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2 Discrete time balanced realizations

In this section we are first going to define a large class of infinite
dimensional discrete-time state space systems and review some
facts concerning these systems. Next we will quote a result by
N. Young ([17]) which shows that a large class of nonrational
transfer functions have a (par- ) balanced realization.

Abstract

It is shown that a large class of nonrational transfer
functions admit output normal realizations. These real-
izations are proved to be asymptotically stable. Asymp-
totic stability is also shown for several classes of balanced
systems. It is established that a nonrational transfer func-
tion whose corresponding Hankel operator is compact has
a sign symmetric realization.

Keywords: Asymptotic stability, sign symmetry, infinite di-
mensional continuous time systems, balanced realizations, out-

put normal realizations

1 Introduction

Definition 2.1 The quadruple of operators ( Ad, Ed, Cd, Dd) is
called an admissible discrete-time system, with state space X,
output space Y and input space U, where X, U, Yare separable

Hilbert spaces, if

(i) Ad E J:.(X) is a contraction such that -1 ~ Up(Ad).

(ii) Ed E J:.(U,X)

(iii) Cd E J:.(X, Y)

(iv) Dd E J:.(U, Y)

(V)Ad,Ed,Cd are such that lim Cd().I + Ad)-1Ed exists in the
>.-+1
>.>1

nonn topology.

We write D~Y for the set of admissible discrete-time systems
with input space U, output space Y and state space X. 0

Before we are going to define what we mean byobservability
and reachability of an admissible discrete-time system we need
to consider the notion of a dual system ([13]).

Defin~tio!, 2:2 ~et (Ad, Ed,Cd, Dd) E D~Y, then the dual sys-
tem (Ad, Ed, Cd,Dd) of(Ad,Ed,Cd,Dd) is given by

Ad:= Ad: X- X
iJd := Cd : Y -X
Gd := Ed: X -U
iJd:=Dd : Y -U o

The following Lemma states that a dual system of an ad-
missible system is admissible and how the transfer function of a
system is related to the transfer function of its dual system.

Lemma 2.1 The dual system (Ad, iJd, Cd, bi> of an admissible
discrete-time system (Ad, Bd, Cd, Dd) in D~ is an admissible

system in D~u .
lIthe discrete time transfer function G(s) :~\fi ---£(U,Y)

has an admissible realization (Ad, Bd,Cd,Dd), then the dual sys-
tem (Ad,iJd,cd,bd) is a realization of the transfer function
{;(s) : ~\fi ---£(Y,U), s 1 {;(8) := (G(8»*, i.e. for all
s E~\fi,

--1- -
Gd(8I- Ad)- Ed + D,{;(8) (G(8»*

Next, we define the observability and re3£hability operators
for discrete-time systems.

Balanced realizations for finite-dimensional systems have received
a great deal of attention. They were introduced as a means of
performing model reduction in an easy fashion ([7]) and have
subsequently been used in Roo control theory for example to
evaluate the Hankel norm of a linear system ([4],[2]). Recently,
they have been used to study parametrization problems of the

set of stable linear systems ([12],[8]).
The elegant results obtained for finite-dimensional balanced

systems brought about some interest in the problem of the exten-
sion of the notion of a balanced realization to infinite-dimensional
systems. In [5] balanced realizations were derived for a class of
systems with nuclear Hankel operator. Young ([17]) developed a
very general realization theory for infinite-dimensional discrete-
time systems. The approximation of infinite-dimensional bal-
anced systems was considered in ([5], [11]).

In [13] the approach by Young ([17]) was extended to con-
tinuous time balanced realizations by studying a bilinear trans-
formation between discrete-time and continuous-time systems.
This work will be reviewed here since it is fundamental to the

present investigation.
After a review of the realizations results for discrete-time bal-

anced realizations (Section 2) and those for continuous-time bal-
anced realizations (Section 3) we set out the main results in [13]
concerning the relationship between discrete- and continuous-
time systems. These results will then be used in Section 5 to
establish the existence of so called output normal realizations.
Such realizations are closely linked to balanced realizations and
have in particular the same 'canonical' finite dimensional ap-
proximants (see e.g. [5]). It follows from the realization theory
that the semigroups associated with balanced realizations as well
as with output normal realizations are strongly continuous semi-
groups of contractions. The question of the stability of these
semigroups had however not been studied before. Whereas it is
possible to show that output normal realizations are asymptoti-
cally stable (Section 5) there is no complete answer for the case
of balanced realizations (Section 6).

One reason for the current interest in finite dimensional bal-
anced realizations are their interesting structural properties. Of
them the fact that a scalar system admits a sign symmetric re-
alization is of particular significance (see e.g. [16], [12]). In
Section 6 it is shown that nonrational transfer functions whose
corresponding Hankel operator is compact have an infinite di-
mensional balanced realization which is sign symmetric.

Definition 2.3 Let (Ad, Ed, Gd, Dd) E D~Y, then the operator

Od : D(Od) -+ 4

:I: 1---+ (GdAd:1:)n?:O



3 Continuous time balanced realizations

In this section we are going to review the results in [13] concern-
ing infinite dimensional continuous time state space systems and
balanced realizations of nonrational transfer functions.

It is well known that if A is the generator of a strongly contin-
uous semigroup of operators ( etA )t>o with domain of definition
D(A), then D(A) is a Hilbert space with inner product induced
by the graph norm

IIxll~ := IIxll~ + IIAxll~, x E D(A).

Since IIxllA ~ IIxll for x E D(A), we can embed X in D(A)<'>,
the set of antilinear continuous functionals on (D(A), II.IIA)' by

E : X-+ D(A)<'>
ZI + (y 1 +< x, y > ).

Note that D(A)<'> is a Hilbert space with norm
IIfll' := SUPII~1151If(x )1. Since < ., .> is linear in the first com-
ponent, the embedding E is linear. By the above, we have the
rigged structure

D(A) ~ X ~ D(A)<'>.

It is well known that if (A,D(A» is the generator of a strongly
continuous setnigroup of contractions ( etA )t>o on a Hilbert
space, then the adjoint (A*,D(A*» of(A,D(A» is the genera-
tor of the adjoint setnigroup (etA);>o. Hence, we have sitnilarly
that -

D(A*) ~ X ~ D(A*)<'> .
If M is an operator on X such that D(A*) ~ X is invari-

ant under M*, then M can be extended to an operator M on

D(A*)<'> by:

is ca/led the observabilityoperator of the system (Ad, Ed, Cd,Dd),
where

D(Od) = {x E X I (CdA~x)n?;o E l} } .

IfOd is bounded and Ker(Od) = {0}, then the system
(Ad, Ed, Cd, Dd) is ca/led observable.

Let (Ad, iJd, Cd, iJd) be the dual system of (Ad, Ed, Cd, Dd).

lithe observability opemtor 6d of(Ad,iJd,cd,iJd) is bounded
(and hence D(6d) = X), then the adjoint of6d is ca/led the

reachability operator R.d of (Ad, Ed, Cd, Dd), i.e.

on .- 0 -.

"'d .-d.

IfR.d exists and Range('RcI) is dense in X, the system
(Ad, Ed, Cd, Dd) is ca/led reachable. D

The notion of reachability and observability gramians as de-
fined below is central in the discussion of balanced realizations.

Definition 2.4 Let (Ad, Ed, Cd, Dd) E D~Y with bounded reach-
ability opemtor R.d and bounded observability opemtor Od. Then

Wd := R.dR.d : x--+ X
Md := °dOd : X--+ X

are ca/led the reachability and the observability gramian of the
system (Ad,Ed,Cd,Dd). D

The following definition recalls the notion of a balanced sys-
tem as defined by Moore ([7]) and the notion of a parbalanced
as introduced by Young ([171).

Definition 2.5 Let (Ad, Ed, Cd, Dd) E D~Y be such that the
observability gramian Md and reachability gmmian Wd exist.
Then the system is

(i) parbalanced, if Md = Wd.

(ii) balanced, if it is parbalanced and moreover the gmmians
are diagonal. D

Before we state any results, we introduce some notation.
Let H" : D --+ £(U,Y) be analytic. We say that HE
P+LOO(D,£(U,Y» if there exists an analytic function F :
D --+ £(U, Y) such that H + F is essentially bounded, where
F(z) = F(Z-I ). Further, if F can be chosen so that H + F

E C(D,K.(U, Y», where C(D, K.(U, Y» is the set of norm con-
tinuous functions on lJD with values in the set of compact opera-
tors from U to Y, then H is said to be in P+C(D, K.(U, Y». Two
systems (AI,EI,CI,DI) and (A2,E2,C2,D2) are called unitar-
ily equivalent if there exists a unitary operator V mapping the
state space XI to the state space X2, i.e. V. XI--+ X2 such
that

M : D(A*)(/) --+ D(A*)(/)
f(.) 0 f(M*(.» .

We will normally not distinguish between M and M and write
M for M.

Also, if we have a map M : Z--+ D(A*)(/), Z a Hilbert space,
such that M(Z) ~ X(,) ~ D(A*)(/), we can consider M : Z--+ X
using the Riesz representation theorem.

We are now in a position to define admissible continuous-
time systems.

Definition 3.1 A quadnlple of opemtors ( Ac, Bc, Cc, Dc) is
called an admissible continuous-time system with state space X ,
input space U and output space Y, where X, U, Yare sepamble
Hilbert spaces, if

(i) (Ac, D(Ac» is the generator of a strongly continuous semi-
group of contmctions on X .

(ii) Bc : U -+ (D(A~)(/), 11.11') is a bounded linear opemtor.

(iii) Cc : D(Cc) -+ Y is linear with
D(Cc) = D(Ac) + (1- Ac)-l BcU and
CcID(Ac) : (Jj(Ac), 1I.IIAc) -+ Y is bounded.

(iv) Cc(I- Ac)-l Bc E £(U, Y)

(v) Ac,Bc,Cc are such that Jim .eR Cc(sI- Ac)-l Bc = O in
.-00

the norm topology.

(vi) Dc E £(U, Y).

We write c.'f'.Y for the set of admissible continuous-time systems
with input space U, output space Y and state space x. D

Remark 3.1 Helton ([6]) and Fuhrmann ([9]) gave a similar
definition for continuous-time state-space systems. There are,
however, seveml differences between so-called compatible sys-
tems and admissible systems as defined here. Our definition of a
rigged Hilbert space is slightly different from that used in Helton
and Fuhrmann, where X is embedded in the dual spaces D(A)'
and D(A*)', rather than in the spaces of antilinear functionals
D(A)(/) and D(A*)(/) as adopted here. The reason for using our
definition is that this naturally leads to a definition of the input
operator Bc as a linear, rather than an antilinear opemtor. Most
importantly however for the discussion later is the imposition of
(v) in our definition. D

(A1,E1,C1,D1) = (V* A2V, V* E2,C2V,D2).

The following theorem by Young ([17]), gives criteria for a
(par- ) balanced realization to exist of a discrete time transfer
function.
Theorem 2.1 Let Gd(Z) : G::\fi --£(U, Y) be analytic with
Gd(OO) = Dd e £(U,Y), and write

1 1
g(z):=-(Gd(-)-Dd) , zeD.

z z

(i) If 9 e P+LOO(D,£(U, Y», then there exists a se[Klroble
Hilbert S[Klce X and a discrete-time state-s[Klce realization
(Ad,Ed,Cd,Dd) ofGd(z) with state space X, such that

Ad e £(X) is a contraction
Ed e £(U, X)
Cd e £(X, Y),

and (Ad, Ed, Cd, Dd) is reachable and observable with bounded
reachability and observability operotors, such that
(Ad, Ed, Cd, Dd) is [Klrbalanced, i.e. Md = Wd.
The gromians Md, Wd satisfy the Lyapunov equations

AdWdAd- Wd = -EdEd

AdMdAd -Md = -CdCd.

If (Ad, Ed, Cd, [)d) is another [Klrbalanced realization of 9d(Z)
with state s[Klce X, then (Ad, Ed, Cd,Dd) and (Ad,Ed,Cd,[)d)
are unitarily equivalent.

(ii) If moreover, 9 e P+C(D,K-(U, Y», there is a basis in X
with respect to which (Ad, Ed, Cd, Dd) is balanced. 0
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(2) If (Ac,Bc,Cc,Dc) is a state spaC£ roolization of the tronsfer

function

Gc(s) : RHP -+ L(U,Y) ,

then (V AcV., VBc,CcV.,Dc) realizes the same transfer

function. D

The following definition introduces the standard notation of
unitary equivalence of state-space systems. Note that by the
previous proposition, unitarily equivalent systems have the same
transfer functions.

Before defining observability and reachability for continuous-
time systems we need to introduce the notion of the dual system
of an admissible continuous-time system.

Definition 3.2 Let (Act Bct CCt Dc) E C~'Y. Then the dual sys-
tem (ActiJctCCtiJc) of(ActBctCctDc) is given by

.(ActD(Ac)) = (A~,D(A~)).

.iJc : Y-+ D(Ac)(/); yl + iJc(Y)[.] :=< yt Cc( .) >

1-.Cc : D(Cc) -+ Ut D(Cc) = JJ(Ac) + (1 -Ac)- BcY,
where Cczo is defined by

{ < ut Cczo > = Bc(u)[zO],

Zo E D(A~)tu E Ut
< CCZOtU > =< YOtCc(!--1c)-lBcu >,

Zo = (1- Ac) BcYot Yo E Ytu E U,

Definition 3.5 Two systems (A~, B~, C~, D~) E C~;Y, i = 1,2,
are called unitarily equivalent, if there ezists a unitary opemtor
V: XI-+ X2 such that

(A~,B~,C~,D~)= (V A~V*, VB:,C:V*,D:)

D

A (par- ) balanced realization for admissible continuous-time sys-

terns is defined as follows.

Definition 3.6 Let (Ao, Bo, Co, Do) E C~'Y be such that the ob-
servability gramian Mo and reachability gramian Wo exist.
Then the system is

(i) parbalanced, if Mo = Wo.

(ii) balanced, if it is parOOlanced and moreover the gramians
are diagonal. 0

If H : RH P -+ r.(U, Y) is analytic, we say that
H E P+LOO(RH P, r.(U, Y» (P+C(RH P, K.(U, Y» if there is an
analytic function F : RH P -+ r.(U, Y) (K.(U, Y» such that H +
F is essentially bounded (extends to a norm continuous function
on the imaginary axis such that Jim (H + F)(iw)= Jim (H +

..em ..em

F)(-iw», where F(s) = F(-s).

In [13] the following realization theorem was proved for non-
rational continuous-time transfer functions.

.iJc := D~ : y-+ U. 0

The following Lemma is the continuous-time equivalent of
Lemma 2.1.

Lemma 3.1 The dual system (.4c.Bc,cc,iJc) of an admissi-
ble continuous-time system (Ac. Bc. Cc, Dc) is admissible. If
the continuous-time transfer function G(s) : RH P -+ L(U, Y),
has an admissible realization (Ac. Bc. Cc, Dc), then the dualsys-
tem (.4c, Bc. Cc. iJc) is a realization of the transfer function
G(s) := (G(s»*, i.e. for aIls E RHP I

---1- -
G(s) = (G(s»* = Cc(sI -Ac)- Bc + Dc. 0

The definitions of observability and reachability of admissible
continuous time systems is now given.

Definition 3.3 Let (Ac, Bc. Cc, Dc) E C~'Y, then the operotor

Oc : D(Oc) -+ L~([0.00{)
x 1---+ CcefA.,x

is called the observability operator of the system (Ac. Bc. Cc. Dc),
where D(Oc) = {x E X I CcefAcx exists for almost all t E

[0, 00[. CcefAcx E L~([O, 00!)}. We say that (Ac. Bc, Cc. Dc) has
a bounded observability ope rotor if D(Ac) ~ D(Oc) and Oc ex-
tends to a bounded operotor on x. This eztension will also be
denoted by Oc.

If( Ac. Bc. Cc, Dc) has bounded observability ope rotor Oc such
that Ker(Oc) = {0}, then the system (Ac.Bc,Cc,Dc) is called
observable.

Let (.4c,Bc,Cc.iJc) be the dual system of (Ac. Bc, Cc, Dc). If
the observability operotor 6c of (.4c, Bc, Cc.iJc) is a bounded op-
erotor on X, the adjoint of6c is called the reachability operator

1?c of(Ac.Bc,Cc,Dc), i.e.

Theorem 3.1 Let Gc : RH P -.£(U, Y) be a continu-
ous time transfer function, which is analytic and such that
lim .em Gc(s) E £(U, Y) exists.

(i) iJGc E P+LOO(RHP,£(U,Y», then there exists a separoble
Hilbert space X and a parOOlanced admissible continuous time
state space realization (Ac, Bc, Cc, Dc) of Gc with state space
x. This system is reachable, obsenJable and has bounded reach-
ability and observability operotors. If ( Ac, fJc, (:c, [)c) is an-
other par-OOlanced realization ofGc(s), then (Ac,Bc,Cc, Dc) and
(Ac, fJc, (:c, [)c) are unitarily equivalent.
(ii) IfmoreoverGc E P+C(RHP,K-(U,Y», then there is a basis
in X with respect to which (Ac,Bc,Cc,Dc) is balanced. D

As a corollary we give further sufficient conditions for the
existence of (par- ) balanced realizations.

no := 60..

Ifno exists and Range(1lc) is dense in X, the system
(Ao, Bo, Co, Do) is called reachable. D

The observability and controllability gramians are defined as

follows.
Definition 3.4 The reachability gramian Wo and the observ-
ability gramian Mo of a continuous-time system with bounded
reachability opemtor no and observability opemtor ()o are de-
fined to be

Corollary 3.1 Let G,,(s) : RHP --£(U,Y) be a continuous
time tmnsfer function, such that lim .elt G ,,( s) E £( U, Y) e1!ists

and G,,(s) is analytic in RH P ..-=
{il IfG,,(s) is bounded in the RHP, i.e. suP.eRHPIIG,,(sjll <
00, then G,,(s) has a par-balanced realization.
{ii) If in particular G,,(s) : RHP K:(U,Y), such that G"
is baunded in the RH P and G,,(s) is norm continuous on the
imaginary a1!is including at the points +00 and -00, i.e. w 1---+
G,,(iw), w E m., is norm continuous and limw--ooG,,(iw) =
limw-+oo G,,(iw), then G,,(s) has a balanced realization. D

Wc := ncn~ : x-- x
Mc := O~Oc : x-- x. D

The concept of a unitary state space transformation of an
admissible continuous-time system is slightly more complicated
than in the discrete time case.
Proposition 3.1 Let «Ac,D(Ac»,Bc,Cc,Dc) E C.r:;Y. If X2
is another Hilbert space and V: Xi --X2 is a unitary ope~tor,
then

(1) «V AcV*, VD(Ac», VBc,(CcV*, VD(Cc»,Dc) E C.r:~y,
where

(VBc) : U-- ~VD(A~)('),II.II')

4 Connection between continuous and

discrete time systems

The realization result quoted in Section 3 WaB proved in [13] by
relating discrete time systems to continuous time systems using
an infinite dimensional generalization of a well known bilinear
transformation for finite dimensional systems. Thereby it WaB

is given by

(VBc)(u)[:E] :~ Bc(u)[V*:E]

u E U, :E E V D(A:).
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possible to carry Young's results for discrete time systems over

to continuous time systems.
In the following theorem the map T ; D~Y -+ C~.y is intro-

duced.

Theorem 4.1 Let (Ad, Bd, Cd, Dd) E D~Y, then

T«Ad,Bd,Cd,Dd» := (Ac,Bc,Cc,Dc) E C~.Y, where

(i) Ac := (I + Ad)-l(Ad -I) = (Ad -J)(I + Ad)-l, D(Ac) :=

D«I + Ad)-l ). Ac generotes a strongly continuous semi-

group of controctions on X given by 'Pt(Ad), t ~ 0, with

t.-1'Pt(z) = e s;r .

(ii) Bc := ,j2(I + Ad)-l Bd : U -+ D(A~)(/)

u ,j2(I+ Ad)-IBd(U)[Cd]

(iii) := <Bd(u),(I + Ad)-l(Cd) >X.

T«A~,B~.C~,D~)) be its corresponding admissible continuous-

time system. Then,
(A~,B~,C~.D~) is the dual system of (Ad.Bd,Cd.Dd)

if and only if
(A~,B~.C;.D~) is the dual system of (Ae.Be. Ce.De). 0

The following theorem shows that observability and r~h-
ability as well as the gramians are preserved under T. This
implies that the transformation preserves balancing of systems.

Theorem 4.3 Let (Ad,Bd.Cd,Dd) E D~Y and

(Ae, Be, Ce. De) E C~.Y such that

Then, (Ae.Be,Ce.De) = T«Ad.Bd,Cd.Dd))

(1) (Ac,Be,Ce.De) is observable (reachable) if and only if

(Ad, Bd, Cd, Dd) is observable (reachable).
(2) if the reachability gramians We. Wd (observability gramians
Me,Md) of (Ad, Bd,Cd,Dd) and (Ae,Be,Ce,De) are defined,

then

Cc: D(Cc) -+ y

z I--.lim~-+l ./2"Cd(>.I + Ad)-lZ,
~>1

where D(Cc) = D(Ac) + (1- Ac)-l BcU .

On D(Ac) we have,

Cc)D(A.,) = V'iCII(I + AII)-l.

(iv) Dc := DII -lim.\-l CII(AI + AII)-l BII.
.\>1

Moreover, let the admissible discrete-time system

(All, BII, CII, DII) be a realization of the transfer function

GII(Z) :~ \f) --£(U,Y) ,

i.e. GII(Z) = CII(zI- AII)-l BII + Dlljor z E~\[) .

Then, (Ac,Bc,Cc,Dc) = T((AII,BII,CII,Dd» is an admissi-

ble continuou8-time realization of the transfer function

Wc = Wd (Mc = Md). D

5 Output normal realizations

In this section we are going to define what we mean by out-
put normal realizations. Such realizations were first defined by
Moore ([7]) and then for infinite dimensional discrete time sys-
terns by Young ([17]). They are of particular interest here be-
cause of their strong connections to balanced realizations. The
main result of this section is a theorem stating that admissible
continuous time output normal realizations are asymptotically
stable. The approach will be to prove asymptotic stability for
discrete time output normal realizations and to carry this re-
sult over to the continuous time case using the transformation
introduced in Section 4.

Output normal realizations are defined to be those for which
the observability gramian Wd, (Wc) is the identity.

Before quoting a slightly modified version of a result by
Young ([17]) on the existence and properties of output normal
realizations we need the following Lemma.

Lemma 5.1 Let (Ad, Ed,Gd, Dd) be a discrete-time system (not
necessarily admissible) system such that Ad is a contraction and
Ed, Gd and Dd are bounded. If (Ad, Ed, Gd, Dd) is reachable or
observable then (7,,(Ad) ~ D.

Proof:
Assume (Ad. Ed. Gd, Dd) is observable with observability

gramian Md then it is easily verified that

AdMdAd -Md = -GdGd .

Assume >. E /1p(Ad), 1>.1 = 1 with eigenvector :I: # 0. then

< :I:, AdMdAd:l: > -< :I:,Md:l: >= -< :I:. GdGd:l: >

and hence

< AdX, MdAdX > -< x, MdX >= ° = -IIGdXII2

which implies that GdX = 0. Hence for all n ? 0, ()dX :=
(GdA~X)n?O = (>.)nGdX = 0 which is a contradiction to the

observability of (Ad, Ed, Gd, Dd).
If ( Ad, Ed, Gd, Dd) is reachable the result follows by consid-

ering the dual system. D
We now state the result by Young ([17]). For the precise

definition of a restricted shift realization see e.g. [3], [17].

Theorem 5.1 With the same notation and the same conditions
as in Theorem 2.1 the transfer function ad has an output nor-
mal reachable ande observable realization (Ad, Ed, Gd, Dd) where
Ad is a contraction and Ed, Gd and Dd are bounded. This re-
alization is unitarily equivalent to a restricted shift realization.
D We call a discrete-time system (Ad, Ed, Gd, Dd) asymptoti- .

cally stable if A~x ---0, for all x E X. Similarly, a continuous-
time system (Ac,Ec,Gc,Dc) is called asymptotically stable if
etAcx ---0 for all x E X .
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The inverse map is considered in the next theorem.

Theorem 4.2 Let (Ao, Eo, Co, Do) E D~Y, then

T-l«Ao,Eo,Co,Do)) := (Ad,Ed,Cd,Dd) E ci'.Y, where
(i) Ad := (I + Ao)(I -Ao)-l, and for z E D(Ao) we have

that AdZ = (1- Ao)-l(I+ Ao)z.

(ii) Ed := v'2(I- Ac)-l Eo
(iii) Cd := v'2Co(I- Ao)-l

(iv) Dd := Co(I -Ao)-l Eo + Do .
Moreover, let the admissible continuous-time system
( Ao, Eo, Co, Do) be a realization of the transfer function

Go(s) : RH p --+ £(U, Y) ,

i.e., Go(s) = Co(sI -Ao)-l Eo + Do for s E RH P.
Then, (Ad,Ed,Cd,Dd) = T-1«Ao,Eo, Co,Do)) is an admis-

sible discrete-time realization of the transfer function

( Z-l ) - Gd(Z) := Go -:G::\D --+ £(U, Y) .D

z+l

Next we are going to quote two technical results which will
be of importance in the following sections. The first one states
that the map T preserves the unitary equivalence of systems.

Proposition 4.1 Let (A~,E~,C~,D~) E D~iY' i = 1,2. Let

(A~,E~,C~,D~) := T«A~,E~,C~,D~)), i = 1,2, be the associ-

ated continuous-time systems.
Then, (A~,E~,C:,D~) and (A~,E~,C~,D~) are unitarily

equivalent with unitary state space transformation V if and only
if (A~, E~, C~, D~) and (A~, E~, c3, D~) are unitarily equivalent
with unitary state space transformation v. D

The next proposition states that similarly the duality of sys-
tems is preserved under the map T.

Proposition 4.2 Let (Ad,Ed,Cd,Dd) E D~Y and define
(Ao,Eo,Co,Do) := T«Ad,Ed,Cd,Dd)). Let (A~,E~,C~,D~) E
D~Y be another discrete time system and let (A~, E:,C:,D~) :=

(1 + 8
)GC(8):=Gc/ -:RHP-+£(U,Y). D

1-8



which shows that the dual of (Ad, Ed, Gd, Dd) is a realization of
Gdo That it is a parbalanced realization with the same gramian
follows from the definition of the observability and controllability
gramianso D

The following Lemma will be useful later 0

The following theorem shows that output normal realizations
of transfer functions considered in Theorem 2.1 and Theorem 3.1
are asymptotically stable.

Theorem 5.2 Let Gd be a discrete-time transfer /IInction de-
fined as in Theore~ 2.1 then an output normal realization ofGd
is asymptotically stable.

If Gc is a continuous-time transfer/1lnctions as defined in
Theorem 3.1 then Gc admits an observable and reachable output
normal realization in c~,y. Such realizations are asymptotically
stable.

Proof:
First consider the case of discrete-time systems. We know

by Theorem 5.1 that ad admits an output normal realization
which is unitarily equivalent to a restricted shift realization
(A.. E.. C.. D.). Hence the output normal realization is asymp-
totically stable if and only if the restricted shift realization is
asymptotically stable. But A. is a left shift on a HUbert space
and is therefore asymptotically stable.

Now consider the continuous-time case. Let ac be as in
Theorem 3.1 and let ad: c \ n -+ £(U. Y) be the associated

discrete-time transfer function ad(Z) = ac (~). It is straight-

forward to verify that ad satisfies the conditions of Theorem 2.1.
Hence ad has an asymptotically stable minimal observable and
reachable realization ( Ad. Ed. Cd, Dd) which is output normal
and admissible by Lemma 5.1. Then Theorem 4.1 shows that

(Ac. Ec. Cc, Dc):= T(Ad. Ed, Cd, Dd) is a reachable and observ-
able realization of ac which is output normal by Theorem 4.3.
The asymptotic stability of (Ac, Ec.Cc. Dc) follows from Propo-
sition 9.1, p.148. in [14]. There it is shown that the Cayley
transformation preserves asymptotic stability, i.e. Ad is asymp-
totically stable if and only if ( elAc ),?:0 is asymptotically stable.
O

Lemma 6.2 Let (A1,B1,C1,D1) and (A2,B2,C2,D2) be two
admissible discrete-time systems which are either controllable
or observable. If the two systems are unitarily equivalent with
respect to a unitary state space transformation V, then V is
unique.

Proof:
Assume the two systems are observable and that there are

two unitary operators Vi, j = 1, 2, such that

ViAl V;* = A2, ViBl = B2, C1 Vi* = C2, j = 1,2.

Then we have for the observability operators 0;, i = 1, 2, of the
two systems that

01 = O2Vi*' j = 1,2,
and hence

02(V1. -V2.) = 0.

This implies that VI = V2 since 02 has zero kernel. If the system
is reachable the statement follows by duality. 0

The following theorem states in part (1) an important
uniqueness property of balanced realizations and in part (2) it
is shown that real symmetric transfer functions have balanced
realizations with the sign symmetry property. A realization
(A,B,C,D) is called sign symmetric if there exists a basis in
the state space X such that

A* = SAS, C* = SB,

where S has a matrix representation with respect to this basis
which is given by

S = diag(sl,S2,S3,...)

with si = ::1:1.

Theorem 6.1 (1) Let G. be a discrete time transfer function
satisfying the conditions in part (ii) of Theorem 2.1. Then by
Theorem 2.1 G. has an admissible balanced discrete-time real-

ization (A.,B.,G.,D.) with obseroability/reachability gramian
E which for a given basis (ej)j?l in the state space X has the

matrix representation

E = diag(ulInl'U2I...,U3In3'...)

where Ul > U2 > U3 > ...> 0 such that limj-oouj = 0.
All admissible discrete-time balanced systems with state space

X and gramian E can be written as

(QA.Q*,QB.,G.Q*,D.),

where Q has a matrix representation with respect to the basis

(ej)j?l given by

Q = diag(Ql,Q2,Q3,.. .)

whereQj E(:n,xni, QjQj = Ini' j ?1.
(2) Let G. be a real symmetric transfer function such that

the conditions of part (ii) in Theorem 2.1 are satisfied. Then G.
has a balanced and admissible discrete-time realization which is

sign symmetric.

Proof:
(1) Let (A.,B.,G.,D.) be a balanced realization of G.. Note
that the diagonal entri~ of E are the singular valu~ of the Han-
kel operator corr~ponding to G. ([17]). The assumptions on G.
imply that the Hankel operator is compact. Hence the only ac-
cumulation point of the singular values is 0 and the multiplicities
of the nonzero singular values is finite. Therefore, possibly af-
ter rearranging the basis (ej)j>l. we can assume that E has the
claimed structure. -

6 Sign symmetry and stability of bal-

anced realizations

In the previous section we showed that a large class of transfer
functions have asymptotically stable output normal realizations.
In this section we address the stability problem for balanced re-
alizations. It can be easily seen that in order to balance an
output normal system it is necessary to perform a state space
transformation with a bounded operator whose inverse is not
necessarily bounded. Since the asymptotic stability is not nec-
essarily preserved under such a state space transformation we
can not generally deduce the asymptotic stability of a balanced
realization from the asymptotic stability of the corresponding
output normal realization. In what follows we shall however es-
tablish the asymptotic stability of balanced realizations at least
for several interesting special cases.

First we are going to discuss the existence of so called sign
symmetric realizations for realsymmetric transfer functions. We
call a discrete time ( continuous-time) transfer function real sym-
metric if G(z) = (G(z»* for all z E GJ \ fi (z E RHP). In fi-
nite dimensions they have been extensively studied (for a study
without the imposition of the balancing constraint see e.g. [15]).
The existence of sign symmetric balanced realizations for ratio.
nal transfer functions has been shown for example in ([16] [8)).

The following Lemma shows an interesting property of par-
balanced realizations of real symmetric transfer functions.

Lemma 6.1 Let Gd satisfy the conditions of Theorem 2.1 (i)
and assume that Gd is real symmetric. If (Ad, Bd, Gd, Dd) is
a parOOlanced realization of Gd with gramian E then the dual
system is again a IXJrOOlanced realization OfGd with gramian E.

Proof:
For z E D we have

Gd(Z) = (Gd(Z»*
= (Gd(zI- Ad)-1 Bd + Dd)*
= Bd(zI- Ad)-IGd + Dd,
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Let (Ad,iJd,6d,iJd) be another balanced realization of Gd Theorem 6.2 Let Gd be a real symmetric transfer function sat-
with gramian E. Then by Theorem 2,1 the two systems are isfying the conditions in Theorem 2,1. If E is the observabil-
unitarily equivalent with a unitary state space transformation ity/reachability gramian of a balanced sign symmetric realization
Q. Using the definition of the observability gramian we obtain ofGd with sign symmetry matrixS, then the diagonal entries of

ES are the nonzero eigenvalues of the Hankel operotor
QEQ* = E 2

, , ..1f:f.~ -I.} T
and hence QE = EQ, This ImplIes the claImed structure of Q. (UI, U2, U3, ...) f-+ (yl, Y2, Y3, ...)

(2)ByLemma6.1weknowthatif(Ad,Ed,Cd,Dd)isabalanced ( HI H2 H3 J ( UI

]realization of Gd with gramian H2 H3 H4 ., ..U2

-H3 H4 H5 U3E=diag((7IInl'(72In2'(73In3'...) ,

then the dual system is also a balanced realization of Gd with: : : ...:
the same gramian. Hence by part (1) we have that

where H(i), i ?; 1, are the Markov parometers ofGd, which are
Ad = QAdQ*, Cd = QEd, Ed = CdQ*, given by Hi = CdA~-IEd, i ?; 1, where (Ad,Ed,Cd,Dd) is an

admissible realization of Gd.
whereQ= diag(QI,Q2,Q3, ...), with Qi ECnixni, QjQi = Ini'
j ?; 1. From these identities it follows that Proof:

A* -Q* A Q C* -Q* E E* -C Q The statement follows by noting that 1f has the decomposi-
d -d , d -d, d -d .tion 1f = on. For a sign symmetric realization which has sign

Hence by the uniqueness of the state space transformation we symmetry matrix S with respect to a basis (ei)i~1 we obtain
have that Q = Q* and thus Qj = Qi, j ?; 1. Since Qi is unitary 1f = OSO*. Setting ui = Oei, j ?; 1, we obtain

and selfadjoint we can therefore find 1fui = OSO*Oui = Si(7iOei = Si(7iUi

Si = diag(s{ , , ..,s~), s{ = :!:1, j ?; 1, 1 ~ i ~ ni for j ?; 1, which implies the result. It is easily seen that all
J , nonzero eigenvalues of 1f are given in this way. D

and unitary matrices Vi, j ?; 1, such that The following theorem states the asymptotic stability of a

Q = V* S ' V' ' > 1 balanced realizations for a special class of real symmetric trans-
J J J J' J -.fer functions.

Setting V = diag(V1,V2,V3,...) and S = diag(SI,S2,S3,...) ,
we -' 0 t t t " t ' f (A E C D ) Theorem 6.3 Let Gd ( Gc) be a real symmetnc transfer func-

can perl' rm a s a e space ranslorma Ion 0 d, d, d, d
.th V N t th t th It . t tion satisfying the conditions in Theorem 2.1 (Theorem 3.1). If

WI .0 e a e resu Ing sys em
the sign symmetry matrix S of the sign symmetric realization

(Ad,iJd,6d,iJd) = (V AdV*, VEd,CdV*,Dd) (Ad, Ed, Cd,Dd) ((Ac,Ec,Cc,Dc)) is such that S = :!:I then Ad

(( etAc )t>o) is asymptotically stable.is a balanced realization of Gd. It is straightforward to verify -

that (Ad,iJd,6d,iJd) is sign symmetric. D Proof:
The results in Section 4 imply that the previous theorem First note that Ad is selfadjoint. Hence the spectrum of Ad

carries over to the continuous-time case. In particular we have is real. By Lemma 5.1 Ad has no eigenvalues on the unit circle.
the following corollary. Since the state space X is a seperable Hilbert space the result

, , follows from the stability result in [1].
Corollary 6.1 (1) Let Gc be a contlnuous-ttme transfer func- Th t t . t bili't f ( tAc ) .

f th, , , ., " , e asymp 0 lC s a yo e t>o IS a consequence 0 e
tton satIsfyIng the condItIons of part (") In Theorem 3.1. Then £ t th t ( tAc ) , t t . all .f- d 1 '

f th, , , ac a e t>o IS asymp 0 IC y I an on y I e cogener-
by Theorem 3.1 Gc has an admIssIble balanced contlnuous- t . t t-. all t bl ([14]) Th.. th '

th, , , , ., , , a or IS asymp 0 IC y S a e .IS IS e case sInce e
tIme reahzatlon (Ac, Ec, Cc, Dc) wIth observablllty/reachablllty t . t . t .. t ' .th .

t., .., con InUOUS- Ime sys em IS sIgn symme nc WI sIgn symme ry
gramlan E whIch for a gIven bas18 (eJ') J'>1 In the state space X t . S .f d nl 'f th . ted d. t t . t .

-ma fIX I an 0 y I e assocla Iscre e- Ime sys em IS
has the matrix representation . t .' th ' t t . S (P .t .

4 1); SIgn symme flC WI SIgn symme ry ma fIX roposl Ion. .
E = dlag((71Inl'(7Jn2'(73In3'...) D

where (71 > (72 > (73 > ...> 0 such that limi-+00(7 i = 0. I~ the next theorem we show asy.mp~otic stability for another
All admissible continuous-time balanced systems with state specIal class of (par- ) balanced realizatIons.

space X and gromian E can be written as, , .
Theorem 6.4 If a dlscrete-tlme par-balanced system 18 such

(QAcQ*,QEc,CcQ*,Dc), that Md = Wd is bounded below, i.e. for some m > 0,
IIMdXl1 ?; mllxll for all x E X then the system is asymptoti-

where Q has a matrix representation with respect to the basis cally stable.

(ei)i~1 given by The same result holds for par-balanced continuous time sys-
Q = diag(Ql,Q2,Q3,...), tems.

where Qi ECnixni, Q~Qi = In, j ?; I. Proof:
(2) Let Gc be a re'al symm~tric transfer function such that If (Ad,Ed,Cd,Dd) is par-balanced with Md bounded below

the conditions of part (ii) in Theorem 3.1 are satisfied, Then Gc then

has a balanced and admissible continuous-time realization which (Ml/2 A M-1/2 M1/2 E C M-1/2 D ), , , d d d , d d, d d , d
IS sIgn symmetnc.

is an output normal realization, But by Theorem 5.2 this system
Proof: is asymptotically stable. Note that this output normal realiza-
(1) This follows from the results in Section 4. tion is well defined since both M~/2 and Md1/2 are bounded
(2) The property is a consequence of the results in Section 4 operators. The asymptotic stability of (Ad, Ed, Cd, Dd) is nowa
together with the fact that a continuous time transfer function consequence of the boundedness of these operators. The stan-
is real symmetric if and only if its associate discrete time transfer dard arguments imply the result for the continuous-time case.
function is real symmetric. D D

In the next theorem we are going to give an interpretation We have therefore shown that in two special cases we have
of the signs in the sign symmetry matrix S. asymptotic stability of (par- ) balanced realizations. Whether

(par- ) balanced systems are in general asymptotically stable is
not clear. We know that for a (par- ) balanced discrete-time
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system Ad has no point spectrum on the unit circle and that Ad
is a contraction. Similarly for a (par- ) balanced continuous-time
system w~ know that Ac has no point spectrum on the imaginary
axis and that ( etAc )t?:o is a semi group of contractions. It is,
however, well known that this is not sufficient to guarantee the
asymptotic stability of the systems.

We conclude with a remark concerning exponentially stable

systems.

Remark 6.1 Since Hankel operntors corresponding to transfer
functions play an important role in realization theory it might
be suggested that certain compoctness assumptions on the Han-
kel operator imply the existence of exponentially stable balanced
realizations. That this is not the case follows from a construc-
tion in [101, [9}, where for a given sequence of singular values a
Hankel operator was constructed via a balanced continuous-time
state space system. This system was shown to be asymptotically
stable. Since the dissipative operator Ac was constructed to be
a Hilbert-Schmidt operator this implies that its eigenvalues con-
verge to zero. This however excludes the exponential stability of

Ac. 0
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