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Abstract

It is shown that a large class of nonrational transfer
functions admit output normal realizations. These real-
izations are proved to be asymptotically stable. Asymp-
totic stability is also shown for several classes of balanced
systems. It is established that a nonrational transfer func-
tion whose corresponding Hankel operator is compact has
a sign symmetric realization.

Keywords: Asymptotic stability, sign symmetry, infinite di-
mensional continuous time systems, balanced realizations, out-
put normal realizations

1 Introduction

Balanced realizations for finite-dimensional systems have received
a great deal of attention. They were introduced as a means of
performing model reduction in an easy fashion ([7}) and have
subsequently been used in H* control theory for example to
evaluate the Hankel norm of a linear system ([4],[2]). Recently,
they have been used to study parametrization problems of the
set of stable linear systems ([12],(8]).

The elegant results obtained for finite-dimensional balanced
systems brought about some interest in the problem of the exten-
sion of the notion of a balanced realization to infinite-dimensional
systems. In [5] balanced realizations were derived for a class of
systems with nuclear Hankel operator. Young ([17]) developed a
very general realization theory for infinite-dimensional discrete-
time systems. The approximation of infinite-dimensional bal-
anced systems was considered in ([5], [11]).

In [13] the approach by Young ([17]) was extended to con-
tinuous time balanced realizations by studying a bilinear trans--
formation between discrete-time and continuous-time systems.
This work will be reviewed here since it is fundamental to the
present investigation. . R

After a review of the realizations results for discrete-time bal-
anced realizations (Section 2) and those for continuous-time bal-
anced realizations (Section 3) we set out the main results in [13]
concerning the relationship between discrete- and continuous-
time systems. These results will then be used in Section 5 to
establish the existence of so called output normal realizations.
Such realizations are closely linked to balanced realizations and
have in particular the same ‘canonical’ finite dimensional ap-
proximants (see e.g. [5]). It follows from the realization theory
that the semigroups associated with balanced realizations as well
as with output normal realizations are strongly continuous semi-
groups of contractions. The question of the stability of these
semigroups had however not been studied before. Whereas it is
possible to show that output normal realizations are asymptoti-
cally stable (Section 5) there is no complete answer for the case
of balanced realizations (Section 6).

One reason for the current interest in finite dimensional bal-
anced realizations are their interesting structural properties. Of
them the fact that a scalar system admits a sign symmetric re-
alization is of particular significance (see e.g. {16], [12]). In
Section 6 it is shown that nonrational transfer functions whose
corresponding Hankel operator is compact have an infinite di-
mensional balanced realization which is sign symmetric.

2 Discrete time balanced realizations

In this section we are first going to define a large class of infinite
dimensional discrete-time state space systems and review some
facts concerning these systems. Next we will quote a result by
N. Young ([17]) which shows that a large class of nonrational
transfer functions have a (par-) balanced realization.

Definition 2.1 The quadruple of operators (A4, By, Ca, Dj) is
called an admissible discrete-time system, with state space X,
output space Y and input space U, where X,U,Y are separable
Hilbert spaces, if

(i) Ad € L(X) is a contraction such that —1 ¢ 0p(Aqg).

(i) Bs € L(U,X)

(iii) Ca € L(X,Y)

" (iv) Dg€ L(U,Y)

(v) A4, B4, Cyq are such that }mi Ca(M + Ag)~1 By ezists in the

A>1
norm topology.

We write D%’Y for the set of admissible discrete-time systems
with input space U, output space Y and state space X. a

Before we are going to define what we mean by observability
and reachability of an admissible discrete-time system we need
to consider the notion of a dual system ([13]).

Definition 2.2 Let (A4, B4,Ca, Da) € DY, then the dual sys-
tem (A4, Bd, Cay Da) of (Ag, By, Cy, Da) is given by

Ag:i=A5: X - X
By=C3:Y X
Cy=B3: XU
Dy=D5:Y > U o

The following Lemma states that a dual system of an ad-
missible system is admissible and how the transfer function of a
system is related to the transfer function of its dual system.

Lemma 2.1 The dual system (/id, By,C4,Dy) of an admissible
discrete-time system (Aq, B4,Cyq, Dg) in D%‘ is an admissible
system in Df(’u.

If the discrete time transfer function G(s) :C\D — L(U,Y)
has an~adn~1issible realization (A4, B4,C4,Dy), then the dual sys-
tem (Aq, By, Ca, Dy) i3 a realization of the transfer function
G(s) : €\D — L(Y,U), s — G(s) := (G(3))", i.e. for all
s €C\D,

G(s) (GEY

Next, we define the observability and reachability operators
for discrete-time systems.

C.'d(sl - Iid)_léd + ﬁ,,

Definition 2.3 Let (A4, B4,Cq,Dg) € D%‘y, then the operator

04:D(04) — 4
z +— (C4A52)n>0



i3 called the observability operator of the system (Aa, B4,Cq, Dy),
where

D(Oq) = {z € X | (CaAfz)n0 € £} .

If O4 is bounded and Ker(O4) = {0}, then the system
(Ad, B,i,C_"d,D~,1) 15 called observable.

Let (A4,B4,Cy, Dy) be the. dual system of (A4, By, Cy, Dy).
If the observabi!ity operator Oy of (/id,ﬁ,i,éd,bd) is bounded
(and hence D(Oy) = X ), then the adjoint of Oy is called the
reachability operator R4 of (A4, By, Ca, Dy), ie.

R,{ = é;.

If Ra exists and Range(Ry) is dense in X, the system
(Aa, B4,Cq, Dy) is called reachable. (]
The notion of reachability and observability gramians as de-
fined below is central in the discussion of balanced realizations.
Definition 2.4 Let(Aq, Ba,Cq, D) € DY with bounded reach-
ability operator Ry and bounded observability operator O4. Then

W,,::RdR;:X—»X
Mg:i=0704: X - X

are called the reachability and the observability gramian of the
system (Aq, Bq,Ca, D). ]

The following definition recalls the notion of a balanced sys-
tem as defined by Moore ([7]) and the notion of a parbalanced
as introduced by Young ([17]).

Definition 2.5 Let (A4, B4,Ci4,Dg) € DYY be such that the
observability gramian Mgy and reachability gramian W, erist.
Then the system is

(i) parbalanced, if Mg = W,.

(ii) balanced, if it is parbalanced and moreover the gramians
are diagonal. o
Before we state any results, we introduce some notation.
Let H : D — L(U,Y) be analyticc. We say that He
Py L>(D,L(U,Y)) if there exists an analytic function F :
D — L(U,Y) such that H + F is essentially bounded, where
F(2) = F(z™'). Further, if F can be chosen so that H + F'
€ C(D,K(U,Y)), where C(D,K(U,Y)) is the set of norm con-
tinuous functions on D with values in the set of compact opera-
tors from U to Y, then H is said to be in P;.C(D, K(U,Y)). Two
systems (A, By,C1,D;) and (A2, B3, C3, D;) are called unitar-
ily equivalent if there exists a unitary operator V mapping the
state space X; to the state space Xy, i.e. V : X; —» X, such
that

(A1, B1,Cy, Dy) = (V*A,V,V* By, C,V, Dy).

The following theorem by Young ([17]), gives criteria for a
(par-) balanced realization to exist of a discrete time transfer
function.

Theorem 2.1 Let G4(z) : C\D — L(U,Y) be analytic with
Gy(o0) = D4 € L(U,Y), and write

8() 1= 2(Ga(2) - Da) , z€D.

(i) If g € Py L*(D,L(U,Y)), then there ezists a separable
Hilbert space X and a discrete-time state-space realization
(A4, B4,Ca, Dg) of Ga(2) with state space X, such that
Ag € L(X) is acontraction
By e ‘C(U’ X )
Cai € L(X,Y),
and (Aq, B4,Ca, Dj) is reachable and observable with bounded
reachability and observability operators, such that
(Ad, Ba,C4, Dy) is parbalanced, i.e. Mg = Wy.
The gramians Mg, Wy satisfy the Lyapunov equations
AWgA; — Wy = —-B3B4
aMiAq— Mg = —CyC3.
If (A4, B4,Ca, Da) is another parbalanced realization of Gu(z)
with state space X, then (A4, Ba,Cy, Da) and (A4, Bg,C4,D4)
are unitarily equivalent.
(ii) If moreover, g € P,C(D,K(U,Y)), there is a basis in X
with respect to which (Ag, B4,Cy, Dg) is balanced. u]
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3 Continuous time balanced realizations

In this section we are going to review the results in [13] concern-
ing infinite dimensional continuous time state space systems and
balanced realizations of nonrational transfer functions.

It is well known that if A is the generator of a strongly contin-
uous semigroup of operators (e4);50 with domain of definition
D(A), then D(A) is a Hilbert space with inner product induced
by the graph norm

llell% = ll=l% + ll4zlk, = € D(4).

Since ||z]| 4 > ||z|| for z € D(A), we can embed X in DAY,
the set of antilinear continuous functionals on (D(A), ||-|| ) by

E: X - D)W
' (y—< z,9>).

Note that D(A)() is a Hilbert space with norm
(IF))" := supjzy<ys 1 f(2)]. Since < -, > is linear in the first com-
ponent, the embedding F is linear. By the above, we have the
rigged structure

D(A) C X C D(A).

It is well known that if (A, D(A)) is the generator of a strongly
continuous semigroup of contractions (e*4);»0 on a Hilbert
space, then the adjoint (4%, D(A*)) of (A, D(A)) is the genera-
tor of the adjoint semigroup (e*4);,4. Hence, we have similarly
that N
D(A*) € X C D(4")V

If M is an operator on X such that D(A*) C X is invari-
ant under M*, then M can be extended to an operator M on
D(A%)) by:

M: D(A%D o D(4%)®

fFCY— f(M*())
We will normally not distinguish between M and M and write
M for M.

Also, if we have a map M : Z — D(A*)\), Z a Hilbert space,
such that M(Z) € X1 C D(A*)", we can consider M : Z — X
using the Riesz representation theorem.

We are now in a position to define admissible continuous-
time systems.

Definition 3.1 A quadruple of operators (A, B.,C., D,) is
called an admissible continuous-time system with state space X,
input space U and output space Y, where X,U,Y are separable
Hilbert spaces, if
(i) (Ac, D(A.)) is the generator of a strongly continuous semi-
group of contractions on X.
(i) Bo: U = (D(ADD, || ) is a bounded linear operator.
(#4) Ce : D(C) — Y is linear with
D(Cc) = D(Ac)+ (I~ A 1B.U and
Cop(ae) : (D(Ae),[la,) = Y s bounded.

(iv) C(I - Ay B, € L(U,Y)

(v) A, B.,C. are such that lim ,em Ce(s] — A,)"'B, = 0 in
the norm topology. e

(vi) D, € L(U,Y).

We write C;'y for the set of admissible conti; s-time syst
with input space U, output space Y and state space X.

[u]

Remark 3.1 Helton ([6]) and Fuhrmann ([3]) gave a similar
definition for continuous-time state-space systems. There are,
however, several differences between so-called compatible sys-
tems and admissible systems as defined here. Our definition of a
rigged Hilbert space is slightly different from that used in Helton
and Fuhrmann, where X is embedded in the dual spaces D(A)
and D(A*Y, rather than in the spaces of antilinear functionals
D(A)) and D(A*)) as adopted here. The reason for using our
definition is that this naturally leads to a definition of the input
operator B, as a linear, rather than an antilinear operator. Most
importantly however for the discussion later is the imposition of
(v) in our definition. ]



Before defining observability and reachability for continuous-
time systems we need to introduce the notion of the dual system
of an admissible continuous-time system.

Definition 3.2 Let (A, B.,C.,D.) € Cz’y. Then the dual sys-
tem (Acy B, C,, Dc) of (Ac, B.,C,, Dc) is given by

. (/ic’ D(“ic)) = (43, D(47)).

e B.:Y - D(Ac)('); Yy Bc(y)[‘] =< y’Cc(’) >

o C.:D(C.) - U, D(Co)=DB(A)+(I-A4,)1B.Y,

where C.zo is defined by
<u,Cozg> = B.(u){zo],
zo € D(A?),u €U,
=< Yo, Cc({ - Ae)—chu >,
To = (I_ AC)—chyO’ Yo € Yv"’ € Uy

< C.zo,u >

oDc:=D;‘:Y—>tI. [m]

The following Lemma is the continuous-time equivalent of
Lemma 2.1.

Lemma 3.1 The dual system (/ic,ﬁc,é'c,f)c) of an admissi-
ble continuous-time system (Ac,B.,Cc,D.) is admissible. If
the continuous-time transfer function G(s) : RHP — L(U,Y),
has an _admissible realization (A, Bc,C., D.), then the dual sys-
tern (Ac,B.,Ce, D,) is a realization of the transfer function
G(8) := (G(3))", i.e. foralls € RHP,

G(s) = (G(3))* = CulsI ~ A.)"'B, + D..

o

The definitions of observability and reachability of ad missible
continuous time systems is now given.

Definition 3.3 Let (A, B.,C.,D,) € Cz,y’ then the operator

O : D(0:.) — L}([0,00[)
z s Celtley

is called the observability operator of the system (A, B.,C,, D,),
where D(O;) = {z € X | C.e®z exists for almostall t €
[0,00[, Cce*ez € L} ([0, 0)}. We say that (Ac, Be,Cs, D.) has
a bounded observability operator if D(A.) C D(O,) and O, ez-
tends to a bounded operator on X. This extension will also be
denoted by O..

If(Ac, Be, Ce, D) has bounded observability operator O, such
that Ker(O.) = {0}, then the system (A, B.,C., D.) is called
observable.

Let (Ac, B., Ce, D.) be the dual system of (A, B.,C., D.). If
the observability operator O, of (4., B.,C., D) is a bounded op-
erator on X, the adjoint of O, is called the reachability operator
R. of (Ae, B,,C., D,), i.e.

R.:= éc'.

If R. exists and Range(R.) is dense in X, the system
(Ae, Be, C., D.) is called reachable. a}

The observability and controllability gramians are defined as
follows.

Definition 3.4 The reachability gramian W, and the observ-
ability gramian M, of a continuous-time system with bounded
reachability operator R. and observability operator O, are de-
fined to be

W,i=RR: X - X

M :=0:0.: X - X. u}

The concept of a unitary state space transformation of an
admissible continuous-time system is slightly more complicated
than in the discrete time case.

Proposition 3.1 Let (¢, D(A.)), B:,Cc, D) € C3¥. If X,
is another Hilbert space and V' : Xy — X is a unitary operator,
then .
(1) ((VAV*,VD(A.)), VB, (C.V*,VD(C.)), D.) € C%Y,
where

(VBoy: U — ((vD(45)?, |- )

13 given by

(VB.)(u)[z] := B.(u)[V*z)
ue U, z € VD(A]).
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(2) If (Ac, B, Ce, D) is a state space realization of the transfer
function
G.s):RHP - L(U,Y),

then (VA V*,VB,,C.V*,D,) realizes the same transfer
function. u]

The following definition introduces the standard notation of
unitary equivalence of state-space systems. Note that by the
previous proposition, unitarily equivalent systems have the same
transfer functions.

Definition 3.5 Two systems (A, B:,C:, Di) € C;éy,i =1,2,
are called unitarily equivalent, if there ezists a unitary operator
V : X1 — X, such that

(Ag’ Bczv Cf, Dg) = (VA:V'v VB:vC:V.v D:)
[m]

A (par-) balanced realization for admissible continuous-time sys-
tems is defined as follows.

Definition 3.6 Let (Ac, Bc,C:,D.) € 'Y be such that the ob-
servability gramian M. and reachability gramian W, ezist.
Then the system is

(i) parbalanced, if M, = W..

(%) balanced, if it is parbalanced and moreover the gramians
are diagonal. a

If H:RHP — L(U,Y) is analytic, we say that
He P,L>*(RHP,L(U,Y)) (P+C(RHP,K(U,Y)) if there is an
analytic function F : RHP — L(U,Y) (K(U,Y)) such that H +
F is essentially bounded (extends to a norm continuous function
on the imaginary axis such that llsx% (H + F)(iw)= ‘]‘;lell% (H+

w—00 w00

F)(~iw)), where F(s) = F(-s).
In [13] the following realization theorem was proved for non-
rational continuous-time transfer functions.

Theorem 3.1 Let G, RHP — L(UY) be a continu-
ous time transfer function, whick is analytic and such that
lim sem G(3) € L(U,Y) exzists.

(i) IfG. € PLL*®(RHP,L(U,Y)), then there ezists a separable
Hilbert space X and a parbalanced admissible continuous time
state space realization (A., B,,C.,D.) of G. with state space
X. This system is reachable, observable and has bounded reach-
ability and observability operators. If (A.,B.,C.,D,.) is an-
other par-balanced realization of G(s), then (A, B,,C,, D) and
(A., B;,C., D.) are unitarily equivalent.

(%) If moreover G, € PLC(RHP,K(U,Y)), then there is a basis
in X with respect to which (Ac, B.,C., D;) is balanced. u]

As a corollary we give further sufficient conditions for the
existence of (par-) balanced realizations.

Corollary 3.1 Let G.(s) : RHP — L(U,Y) be a continuous
time transfer function, such that lim .em G.(3) € L(U,Y) ezists
and G.(s) is analytic in RAP. '

(i) If G(s) is bounded in the RHP, i.e. sup,epyp||Go(s)| <
00, then G.(s) has a par-balanced realization.

(#) If in particular G.(s) : RHP — K(U,Y), such that G,
is bounded in the RHP and G(8) is norm continuous on the
imaginary azis including at the points + 00 and —o0, i.e. w+—>
Gc(iw), w € R, is norm ¢ s and lim G (iw) =
limy 400 Gc(iw), then G.(s) has a balanced realization. o

"

4 Connection between continuous and
discrete time systems

The realization result quoted in Section 3 was proved in [13] by
relating discrete time systems to continuous time systems using
an infinite dimensional generalization of a well known bilinear
transformation for finite dimensional systems. Thereby it was



possible to carry Young’s results for discrete time systems over
to continuous time systems. vy

In the following theorem the map T': Dg’t’y — Cy%" is intro-
duced.

Theorem 4.1 Let (A4, B4,Ca,Da) € DY, then
T((Ad’ Bda Cd; Dd)) = (Ac, ch Cc, Dc) € C;'Y, where

(i) Ac:=(IT+ Ad)_l(Ad -N=(A-D({T+ Ad)_l, D(A.) =
D((I + A2)™!). A, generates a strongly continuous semi-
group of contractions on X given by ¢i(Aa),t > 0, with

=1
pi(2) = €'3FT.

() B := V2(I+ A)'B4: U — D(ADV ‘

u — V2(I + Ag)"1B4(u)[C4)
< Bg(u),(I+ A5)1(Ca) >x.

C.:D(C) —Y
z +— lim At VZC4(M + Ag) 'z,
>1

(i)

where D(C.) = D(A;) + (I - A)"1B.U.
On D(A.) we have,

Cup(ar) = V2Cu(I + Ag)™.
(iv) D.:= Dq — lim,}‘_.l Ca(M T+ Ad)‘le.
>1

Moreover, let the admissible discrete-time system
(Ad, Ba,Ca, Dyg) be a realization of the transfer function

Gy(2):€\D - L(U,Y),
ie. Gy(z) = Cy(zI — Ag)"*By+ Dy forz €C\D .

Then, (A, B.,C., D.) = T((A4, B4, Ca, Da)) is an admissi-
ble continuous-time realization of the transfer function

1+s
1-s

G.(s) = Gd*( ) :RHP - L(U,Y).

The inverse map is considered in the next theorem.

Theorem 4.2 Let (Ac, Be,Ce, D) € DY, then

T_l((Ac’ B.,C., DC)) = (Adv By,Cy, Dd) € C%y: where

(i) Agq:= I+ A)I - A)™', and for z € D(A.) we have
that Agz = (I — A) YT+ A)z.

(i) Ba:=v2(I- A.)"'B,

(ii) Cq := V2C(I — A.)™!

(iv) Dg:= C(I - A)"'B.+ D, .

Moreover, let the admissible continuous-time system

(A, Be, C:, D.) be a realization of the transfer function

G(s): RHP - L(U,Y),

i.e., Go(8) = Co(sI — A.) B, + D, for s € RHP.
Then, (A4, Ba,Ca, Dq) = T~*((Ac, B;, Ce, D)) is an admis-
sible discrete-time realization of the transfer function

z—1
z+1
Next we are going to quote two technical results which will

be of importance in the following sections. The first one states
that the map T preserves the unitary equivalence of systems.

Ga(z) = G ( ) :C\D — L(U,Y) . o

Proposition 4.1 Let (A%, B}, Ci, DY) € Dg,iy, it =1,2. Let
(AL, B, Ci, Di) := T((A}, BS,CY, DY), i = 1,2, be the associ-
ated continuous-time sy 8

Then, (A}, B},C}, D!) and (A2, B2,C2?,D?) are unitarily
equivalent with unitary state space transformation V if and only
if (A}, B}, C}, DY) and (A%, B3, C3, D%) are unitarily equivalent
with unitary state space transformation V. o

4

The next proposition states that similarly the duality of sys-
tems is preserved under the map T i

Proposition 4.2 Let (Aq, By,Cyq, Dg) € DYY and define

(Ac, B.,C., D.) := T((Ad, B4,Cq,Dy)). Let _(A:,, B}, C}, D}l) €
DYY be another discrete time system and let (A}, BY,C1, D}) :=
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T((AY, B}, C}, D})) be its corresponding admissible continuous-
time system. Then,

(A}, B}, C}, DY) is the dual system of (A4, Ba,Ca, Dd)
if and only if

(AL, BY,C1, DY) is the dual system of (A, B, Cey Dc). O

The following theorem shows that observability and reach-
ability as well as the gramians are preserved under 7. This
implies that the transformation preserves balancing of systems.

Theorem 4.3 Let (A4, B4,Cq,Da) € D%.Y and
(A, B, Cey D) € CZ’Y such that

Then, (Ac, Bc7 Ccy Dc) = T((Adq Bd, Cd, Dd))
(1) (A¢, Bs, Ce, D) is observable (reachable) if and only if
(A4, Ba,C4, Da) is observable (reachable). .
(2) if the reachability gramians W., Wy (observability gramians
M., My) of (A4, Ba,Ca, Da) and (Ac, Be,Ce,Dc) are defined,
then

W, =Wy (M. = My). o

5 Output normal realizations

In this section we are going to define what we mean by out-
put normal realizations. Such realizations were first defined by
Moore ([7]) and then for infinite dimensional discrete time sys-
tems by Young ([17]). They are of particular interest here be-
cause of their strong connections to balanced realizations. The
main result of this section is a theorem stating that admissible
continuous time output normal realizations are asymptotically
stable. The approach will be to prove asymptotic stability for
discrete time output normal realizations and to carry this re-
sult over to the continuous time case using the transformation
introduced in Section 4.

Output normal realizations are defined to be those for which
the observability gramian Wy, (W.) is the identity.

Before quoting a slightly modified version of a result by
Young ([17]) on the existence and properties of output normal
realizations we need the following Lemma.

Lemma 5.1 Let (Ag4,By,Cq, Dyg) be a discrete-time system (not
necessarily admissible) system such that A; is a contraction and
By, Cq and Dy are bounded. If (A4, B4, Ca, Dy) is reachable or
observable then o,(A4) C D.

Proof:
Assume (A4, B4, Cq, D4) is observable with observability
gramian Mgy then it is easily verified that

AMgAq — My = ~C3Cy .
Assume X € 0,(Aqg), |A| = 1 with eigenvector z # 0, then
<z, AjMyAgz > — < 2, Myz >= - < z2,C3Cq2 >
and hence

< Agz, MgAge > — <z, Mgz >=0= —||C¢z||2

which implies that Cyz 0. Hence for all n > 0, Oyz :=
(C4A3z)n>0 = (A)*Caz = 0 which is a contradiction to the
observability of (A4, Bq, Ca, Da).
If (A4, B4, Cy4, Dy) is reachable the result follows by consid-
ering the dual system. o
We now state the result by Young ([17]). For the precise
definition of a restricted shift realization see e.g. [3], [17].

Theorem 5.1 With the same notation and the same conditions
as in Theorem 2.1 the transfer function G4 has ar output nor-
mal reachable ande observable realization (Ay4, By, Cy4, Dg) where
Aq i8 a contraction and By, C4 and Dy are bounded. This re-
alization is unitarily equivalent to a restricted shift realization.

o We call a discrete-time system (Aq, By, Cy, Dg) asymptoti-
cally stable if A}z — 0, for all z € X. Similarly, a continuous-

time system (A, B.,C.,D.) is called asymptotically stable if

etdez 0 forall z € X.



The following theorem shows that output normal realizations
of transfer functions considered in Theorem 2.1 and Theorem 3.1
are asymptotically stable.

Theorem 5.2 Let G4 be a discrete-time transfer function de-
fined as in Theorem 2.1 then an output normal realization of G4
is asymptotically stable.

If G. is a continuous-time transfer functions as defined in
Theorem 3.1 then G admits an observable and reachable output
normal realization in Cg‘y. Such realizations are asymptotically
stable.

Proof:

First consider the case of discrete-time systems. We know
by Theorem 5.1 that G4 admits an output normal realization
which is unitarily equivalent to a restricted shift realization
(A,, B,,C,, D,). Hence the output normal realization is asymp-
totically stable if and only if the restricted shift realization is
asymptotically stable. But A, is a left shift on a Hilbert space
and is therefore asymptotically stable.

Now consider the continuous-time case. Let G. be as in
Theorem 3.1 and let G4 : €\ D — L(U,Y) be the associated
discrete-time transfer function G4(2) = G, (:;—{) It is straight-
forward to verify that G, satisfies the conditions of Theorem 2.1.
Hence G4 has an asymptotically stable minimal observable and
reachable realization (A4, Bg,Ca,D4) which is output normal
and admissible by Lemma 5.1. Then Theorem 4.1 shows that
(A¢, B.,C., D.):= T(Ag4, B4, Cy, D3) is a reachable and observ-
able realization of G, which is output normal by Theorem 4.3.
The asymptotic stability of (A, B, C., D.) follows from Propo-
sition 9.1, p.148, in [14]. There it is shown that the Cayley
transformation preserves asymptotic stability, i.e. A4 is asymp-
totically stable if and only if (e“‘)gzo is asymptotically stable.
u]

6 Sign symmetry and stability of bal-
anced realizations

In the previous section we showed that a large class of transfer
functions have asymptotically stable output normal realizations.
In this section we address the stability problem for balanced re-
alizations. It can be easily seen that in order to balance an
output normal system it is necessary to perform a state space
transformation with a bounded operator whose inverse is not
necessarily bounded. Since the asymptotic stability is not nec-
essarily preserved under such a state space transformation we
can not generally deduce the asymptotic stability of a balanced
realization from the asymptotic stability of the corresponding
output normal realization. In what follows we shall however es-
tablish the asymptotic stability of balanced realizations at least
for several interesting special cases.

First we are going to discuss the existence of so called sign
symmetric realizations for real symmetric transfer functions. We
call a discrete time (continuous-time) transfer function real sym-
metric if G(2) = (G(2))* for all z e C\ D (z € RHP). In fi-
nite dimensions they have been extensively studied (for a study
without the imposition of the balancing constraint see e.g. {15]).
The existence of sign symmetric balanced realizations for ratio-
nal transfer functions has been shown for example in ([16] [8]).

The following Lemma shows an interesting property of par-
balanced realizations of real symmetric transfer functions.

Lemma 6.1 Let G, satisfy the conditions of Theorem 2.1 (i)
and assume that G4 is real symmetric. If (A4, B4,Cq,Dy) is
a parbalanced realization of G4 with gramian L then the dual
system is again a parbalanced realization of G4 with gramian X.

Proof:
For z € D we have

Gu(z) = (Ga(2)y
= (Ca(2I - Ad)-le + Da)*
= Bi(:I - 497'C3 + D3,
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which shows that the dual of (A4, B4, C4, Dg) is a realization of

Gg4. That it is a parbalanced realization with the same gramian

follows from the definition of the observability and controllability

gramians. [a]
The following Lemma will be useful later.

Lemma 6.2 Let (A, By,C1,D1) and (Az,B2,C3,D;) be two
admissible discrete-time systems which are either controllable
or observable. If the two systems are unitarily equivalent with
respect to a unitary state space transformation V, then V is
unique.

Proof: :
Assume the two systems are observable and that there are
two unitary operators Vj, j = 1,2, such that

ViiV] = Ay, V;Bi=B;, CiVi=Cy j=12.

Then we have for the observability operators O;, ¢ = 1,2, of the
two systems that

O = OZV;v i=L2,
and hence

Oy — Vi) =0.

This implies that V3 = V4 since O, has zero kernel. If the system
is reachable the statement follows by duality. a

The following theorem states in part (1) an important
uniqueness property of balanced realizations and in part (2) it
is shown that real symmetric transfer functions have balanced
realizations with the sign symmetry property. A realization
(A,B,C,D) is called sign symmetric if there exists a basis in
the state space X such that

A* = SAS, C* =8B,

where S has a matrix representation with respect to this basis
which is given by

S = diag(s1,32,83,...)
with 8; = £1.

Theorem 6.1 (1) Let G4 be a discrete time transfer function
satisfying the conditions in part (ii) of Theorem 2.1. Then by
Theorem 2.1 G4 has an admissible balanced discrete-time real-
ization (A4, B4, Cd, D4) with observability/reachability gramian
T which for a given basis (e;)j>1 in the state space X has the
matriz representation

L = diag(o1In,, 021n,,031n,,...)

where 07 > a3 > 03 > ... > 0 such that limj_0; = 0.
All admissible discrete-time balanced systems with state space
X and gramian ¥ can be written as

(QA4Q*,QB4,CaQ", Dy),

where Q has @ matriz representation with respect to the basis
(e5)i>1 given by

Q = diag(le QZ) Q37 [ )

where Q; €C™ X", Q3Qj=In;, § 2 1.

(2) Let G4 be a real symmetric transfer function such that
the conditions of part (ii) in Theorem 2.1 are satisfied. Then G4
has a balanced and admissible discrete-time realization which is
sign symmetric.

Proof:

(1) Let (Ag, B4,Ca,Da) be a balanced realization of G4. Note
that the diagonal entries of ¥ are the singular values of the Han-
kel operator corresponding to G4 ([17]). The assumptions on G4
imply that the Hankel operator is compact. Hence the only ac-
cumulation point of the singular values is 0 and the multiplicities
of the nonzero singular values is finite. Therefore, possibly af-
ter rearranging the basis (e;);>1, we can assume that T has the
claimed structure.



Let (Ag,B4,C4,D4) be another balanced realization of Gy
with gramian ¥. Then by Theorem 2.1 the two systems are
unitarily equivalent with a unitary state space transformation
Q. Using the definition of the observability gramian we obtain

Qs@" =%
and hence QX = XQ. This implies the claimed structure of Q.

(2) By Lemma 6.1 we know that if (A4, Bq, Cq, D4) is a balanced
realization of G4 with gramian

B =diag(o11n,,0210,,031,,,...)

then the dual system is also a balanced realization of G4 with
the same gramian. Hence by part (1) we have that

A47=QAQ", Ci=QBy, B;=CuQ",

Wherer = diag(Ql,QhQ& .. -)7 with QJ EC"’x"j7 Q;QJ = In,’v
j 2 1. From these identities it follows that

A} =Q*A4Q, C;=Q"By, B;=CuQ.

Hence by the uniqueness of the state space transformation we
have that Q@ = Q* and thus Qj =@Qj,j 2> 1. Since @; is unitary
and selfadjoint we can therefore find

§; = diag(s{,...,s-;’;j), af =+1,352>1,1 S.i < n;
and unitary matrices Vj, j > 1, such that
Qi= Vj‘sjvj’ jz L

Setting V' = diag(V1,V;,V3,...) and S = diag($1, 52, S3,...)
we can perform a state space transformation of (A4, B4, C4, Dg)
with V. Note that the resulting system

(A4,B4,Ca,D4) = (VAV*, VB4, CaV*, Dy)

is a balanced realization of G4. It is straightforward to verify
that (Ag4, By, C4, Dy) is sign symmetric. u]

The results in Section 4 imply that the previous theorem
carries over to the continuous-time case. In particular we have
the following corollary.

Corollary 8.1 (1) Let G, be a continuous-time transfer func-
tion satisfying the conditions of part (i1) in Theorem 3.1. Then
by Theorem 8.1 G. has an admissible balanced continuous-
time realization (A;, B.,C.,D.) with observability/reachability
gramian L which for a given basis (e;);>1 in the state space X
has the matriz representation

L= diag(allru ,0‘217,2,0’31"3, .. )

where 0y > 03 > 03 > ... > 0 such that limj_.0; = 0.
All admissible continuous-time balanced systems with state
space X and gramian ¥ can be written as

(QAQ",QB,,C.Q%, D),

where Q has a matriz representation with respect to the basis
(e5)i>1 given by

Q = diag(leQ21 Q31 .. ')1

where Q; EC™*™, Q3Q; = I, j 2 1.

(2) Let G. be a real symmetric transfer function such that
the conditions of part (ii) in Theorem 3.1 are satisfied. Then G,
has a balanced and admissible continuous-time realization which
is sign symmetric.

Proof:

(1) This follows from the results in Section 4.

(2) The property is a consequence of the results in Section 4

together with the fact that a continuous time transfer function

is real symmetric if and only if its associate discrete time transfer

function is real symmetric. a
In the next theorem we are going to give an interpretation

of the signs in the sign symmetry matrix S.
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Theorem 6.2 Let G4 be a real symmetric transfer function sat-
isfying the conditions in Theorem 2.1. If T is the observabil-
ity /reachability gramian of a balanced sign symmetric realization
of G4 with sign symmetry matriz S, then the diagonal entries of
XS are the nonzero eigenvalues of the Hankel operator

H: G -6
(w,u2,u3,..)7 > (41,92,95,..)7
H] H2 H3 Uuy
Hy, H; Hy U2
=| Hs3 Hy Hs u3

where H(i), i > 1, are the Markov parameters of G4, which are
given by H; = CdA:['le, i > 1, where (A4,B4,Cq,Dy) is an
admissible realization of G4.

Proof:

The statement follows by noting that M has the decomposi-
tion H = OR. For a sign symmetric realization which has sign
symmetry matrix § with respect to a basis (e;);>1 we obtain
H = OSO*. Setting ii; = Oe¢j, j > 1, we obtain

Hi; = OSO*Oh; = 8;0;0e; = 8;0;1;
for 7 > 1, which implies the result. It is easily seen that all
nonzero eigenvalues of M are given in this way. o
The following theorem states the asymptotic stability of a
balanced realizations for a special class of real symmetric trans-
fer functions.

Theorem 6.3 Let G4 (G.) be @ real symmetric transfer func-
tion satisfying the conditions in Theorem 2.1 (Theorem 3.1). If
the sign symmetry matriz S of the sign symmetric realization
(Ad, B4,Cq4,Dy) (A, Be, Ce, D)) is such that § = +1I then Ay

((C‘A‘)gzo is asymptotically stable.

Proof:

First note that A, is selfadjoint. Hence the spectrum of A4
is real. By Lemma 5.1 A4 has no eigenvalues on the unit circle.
Since the state space X is a seperable Hilbert space the result
follows from the stability result in [1].

The asymptotic stability of (e‘h)gzo is a consequence of the
fact that (e*4<)sy0 is asymptotically if and only if the cogener-
ator is asymptotically stable ({14]). This is the case since the
continuous-time system is sign symmetric with sign symmetry
matrix S if and only if the associated discrete-time system is
sign symmetric with sign symmetry matrix S (Proposition 4.1).
]

In the next theorem we show asymptotic stability for another
special class of (par-) balanced realizations.

Theorem 6.4 If a discrete-time par-balanced system is such
that Mg = Wy is bounded below, i.e. for some m > 0,
[[Maz|| > mllz|| for all z € X then the system is asymptoti-
cally stable.

The same result holds for par-balanced continuous time sys-
tems.

Proof:
If (A4, B4, C4, Dyg) is par-balanced with My bounded below
then

(M;hAdM;‘/z,M,l,/zBd, CdM;llz,Dd)

is an output normal realization. But by Theorem 5.2 this system
is asymptotically stable. Note that this output normal realiza-
tion is well defined since both M}/ % and Md_l/ % are bounded
operators. The asymptotic stability of (A4, Ba,Ca, Dy) is now a
consequence of the boundedness of these operators. The stan-
dard arguments imply the result for the continuous-time case.
[m]

We have therefore shown that in two special cases we have
asymptotic stability of (par-) balanced realizations. Whether
(par-) balanced systems are in general asymptotically stable is
not clear. We know that for a (par-) balanced discrete-time



system A4 has no point spectrum on the unit circle and that A4
is a contraction. Similarly for a (par-) balanced continuous-time
system wé know that A, has no point spectrum on the imaginary
axis and that (e*4¢),;5¢ is a semi group of contractions. It is,
however, well known that this is not sufficient to guarantee the
asymptotic stability of the systems.

We conclude with a remark concerning exponentially stable
systems.

Remark 6.1 Since Hankel operators corresponding to transfer
Junctions play an important role in realization theory it might
be suggested that certain compactness ptions on the Han-
kel operator imply the ezistence of ezponentially stable balanced
realizations. That this is not the case follows from a construc-
tion in [10], [9], where for a given sequence of singular values a
Hankel operator was constructed via a balanced continuous-time
state space system. This system was shown to be asymptotically
stable. 'Since the dissipative operator A. was constructed to be
a Hilbert-Schmidt operator this implies that its eigenvalues con-
verge to zero. This however ezcludes the ezponential stability of
Ac. ]
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