation Systems

Raimund Ober

Department of Engineering, University of Cambridge
Trumpington St., Cambridge, CB2 1PZ, England

Parametrization problems of the set of asymptotically stable relaxation systems of a given
order are investigated. The main tool is a canonical form for this class of systems in terms
of balanced realizations. It is shown that this class of systems is pathwise connected.
Finite dimensional relaxation systems are characterized as systems corresponding to finite
rank Hankel operators with nonnegative spectrum. A generalization of this result to
infinite dimensional systems is given.

1. Introduction

In this paper we are going to study questions in relation to the parametrization of linear systems.
In particular we will be concerned with the set of asymptotically stable relaxation systems. The
parametrization of the set of linear systems is of interest e.g. in system identification. For a survey
on parametrization problems see ([7]). The reason for addressing the question of the parametrization
of relaxation systems is that they admit a canonical form in balanced realizations which reflects in
an interesting way the exterior properties of a relaxation system. Relaxation systems form a subclass
of the set of multivariable symmetric systems, characterized by the absence of oscillatory behaviour
as seen by the following definition. For introductory material see e.g. ([13],{14])

Definition 1.1: A system (A, B, C) is called a relaxation system if its impulse response H(t) :=
Ce*AB, t > 0, satisfies:

—1)"-‘-1——Ht 20 for t20 andn=0,1,2... O
dtn

The following proposition shows that a relaxation system admits a state-space realization with
particularly interesting internal symmetry properties. These symmetry properties are a basic tool in
our later investigations.

Proposition 1.2 ([14]):  Let G(s) be a real transfer function. Then the following are equivalent:
(i) G(s) is the transfer function of a relaxation system.
(ii) G(s) admits a state-space realization (A, B, C) of relaxation type, i.e. A = AT €0,B=CT,
(iif) For any minimal realization (A, B, C) of G(s), there exists a (unique) matrix T = TT > 0 such
that A = T-'ATT, B=TCT. O

Let C2™ = {(A, B,C) € R**™ x R*X™ x RPX"|( A, B, C) is a minimal and asymptotically stable
continuous-time system} and denote by R™ the set of minimal and asymptotically stable state-space
Tepresentations of n-dimensional relaxation systems with m-dimensional input and output spaces.

In Section 2 we recall the definition of a system to be balanced and present a canonical form for
the set of asymptotically stable relaxation systems using balanced realizations. A particular feature
of this canonical form is that it immediately leads to a parametrization, with a parameter space of
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simple geometric structure. This allows us to show that the set of relaxation systems is pathwise
connected.

After a short summary of some concepts relating to integral Hankel operators we show in Section
3, using the canonical form of Section 2, that R™ can be characterized as a set of systems correspond-
ing to rank n Hankel operators with nonnegative eigenvalues. This then implies that an element in
R™ is fully parametrized by the singular values and the starting points of the Schmidt vectors of the
associated Hankel operator. The correspondence between relaxation systems and Hankel operators
with positive eigenvalues can be used to derive an upper bound on the multiplicity of a singular
value of such an operator. As a last point we consider infinite dimensional systems and show that
nuclear infinite dimensional Hankel operators have a characterization in terms of balanced systems
analogous to the one given in the finite dimensional case.

2. Balanced Realizations

In this section we will relate balanced realizations to relaxation systems and give a canonical
form for R*. This canonical form is then used to show that R} has only one connected component.
We now recall the definition of a system to be balanced.

Definition 2.1 ([8]) : Let (4,B,C) € C2™. (A, B,C) is called balanced if

o0 T o0 T :
/ eA'BBT e dt = / e CTCetAdt =: T =: diag(o1,...,0n).
o o

The positive iumbers 04,...,0, are called the singular values of the system (A, B,C). Denote by ]

C2™® C CP™ the subset of all balanced systems. O ;
The following theorem gives a characterization of relaxation systems in terms of a balanced

canonical form. v

Theorem 2.2 : The following two statements are equivalent:
(I) G(s) is the transfer function of some (A, B,C) € RT.
(II) G(s) has a realization (A4, B,C) € R**" x R**™ x R™*" given by

B-matrix:

Bl
(1) Partition B = [ : ] with B/ € R®)*™ then for 1< j < k,
Bk
Bi(B9)T = diag A Lgjiny, W Ly - o Moy Irisseisn)
() o 3D ) “w o -
such that )" > A7 > ...> Ay > 0and 1< 3 r(fid) = n(j) < m.
i=1
(2) B ,1<j <k, has the following structure:
B(j;1)
Bi= : with B(j;i) € RTUBI*™ for 1 < i < £(5).
B(j;4(7))

The precise structure of B(j;i) =: ((§;)at) 1<sr(ssi) I8 given by the indices:
1€tEm

1< t(j;4,1) < 1(j;4,2) < ... < t(j; i,7(5; 8)) < m for 1 < i < £(j).

We have
b(ji i)ty > 0 for all 1< s < r(ji i)
b(j;i)st =0 for all 1 <t < #(j;1,8) and 1 < s € r(j;4)
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i.e.
0.0 b(j;ihesin) o
0.0  0...0 ity b(j;1)st
.. 0 ....
B(j;i) =

0.0 0...0 0 .o 0 b5 irisintir i)

A-matrix:

A admits a partitioning A = (A(i’j))l<i,jsk with A(i,7) € RMOxnd) 1 < 4,§ < k, with the

following properties.
(i) Block diagonal entries A(j,j):

AGG7) = 72 diag W Lgsny, -, A L) With 01> ... > 05> ... > 06 > 0
(ii) Off-diagonal blocks A(i, ) =: (a(i,5)st) 1gogn(i) € RMDX™I), (i # 5):

1€t<n(j)
-1
o;+0o;

a(i,j)st = b(i),b(j)T, where b(i), is the s*h row of Bi.

C-matrix:
CT=B

Moreover, (A, B,C) as defined in (II) is balanced and has singular values 07 > 02 > ... > oy of
multiplicities n(1), n(2),...,n(k). The function which assigns to each asymptotically stable relaxation
system of given order the realization given in (II) is a canonical form on the set of state-space
realizations for relaxation systems. Each (A, B,C) in canonical form is of relaxation type, i.e AT = A
and CT = B.
Proof: See ([9]) D

As a corollary we state the previous theorem for SISO systems. In this case we obtain a partic-
ularly simple structure of the canonical form.

Corollary 2.3 : The following two statements are equivalent:
(I) g(s) is the transfer function of some (4,b,¢c) € RL.

(II) g(s) has a realization (A4, b,c) € R™*™ x R®** x R**" given by

b= (b1,bs,...,5,)7, b;>0 forlgign

c=bT,

A=[—_—b£j—] , g1>0>...>0,>0
i+ 0i]1<iign

Moreover, (A,b,c) as defined in (II) is balanced and has singular values 0y > g2 > ... > o, of
multiplicities 1. The function which assigns to each asymptotically stable relaxation system of given
order the realization given in (II) is a canonical form on the set of state-space realizations for SISO
relaxation systems. Each (4,b,¢) in canonical form is of relaxation type, i.e. AT = 4, ¢T = 6.0

Remark 2.4 : The above canonical form is a special case of a balanced canonical form for mul-
tivariable symmetric and asymptotically stable systems ([9]). A particular feature of this canonical
form for symmetric systems is that a system (A, B, C) in canonical form is internally symmetric, i.e.
there is a sign matrix S = diag(s;,83,...,8,),8; = %1, such that AT = SAS and CT = SB. Since
by ([2]) the (matrix -) Cauchy index of an internally symmetric system is given by the trace of §
the set R can be characterized as the subset of CT*™ with Cauchy index n. ]
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Remark 2.5 : Note that by the above theorem a relaxation system given in canonical form js
completely determined by its set of singular values and its B—matrix. Thus a SISO relaxation systen, 7
(A, b,c) given in canonical form is parametrized by the vector (01,02,...,00)X(b1,b2,...,8,), ;> 3
02 > ... > 0y or equivalently by (01 — 02,02~ 03,...,0n—1 = 00, 0n) X (b1, b2,...,8,) € R}, where 1
RI" := {(z:)1gigzn| i > 0, 1 € i € 2n}. Since each such vector in turn parametrizes a system in
R} we have that R], can be identified with RZ". O

We are now in a position to study the connectivity properties of the set of asymptotically 3
stable relaxation systems, i.e. the quotient space of state-space representations of relaxation systems 3
with respect to system equivalence. The following theorem asserts that there is only one pathwise :
connected component irrespective of the dimensions of the input and output spaces. To define a
topology on the set of asymptotically stable relaxation systems we proceed in the standard way. We :
embed R in R™+2%m with the natural topology and consider the quotient space with respect to
system equivalence (~).

Theorem 2.6 : R/~ is pathwise connected for all m > 1. ;
Proof: We will show that to each system (A4, B,C) in R} there is a continuous path in R™
connecting it to (Ao, Bo,Co) in R™, where

1 0 0
10
Bo=|. . eR™™,  CT=B,
10 ... 0
-1
Ao=( ) op=n0=n~-1,...,0,=1
o+ 05/ 14, jgn

The result then follows by the continuity of the natural projection = : R — RT /~.

Assume (A, B,C) is given in the canonical form of Theorem 2.2 with singular values a1 > 02 >
... > oy of multiplicities n(1),...,n(k). :
Case 1: n(j) = 1 forall 1 € j € k = n. Since continuous changes of the singular values imply |
continuous changes of (4, B,C) in R as long as the multiplicity of any singular value is not increased, |
we can assume that 0y = n,02 = n—1,...,0, = 1. Also, continuous changes in B result in a
continuous path in R provided the first nonzero entry of each row of B is positive at any point of f
the path. Hence we can assume that B = By which implies (A, B, C) = (Ao, Bg, Co)-
Case 2: n(j) > 1 forsome 1 < j < k.

In this case repeated application of the following Lemma will give the result. 3
Lemma 2.7 : Let (A, B,C) € R} be given in canonical form and parametrized by

Y= diag(dlln(l)» UzIn(z), a3ly(3),. .., ”kIn(k))
= diag(nln1), (7 — n(1)) a2y, (n = n(1) = n(2))aga), - - - 2(k)ncr))
a'nd B =(Blsz,.-.,.Bk)T, Bj € Rn(j)Xm

If n(jo) > 1 for some 1 € jo < k, then there is a continuous path in R™ connecting (4, B,0)
with (4, B,C) where (A, B, ) is parametrized by ‘

£= diag(o1In(1)s 021n(2y, - - <3@joIn(ie) =11 Tjo—1 + 1,.. ., 0kIn(x)), Where a9 = 0
and B = (B!, B%,...,Bi,..., B¥)T, where the first n(jo) — 1 rows of B> and Bio are identical and §
the last row of B% is replaced by (10 0...0) in B,
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Proof: Recall that relaxation systems are completely determined by their singular values and
their B-matrices. To connect (4, B,C) with (4, B, C) we first continuously change the last row of
Bio,ie. (100...0), to the last row of B such that the first nonzero entry of this row remains
positive throughout. Hence the path lies in R by Theorem 2.2. Also note that continuous changes
in B imply continuous chang_es in (4, B, C') which implies the continuity of the path. We obtain a
system (fi, B,C) such that B = B,

. [An An A L Ay € RO 4nGe= 1)) X(n(1) 4.t 0o 1))
A= | Ay A Az with Azp € RnUs)xn(Go)
A As;2 Az

Then An, Ai3, Aa1 and Ajj are identical to the corresponding blocks of A. The orthogonality of
the rows of B’ implies that the off-diagonal terms of Ay, are zero and A, is given by
P (T _pnldo)=1¢pn(do)-I\T  _pn(do)  pn(jo)\T
A dlag( (b ) yerns b (b ) , b (b )
Tjo 261'0 2(01'0-1 + 1)

where b is the ith row of Bio,

Next, we continuously change the singular value ¢j,_; + 1 to o},, which implies a continuous
path connecting (4, B, ) with (4, B,C). O o
3. Hankel Operators

An important feature of a balanced realization is the close relationship to its corresponding
Hankel operator. Here we consider an integral Hankel operator with kernel H(t) € RPX™, t >0,
given by

T: L ([0,00[) — L ([0, 0[)

u(t) = (D(w))(s) = / " H(t+ syu(t)de

Recall (see e.g. [12]) that the singular values 0,(4),n > 1, of a compact Hilbert space operator A
are defined to be the ordered eigenvalues of the modulus (A*A )5 suchthatoy 202 2...20; > ..
taking into account their multiplicities.

The significance of 2 Hankel operator in a system theoretic context is that for a system (4, B,C) €
Ci™ the Hankel operator with kernel H(t) := Ce'4B can be interpreted as an operator mapping
past inputs to future outputs. Conversely, standard realization theory shows that for any finite
rank Hankel operator with kernel H(t) € RPX™, t >0, there is a (4,B,C) € CP™ such that
H(t) = Ce'4B, t 20, almost everywhere. It can be easily verified that for a balanced realiza-
tion (A4,B,C) € CE™® we have that the singular values of (A, B,C) equal the nonzero singular
values of the corresponding Hankel operator (see e.g. [4]).

bR

Under certain conditionson T, e.g. compactness, there exist pairs of normalized vectors (vi, wi)iz1,
the so-called Schmidt- -pairs, such that fori 2 1, T'v; = o;w;, I‘*w. = o;v;.
If (A,B,C) € C&™?, then v.(t) = TETe" e; and w;(t) = TCe“e., < i € n. Since

%(0) = 1 -BTe; and w;(0) = Cc., 1 £ ¢ < n, the starting points of the Schmidt vectors are
fully determmed by the B and C ma.mces and the singular values.

Notice that if we consider the Hankel operator I corresponding to a symmetric system (A, B,C),
the eigenvectors and Schmidt-vectors of T coincide, since T is selfadjoint. If moreover (A4, B,C)
is mterna.lly symmetric then the eigenvectors respectively Schmidt-vectors are gjven by w(t) =
V—BTe“Te = 7!-Ce' ei, 1 € i < n, and the eigenvalue corresponding to v; is given by

(C(w)(t) = /o H(t+ s)ui(s)ds = \/%— /o ” Ot DA BBT AT Seidt = sioiui(t),
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where § =: diag(s;, 32,...,8,) is the sign-matrix corresponding to (4, B,C).
The following theorem characterizes relaxation systems in terms of Hankel operators with non-
negative spectrum.

Theorem 3.1 : Let H(t) = HT(t) € R™*™, t > 0, be the kernel of a Hankel operator

T on Li~([0,00[) of rank n having only nonnegative eigenvalues. Then H(t) = Ce'4B, t > 0,
almost everywhere, where (A, B,C) is a minimal realization of an n-dimensional asymptotically
stable relaxation system.

Conversely, let (A4, B,C) be a minimal realization of an n-dxmensxonal asymptotically stable

relaxation. Then H(t) := Ce!4B, t > 0, is the kernel of 2 Hankel operator I' of rank n having only
nonnegative eigenvalues.
Proof: By standard realization theory there exists an asymptotically stable and minimal n-
dimensional state-space realization (4, B,C) of H(t),ie. H(t) = Ce'AB, t > 0, a.e.. Since A()
is symmetric we can assume by that (A, B,C) has a balanced and internally symmetric realization
(see Remark 2.4). Since I has positive nonzero eigenvalues, the above remarks imply that for the
sign-symmetry matrix we have § = I. Hence (A, B,C) is a relaxation system. The convers follows
immediately by the above remarks. a

The following corollary shows that there is a bound on the multiplicity of a singular value of a
Hankel operator with positive spectrum.

Corollary 3.2 : Let H(t) € R™*™, t > 0, be the kernel of a Hankel operator T' acting
on Lim([0,00[) such that H(t) = HT(t), t > 0. If T is of finite rank and has only nonnegative
eigenvalues, then the multiplicity of each of the eigenvalues and singular values of T is at most m.

Proof: Since T is selfadjoint and has nonnegative spectrum we have that the notions of eigenvalue

and singular value are equivalent. The result follows by inspection of the canonical form of Theorem
2.2. O

Remark 3.3 : The above theorem, together with Remark 2.5, implies that a finite rank Hankel
operator with nonnegative spectrum is uniquely determined by its singular values and the starting
points of its Schmidt-vectors. O

We are going to consider a generalization of the notion of relaxation systems to an infinite
dimensional setting. The basis for this generalization is Theorem 3.1, in which relaxation systems
are characterized by Hankel operators with nonnegative spectrum. The next theorem states that
infinite dimensional nuclear Hankel operators with nonnegative spectrum can be characterized by

infinite dimensional balanced systems with selfadjoint generator. For background material concerning

Hilbert spaces see ([12]). A reference for semigroup theory is ([11]).

Theorem 3.4 : Let h(t) € LE([0,00[) N L% ([0, 0o[) be such that h(t) is the kernel of a Hankel
operator T on L} ([0, oo[) such that

H(i) T is nuclear, i.e. E ai(l') < o0.

H(ii) all nonzero elgenva.llues of T are positive.

H(iii) Ela.-(I‘)|v.-(0)|7 < oo where (v;(t), w;(t)) is the ith Schmidt pair of T.

Then (0;(T))ip1 and(b;}ip1 with b; = /o:(T)|v;(0)| parametrize an infinite dimensional balanced

system (A,b,bT) with state-space £2 such that h(t) =< b,e!4b >,t > 0, almost everywhere, where A |

has the matrix representation

S Cr) B
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Conversely, let b = (b;)iz1 € £2,b; > 0, (0i)ip1, 01 > 02 > ... > 0; > ... > 0 be such that
. 00

)05 0; < 00 and Apin : Dmin = D(Amin) = €% z +— Az = (z:la;,-zj)1<;<°° with Dpin =
" =

i=1
span{e;|l € i < oo}, where ¢; is the ith element of the standard basis of £ and

i (22)
i+ 5 /) 1<ijcoo

Then Anin is well-defined and admits a closure A := Apin such that A generates a semigroup of
contractions (€*4);»9. Then the impulse response h(t) =< b, €!4b > , t > 0, of the system (A,b,c)is
the kernel of a Hankel operator I’ with singular values ¢,(T) = o5, for all n € N, such that properties
H(i), H(ii) and H(iii) hold and h(t) € L§([0, 0o[) N L}([0, o).
Proof:  Part 1 follows by applying the realization results of ([3],[5]) to our case. The conditions
on T’ guarantee the existence of a balanced realization (A, b,¢) on the state-space £2 such that h(t) =
< ¢,et4b >, t > 0, almost everywhere.

It can be shown ([6]) by Dg-chain arguments as in ([1]) that under the present assumptions I’
has only distinct singular values.

Since all nonzero eigenvalues of I' are positive, we have that w;(t) = v;i(t) almost everywhere,

> 1. Hence ¢; = /o;(T)wi(0) = mv.(O) = b., i2>1. As v;(0) # 0,7 > 0, we have b; # 0 and
hence w.l.o.g. b; > 0. b € £2 follows since 2 b2 = 2 a:i(T)|v:(0)|% < oo

Moreover, the domain of A contains the ﬁmte sequences ([3]) and A has the matrix representation

()
i +9;/14i, i<

To show the converse, note that A,,;, is well-defined since the rows of A are in £2. By The-
orem 5.2 in ({10]) we have that the closure A := Amin of Amin exists and that [~ e*4bbTet4dt =
diag(e1,02,...). By Theorem 4.3 in ([10]) and Corollary V1.5.3 in ([9]) we obtain that h(t) :=<
b,et4b >€ Lk([0,00[) N LE([0, oo). This implies that h(t) is the kernel of a compact Hankel oper-
ator I'. It can be easily verified that for i > 1, o; is a singular value of I' with Schmidt vectors

wi(t) = vi(t) = 715? < b,e*4e; >, i 1. Toshow that indeed all nonzero singular values are given

by (0n)nz1 consider E := 3pan{< b,eA%e; > |1 € i < oo}. For u € E+L, the orthogonal complement
of E, we have for all 1 € i < o0,

o (=]
0 =< u(t), < b,etle; >>pa= / < b,etde; > ut)dt =< e;,/ etAbu(t)dt > .
0 (]

o0
Thus [ e!4bu(t)dt = 0 and hence (T(u))(s) =< b,e*4 [;° e*4bu(t)dt >= 0 forall s € [0,00[. So
]

Et = Ker(T). This implies H(i). H(ii) is a consequence of the fact that I'v; = oyw; = ov;. Since
=]
Z ai|vi(0)]? = E b? < co we have H(iii). a

Remark 3.5 : Analogously to Remark 2.5 we have that infinite dimensional relaxation systems
as defined through their associated Hankel operators having nonnegative spectrum are parametrized
by the set

o0
{(01-—02,01—0‘3,...,05_1—0’.',...)X(bl,bg,...,b,‘,...)|01>dg‘>..., Ela.-<oo; b,>0,i21} =l},,xl_2',,
=

where £, := {(z:)ip1 € 0 P|g; >0,i>1}. O
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Remark 3.6 : Let (A,b,bT) be an infinite dimensional balanced system as defined in Theorem
3.4 and let (A(n),b(n),b(n)T), n > 1, be the finite dimensional balanced approximants of (4,5,5T)
given by

—bb;
b(n) = (bryb2,...,bn)7, A(n) = (:;—J’) 1<hi<n
i i,j€<n

Then by Corollary 2.3 (A(n),b(n),b(n)T), n > 1,is in RL. Using the techniques of ([93,[10]) it can
be shown that the following approximation results hold for the semigroups and the impulse responses
hn(t) of the approximating systems.

(i) ||e*A™) Pyz — PoetAz|| — 0, uniformly for ¢ in bounded intervals, z € £2, where Py((2)in1) =

(zihgign-
(ii) limp—co hn(t) = h(t) pointwise, in L2([0,00[) and in L!([0,00f) O
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