SIAM J. CONTROL AND OPTIMIZATION © 1990 Society for Industrial and Applied Mathematics
Vol. 28, No. 2, pp. 438-465, March 1990 011

BILINEAR TRANSFORMATION OF INFINITE-DIMENSIONAL
STATE-SPACE SYSTEMS AND BALANCED REALIZATIONS
OF NONRATIONAL TRANSFER FUNCTIONS*

RAIMUND OBERt AnDp STEPHEN MONTGOMERY-SMITH#

Abstract. The bilinear transform maps the open right half plane to the open unit disk and is therefore
a suitable tool for carrying over results for continuous-time systems to discrete-time systems and vice versa.
Corresponding state-space formulae are widely used and well understood for the case of finite-dimensional
systems. In this paper infinite-dimensional generalizations of these formulae are studied for a general class
of infinite-dimensional state-space systems. In particular, it is shown that reachability and observability are
carried over and that the reachability and observability gramians are preserved under this transformation.
Young showed that a wide class of nonrational discrete-time transfer functions admit a balanced state-space
representation. It is shown that this result carries over to the continuous-time situation via the bilinear
transformation.
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1. Introduction. Balanced realizations for finite-dimensional systems have received
a great deal of attention. They were introduced as a means of performing model
reduction in an easy fashion [10] and have subsequently been used in H® control
theory, for example, to evaluate the Hankel norm of a linear system [5], [3]. Recently,
they have been used to study parametrization problems of the set of stable linear
systems [11], [13].

The elegant results obtained for finite-dimensional balanced systems brought about
some interest in the problem of the extension of the notion of a balanced realization
to infinite-dimensional systems. Curtain and Glover [2], as well as Glover, Curtain,
and Partington [6] derived continuous-time, balanced realizations for a class of systems
with nuclear Hankel operator. Young [20] developed a very general realization theory
for infinite-dimensional discrete-time systems.

The motivation for this paper was to show that a large class of systems that
includes most H™ transfer functions have balanced realizations. Transfer functions in
H® are of particular interest since they are precisely the transfer functions of linear
systems with L? bounded input-output operators. In particular, it is shown here that
important systems such as a pure time delay, delayed systems with transfer functions
of the form G(s) e™*7, G(s) nonstrictly proper rational, but also certain transfer
functions with singularities on the imaginary axis such as G(s)=log (1+1/s) admit
balanced or, more precisely, parbalanced realizations. These are examples of systems
whose corresponding Hankel operator is not nuclear and hence they are not in the
class of systems considered by Glover, Curtain, and Partington. The work by Glover,
Curtain, and Partington [6] and Ober [12] has shown that balanced realizations can
be successfully employed to perform model reduction for certain special classes of
infinite-dimensional continuous-time systems. It is hoped that the realization theory
for balanced systems developed here is not only of theoretical interest but is also a
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step toward the development of model reduction tools for the important class of H*
transfer functions.

The realization problem for infinite-dimensional continuous-time systems has been
studied by several authors. Shift realizations of infinite-dimensional continuous-time
systems have been investigated, for example, by Fuhrmann [4] and Salamon [16].
Other approaches have been taken by Yamamoto [19] and Hegner [12]. The important
role the Hankel operator plays in realization theory is well understood (see, e.g.,
Fuhrmann [4]). From this point of view it is interesting to note that such a connection
is also very apparent in the realization of infinite-dimensional systems in terms of
balanced realizations. For example, the realizability conditions on a transfer function
are in terms of boundedness conditions and compactness conditions on the Hankel
operator corresponding to the transfer function. But these can be expressed in terms
of analytical properties of the transfer functions.

System theoretic developments often go in parallel for continuous-time and dis-
crete-time systems. In finite-dimensional system theory it is common practice to derive
results for one class of systems and then map these over to the other by using a bilinear
transformation or the corresponding state space formulae. With this method it is often
possible to avoid the repetition of lengthy derivations if results have already been
obtained for one class of systems and similar results are needed for the other. The
approach taken to the realization problem considered here is based on the same
principal. The work by Young [20] contains very general realization results for discrete-
time systems in terms of balanced realizations. We will carry these over to the con-
tinuous-time case using infinite-dimensional generalizations of the finite-dimensional
methods. A major part of this paper is devoted to establishing infinite-dimensional
generalizations of these techniques. It is shown that such generalizations are indeed
possible and are especially suited to the study of observability and reachability proper-
ties, which are of central importance in linear systems theory. In particular, it is shown
that these techniques carry over the observability and reachability operators in such
a way that the observability (reachability) operator of a continuous-time system and
the observability (reachability) operator of its corresponding discrete-time system are
unitarily equivalent. It is hoped that such methods will become as useful in an
infinite-dimensional setting as they have proved to be for finite-dimensional systems.

In essence, we will prove infinite-dimensional analogues of the following
finite-dimensional results. If CEF™ is the set of minimal asymptotically stable
continuous-time systems (A,, B,, C,., D,)eR™"xR"*" xRP*" xR”*™ and D?™ is the
set of minimal asymptotically stable discrete-time systems (A, Bi, C;, D,)e
R™"XR™™xRP*" xRP*™, then the map T,,: DF'™ > C5™ defined by

Tn((Ada Bd’ Cda Dd))
=((I+A) (A —D),V2(I+A;) "By, V2 C;(I+A;) ", Dy — Co(I+A;) ' By)
is a bijection with inverse T,': C?" > D?%" given by
T,'((A,, B, C., D.))
=((I-A)'(I+A.),V2(I-A.)"'B,V2 C(I-A.)”", D.+ C(I - A.)"'B.).

If (A, B,, C., D,):=T,((As, B4, C4, D;)), then (A,, B;, C,, D,) is a realization of the
transfer function G,, i.e., G4(z) = C,(zI — A;) "B, + D,, if and only if (A, B., C., D,)
is a realization of the transfer function G.(s):= G ((1+5)/(1—y5)), i.e, G.(s)=
C.(sI-A,) 'B.+D..
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To deal with infinite-dimensional continuous-time systems in their full generality,
it is however necessary, in contrast to discrete-time systems, to deal with unbounded
input and output operators. This produces serious technical problems, and a careful
setup is necessary for the definition of an infinite-dimensional continuous-time system
and of the generalization of the transformation T,.

Our approach to the definition of an infinite-dimensional system is based on the
notion of a compatible system, as introduced by Helton [9]. There are, however, several
differences in technical details that seem necessary to prove our result. Hedberg [8]
used a form of state-space formulae to relate discrete-time shift realizations to con-
tinuous-time shift realizations. His method was later reported in the book by Fuhrmann
[4]. To derive our results we had to adopt a generalization of the transformation T,
that differs from Hedberg’s generalization in several respects.

In § 2 we define the objects of interest to our study, that is, infinite-dimensional
discrete- and continuous-time systems. To do this it is necessary to introduce the notion
of arigged Hilbert space, as well as prove several properties of generators of semigroups
that are important in our context.

We will need several results from the functional calculus for unbounded functions -
by Sz.-Nagy and Foias [17]. Section 3 contains a brief introduction to this functional
calculus and proves propositions that we will need in later sections. The section can
be skipped by readers who are not interested in detailed proofs of the main theorems
of the paper.

Section 4 contains our first important results. Here we establish the transformation
T relating infinite-dimensional discrete-time systems to continuous-time systems and
show that it is a bijection.

State-space systems related by a unitary state-space transformation are studied in
§ 5. It is established that two discrete-time systems are unitarily equivalent if and only
if their corresponding continuous-time systems are unitarily equivalent.

Before § 7, we need to generalize the notion of the dual of a system to infinite-
dimensional systems. This is done in § 6.

Section 7 contains one of the main results of this paper. It is shown that the
observability operator of a discrete-time system is unitarily equivalent to the observa-
bility operator of its corresponding continuous-time system.

Having established all the necessary tools for our treatment of infinite-dimensional
state-space systems, we bring them together in § 8 where we prove a general realization
result for infinite-dimensional continuous-time transfer functions in terms of balanced
systems.

Great emphasis has been placed on a presentation that is as self-contained as
possible. It is hoped that this paper might serve some readers as an introduction to
infinite-dimensional continuous-time state-space systems.

All Hilbert spaces are assumed to be separable and defined over the complex
field. The scalar product (-, -) is linear in the first component. The norm of a Hilbert
space X is denoted by || || x, or simply by || - ||. The sum of two subsets N and M of
a Hilbert space X is defined by M+ N ={x+y|xe M, ye N}. We denote by (A, D(A))
the operator A with domain of definition D(A). The adjoint of the operator (A, D(A))
is denoted by (A*, D(A*)). The space of bounded operators from the Hilbert space
X to the Hilbert space Y is denoted by £(X, Y), whereas #(X, Y) is the set of
compact operators from X to Y. The symbol o,(A) indicates the point spectrum of
the operator A. The abbreviation RHP stands for the open right half plane. The
boundary of the open unit disc D is denoted by ¢D. The real part of a complex number
z is denoted by Re (z).
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2. Admissible discrete-time and continuous-time systems. In this section we will
define the classes of discrete- and continuous-time systems that we will investigate in
later parts of the paper. Whereas we can immediately state what we mean by an
admissible discrete-time system, we will have to review the notion of a rigged Hilbert-
space before we can give the corresponding definition of an admissible continuous-time
system.

An admissible discrete-time system is defined as follows.

DEFINITION 2.1. The quadruple of operators (A4, By, C4, Dy) is called an admiss-
ible discrete-time system, with state space X, output space Y and input space U, where
X, U, Y are separable Hilbert spaces, if

(i) A€ Z(X) is a contraction such that —1£ 0,(A,),

(i) BseZ(U, X),

(iii) C,e #(X,Y),

(iv) Dae Z(U, Y),

(v) Ay, By, C; are such that lim,_;,~, Ca(AI+A,) "B, exists in the norm
topology.

We write DYY for the set of admissible discrete-time systems with input space
U, output space Y and state space X.

Remark 2.2. The technical condition (v), which is generally not very restrictive,
is not necessary to define infinite-dimensional discrete-time systems. It is, however,
important to study the connection between continuous-time and discrete-time systems.

We briefly introduce a number of definitions and results on strongly continuous
semigroups of contractions. An excellent reference is Pazy [14].

DEFINITION 2.3. Let X be a Hilbert space. A one-parameter family (7(¢)) =0 of
contractions in £(X) is a strongly continuous semigroup of contractions if

() T(0)=1, :

(ii) T(t+s5)=T(t)T(s) for every t, s =0,

(iii) lim,,, T(¢)x=x for all xe X.

The linear operator (A, D(A)) given by

Ax =lim

t=>0

T(t)x—x
t

for x € D(A), D(A)= {x\e X lin(} —(—};u exists}
= t=> 4

is called the generator of the semigroup (T(¢)),=o.

"It can be shown that the generator (A, D(A)) uniquely determines the correspond-
ing semigroup (T(t)),zo. Therefore we write T(t)=: e, t=0. We note that the
generator (A, D(A)) is a closed linear operator whose domain D(A) is dense in X. A
further important property is that it is dissipative, i.e.,

Re (Ax, x)=0 for all xe D(A).
Moreover, D(A) is a Hilbert space with inner product induced by the graph norm
Ixla=lx|%+HAx|%, xeD(A).

Since |x||a= ||x||x for xe D(A), we can embed X in D(A)", the set of antilinear
continuous functionals on (D(A), || |l.4), by

E:X->D(A), x> (y—(x, ).

Note that D(A)"" is a Hilbert space with norm || f ||’ = supy),=: |f(x)]. Since (-, -) is
linear in the first component, the embedding E is linear. By the above, we have the
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rigged structure
D(A)< X < D(A)?".

It is well known that if (A, D(A)) is the generator of a strongly continuous semigroup
of contractions (e**),=, on a Hilbert space, then the adjoint (A*, D(A*)) of (A, D(A))
is the generator of the adjoint semigroup (e"*)%,. Hence, we have similarly that

D(A*)c X < D(A%)?,

If M is an operator on X such that D(A*) < X is invariant under M*, then M
can be extended to an operator M on D(A*)"" by

M:D(A*)”> D(A%)?,  f(-)=>f(M*(-)).

Usually we will not distinguish between M and M and we will write M for M.

Also, if we have a map M :Z - D(A*)"”, Z a Hilbert space, such that M(Z) <
X< D(A*)”, we can consider M : Z > X using the Riesz Representation Theorem.

We are now in a position to define admissible continuous-time systems.

DEFINITION 2.4. A quadruple of operators (A, B,, C,, D,) is called an admissible
continuous-time system with state space X, input space U, and output space Y, where
X, U, Y are separable Hilbert spaces, if

(i) (A, D(A,)) is the generator of a strongly continuous semigroup of contrac-
tions on X,

(i) B.: U~ (D(A*)", ||-|") is a bounded linear operator.

(iii) C,:D(C,)» Y is linear with D(C.)=D(A)+(I—-A, )"B U and
Copiay: (D(A.), | |la) = Y is bounded. )

(iv) C.(I-A.) 1B eZ(U,Y).

(v) A, B,, C, are such that lim g ;.. C.(sI —A.) "B, =0 in the norm topology.

(vi) D,.e Z(U, Y).

We write Cx' ¥ for the set of admissible continuous-time systems with input space U,
output space Y, and state space X.

Before we continue to prove two lemmas that show admissible continuous-time
systems are well defined, let us remark that the state space X of a system in C <Y has
the rigged structure D(A,) < X < D(A¥)"),

Remark 2.5. In Helton [9] and Fuhrmann [4] a similar definition was given for
continuous-time state-space systems. There are, however, several differences between
so-called compatible systems and admissible systems as defined here. Our definition
of a rigged Hilbert space is slightly different from that used in Helton and Fuhrmann,
where X is embedded in the dual spaces D(A) and D(A*), rather than in the spaces
of antilinear functionals D(A)' and D(A*)’ as adopted here. The reason for using our
definition is that this naturally leads to a definition of the input operator B, as a linear,
rather than an antilinear operator. Most important, however, for the discussion later,
is the imposition of (v) in our definition.

To show that the above definition is well defined, we must show that
C.(sI —A,) !B, is well defined for all seR and that (I —A,) 'B.U < X. This follows
from the following two lemmas, which also contain technical results that are useful
in later sections.

LEMMA 2.6. Let (A., D(A.)) be the generator of a strongly continuous semigroup
of contractions (e'*),», on the separable Hilbert space X. Then for s c RHP,

(i) (sT-A)™'X = D(A,) and the map (sI~A)™":(X, |- [x) > (D(A), |- 2.
is bounded.

(i) The map (sI—A.)"":(D(A.), ||*1|a.) > (D(A.), || || 4.) is bounded.
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(i) (sI-A.)'D(AY)PcX and the map (sI—A.)"":(D(AH,|-|IN~>
(X, |- lIx) is bounded.

(iv) e”D(A.)< D(A,) for all t€[0, of.

Proof. (i) For a proof that (sI —A.)"'X < D(A,), s RHP, see Pazy [14, p. 8].
To show that (sI—A.)": (X, |- llx) > (D(A.), || - || 4.) is bounded, s € RHP, let xe X
and consider

"(SI - Ac)_lx

A= 1T = A) x5+ | Ac(sT - A) x| %
= (T = A P xlx + is(sT = A) ' x = (sT = A)(sT = A) x| %
= [|(sT = A) P15 + (s (sT = A) 7 xllx + lxllx)?
=(I(sI = A) P+ Uslli(sI = A) '+ 1) Ix ] %,

which proves the result.

(ii) This follows from (i) since || x||x = |x| ., for xe D(A,).

(iii) This follows by duality from (i).

(iv) See Pazy [14, p. 5]. 0

By (iii) of the previous lemma and the definition of B, we have that (I — A)'B,.c X
and so D(C,) is well defined. The following lemma shows that C,(sI —A,) 'B, is well
defined and in £(U, Y), for all se RHP.

LEMMA 2.7. Let A.: D(A,) - X be the generator of a strongly continuous semigroup
of contractions. Let B,: U - (D(A¥)”, ||-|I') be bounded and let C.: D(C,.)~ Y be such
that Cypa: (D(A.), |- la.) > Y is bounded, where D(C.)=D(A.)+(I-A.,)"'B.U.
Then

(i) (sI-A,)'B.U< D(C,) for all sc RHP.
(ii) IfC.(I-A.) 'B.e (U, Y), then C.(sI —A,)"'B.€ £(U, Y) for all s € RHP.
Proof. Let s € RHP; then by the resolvent identity we have

I-A)'=(I-A)""+(Q=-s)(I-A) ' (sI-A)"".
Since (sI — A¥)"'D(A¥)c D(A¥) we can apply B, and obtain —
(sI-A)7'B.=(I-A)'B.+(1-s)(I-A)7'(sI-A)7'B..
Since B.: U~ (D(A¥*)?,||-|) is bounded, it follows by Lemma 2.6(i), (iii) that
(I=A)'(sI=A)™'B.: U~ (D(A.), || l4.)

is continuous. This implies in particular (i), since

(sI-A)'BU=(I-A)'BU+(1-s)I-A,) (sI-A,)"'B.Uc D(C,).
Since Cypa,): (D(A,), |- |l4.) = Y is bounded and hence

C(I-A.)'(sI-A,)'B.e (U, Y),
we have that
C.(sI-A)'B.=C.(I-A)'B.+(1—-5)C.(I-A.) '(sI-A.) 'B.e £(U, Y). O

Remark 2.8. It is useful to note that using the identification of X'’ and X
via the Riesz Representation Theorem we have that for ue U the functional
(sI—A.) 'B.(u): D(A¥)>C is given by

XH(SI —Ac)—ch(u)[x] = Bc(u)[(§l —At)_lx] = ((SI —Ac)—chu, X).



444 R. OBER AND S. MONTGOMERY-SMITH

3. The functional calculus by Sz.-Nagy-Foias. In this section we will review some
results on the functional calculus by Sz.-Nagy-Foias and prove two technical results
that are fundamental to the main results of this paper. This section is, however, only
necessary for an understanding of the proofs of some of the theorems presented in
later sections. Those theorems themselves are largely formulated without reference to
the functional calculus discussed here.

Since we do not assume that the reader is fully familiar with the functional calculus
as developed in Sz.-Nagy and Foias [17] we give a brief summary of those results
necessary for our applications.

We first consider a standard result of functional calculus. Let o be the set of
functions given by

K [= <]
a(z)= Y ¢z suchthat ¥ |e<oo.
k=0 k=0

Then & is an algebra with the involution a~>a* given by a*(z):=a(Z). Note that a
function in & is analytic on D and continuous on D. '

For a contraction T on a Hilbert space X, we define a(T)=Y,_, ¢.T* The sum
conveiges in the operator norm and hence the operator a(T) is well defined. The
following theorem states the fundamental result concerning the functional calculus for
functions in .

THEOREM 3.1. For a contraction T on a Hilbert space X, the map

A->ZL(X), a(z)—a(T)

is an algebra homomorphism. In particular, a(T)b(T)=b(T)a(T), for a,be A.

The functions that are important in our context are:

(@) ¢:z->(z=1)/(z+1),

(b) @iz et((z-l)/(zﬂ)), =0,

(c) mw:z>1/(1+2), ,

(d) 8,:2—1/(1+2) VD) =
None of these functions are in & and hence we must consider extensions of the
functional calculus of Theorem 3.1. Note, however, that the functions z— ¢(rz),
z> @, (rz), z—> u(rz), and z+— §,(rz), 0<r<1t are in .

Next we exploit the observation that for each function ue H™ the function
z>u(rz), 0<r<1, is in & and discuss functions for which the limit lim,_, o u(rT)
is well defined in the following sense.

DEFINITION 3.2. Let T be a contraction on X. H7 is the set of those functions
u e H* such that

u(T)= lim_ u(rT)

exists in the strong operator topology.

Before we can describe a subset of HT, we must consider contractions in some
detail. A subspace Y of a Hilbert space X is called reducing for T e £(X) if T maps
Y onto itself. A contraction T in £(X) is called completely nonunitary if there is no
nonzero reducing subspace Y of X such that Tjy is unitary. To every contraction T
on the space X there corresponds a decomposition X = X,@® X, into an orthogonal
sum of two subspaces X; and X, reducing T such that T, = Tx, is unitary and T, = Tjy,
is completely nonunitary. The canonical decomposition of T is denoted by T = T,® T,.
Recall that each unitary operator U has a spectral decomposition U =j’(2," e" dE, for
some spectral family {E,}o<,=<., and spectral measure E; on the unit circle.
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THEOREM 3.3. HZ contains the functions ue H™ for which the set
C, ={z<€aD|u(z) has no nontangential limit at z}

has measure zero with respect to the spectral measure Er, corresponding to the unitary
part Ty of T.

Remark 3.4. Now we consider the functions ¢,, t =0, as defined in (b). We clearly
have that ¢, € H* and C,, < {—1}. For a contraction T such that —1 is not an eigenvalue
of T, —1 is also not an elgenvalue of the unitary part T, of T and hence Er({—1}) =0,
which shows that ¢,€ HT, t=0.

We will not explore the properties of HY in general, but consider the special case
of the functions ¢,, t = 0. These are of importance in connection with semigroup theory.
Before we can state the next theorem establishing this role, we need to introduce some
additional notation. Let A, be the generator of a strongly continuous semigroup of
contractions (e'),=; then

As=(I+A)T-A)™

is called the cogenerator of the semigroup (e") =0 that can be shown to be a contraction
such that —1 is not an eigenvalue of A,. The generator A, can be expressed by A, as

A.=(T+A;) (A -1I).

The following theorem states that if given a contraction T such that —1 is not
an eigenvalue of T, then (¢,(T)).=o is a semigroup of contractions with generator
(I+T)"(T—1I) and cogenerator T.

THEOREM 3.5. Let T be a contraction on X. In order that there exists a strongly
continuous semigroup of contractions (T(t)) ;= whose cogenerator equals T, it is necessary
and sufficient that —1 is not an eigenvalue of T. If this is the case, then (T(t)) 20 is
determined by

T(t)=¢@(T), =0

with generator A, =(I+T) ' (T—-1I).

Proof. The proof follows from Sz.-Nagy and Foias [17, p. 142], replacing T
by —-T. 0

We will now consider unbounded functions in order to deal with ¢, u, and 8,. If
Te #(X) is a contraction such that —1¢ o,(T), then it is easily checked that ¢, u,
and §,, =0 are in the set of functions Ny defined as follows.

DEFINITION 3.6. For a contraction T in £(X), denote by K T the class of functions
ve HZ for which v(T) ™! exists and has dense domain. Let Ny be the class of functions
w that admit a representation

u
w=—, ueH?F, veK?.
o .

For we Ny, we define w(T)=o(T) 'u(T).

The following proposition states that for a certain subset of N1 we, in fact, have
the commutativity property w(T)=ov(T)"~ uy(T)=u(T)v(T)™".

PROPOSITION 3.7. Let u, v be continuous on D, analytic on D and have no common
zeros in D. If ve K7 for a contraction T, then

o(T) 'u(T)=u(T)v(T) .
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Remark 3.8. Let T be a contraction T such that —1¢£ o,(T); then, applying the
previous proposition to ¢, we obtain (I —T)(I+T) '=I+T)'(I-T).

The following theorem provides us with techniques to deal with functions in Ny

THEOREM 3.9. (i) Let T be a contraction in £(X) and let we Ny be analytic on
D. If for x € X we have that

\

Sup |w(rT)x|| <co,

it follows that x € D(w(T)) and
w(rT)x->w(T)x

weakly as r>1-0.

(ii) Suppose the functions u, v are continuous on D, analytic on D, and have no
common zeros in D. We assume that v has no zeros in D and that it does not vanish on
oD except at points of measure zero with respect to the spectral measure Er, of the unitary
part Ty of T. Moreover, we assume that there exists a constant M such that |v(A)/ v(rA)| =
M for AeD, 0<r<1. Then w=u/v belongs to the class N1 and is analytic in D.

The condition

Sup, |w(rT)x| <co

characterizes the vectors in D(w(T)).
For each x e D(w(T)),

w(rT)x-> w(T)x

strongly as r>1-0.

Having reviewed the functional calculus by Sz.-Nagy-Foias, we are now in a
position to prove two results that will be a key to results in later sections. Whereas
the first proposition deals with the function u, the second proposition establishes
properties of the function §,.

ProOPOSITION 3.10. Let T be a contraction on X such that —1 is not an eigenvalue
of T. Then

}\in} AM+T)'x=(I+T)'x,

A>1

forxe D((I+T)™).

Moreover, xe D((I1+T)7") if and only if supo<,<; ||(I+rT) x| <.

Proof. Let u=1 and v=1+2z, so v only vanishes at z=—1. Since —1 is not an
eigenvalue of T we have that Er({—1}) =0. Using w:=u/v and r:=1/A, the result
now follows from Theorem 3.9(ii). 0

PROPOSITION 3.11. Let T be a contraction on X such that —1 is not an eigenvalue
of T. If xe D((I+ T)™"), then for all t =0,

(1) supo<,<; [|(I+rT) ™" TP T x| < supy_, o [|(T+rT) x| <o,

(2) (T+rT) ' CTHITOT-Dy s (I+T)7! T+ T=Dy yoakly as r>1-0.

Proof. Write for 8,(z)=1/(1+2z) e" VD = 4 (2),(2), with u(z)=1/(z+1)
and ¢,(z) ="/ =0, Then we have that ,€ Ny, t=0, since u ‘e K and
since ¢, € HT, t =0, by Remark 3.4.

As ¢, (rz), n(rz)e o, for0<r<1, t =0, we have that ¢,(rT)u(rT) = n(rT) e, (rT).
Also note that ¢,(rT) is a contraction by Theorem 3.5. Hence we obtain for t=0 and
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xe D(u(T))=D((I+T)™") that
sup [|8,(rT)x||= sup ||u(rT)e.(rT)x||= sup |l@.(rT)u(rT)x|
o<r<1 o<r<1 o<r<i1

= sup |l (rT)| | (rT)x||= sup ||[(I+T) x|
o<r<1 0<r<i

<00

where the last inequality follows from Proposition 3.10. The chain of inequalities
shows (1).

Thus we have by Theorem 3.9(i) that D((I+ T) )< D(8,(T)) and that for
xe D((I+T)™") we have,

o (rT)x-> ¢,(T)x
weakly as r->1—0, which proves (2). O

4. A transformation between discrete- and continuous-time systems. We will now
introduce a transformation T relating systems in DYY to systems in C%Y and vice
versa. This transformation, which is inspired by a bilinear transformation mapping the
unit disk to the right-half plane, is often used for finite-dimensional systems to carry
over results from discrete-time systems to continuous-time systems (see, e.g., Glover
[5], Ober[11]. Hedberg [8] and Fuhrmann [4] used this approach to prove the existence
of state-space realizations for continuous-time systems with transfer function in a
certain class of H* functions. The same idea is used here, the specific definitions are,
however, somewhat different to avoid certain technical problems.

We first consider the map T: D% Y > C%Y.

THEOREM 4.1. Let (A,;, By, C;, D;)e DYY: then T((A4, Bs, Ci, Dy))=
(A, B., C., D,)e C%Y, where

(i) Ac=(I+A)) (A —D=(A;-DI+A;)"", D(A)=D((I+A;)™"), and
A, generates a strongly continuous semigroup of contractions on X given by ¢,(A;), t =0,
with (0,(2) — e'((z-l)/(zﬂ))-

(ii) B.=v2(I+A;)'B,;: U-> D(A¥)?,
uV2(I+Ay) ' By(u)[ - 1:=v2(Ba(u), (I+A%)7'(- ))x-
(iii) C.:D(C.)~»Y, x—limv2C;(AI+A,;)'x,

A=>1
A>1

where D(C,)=D(A.)+(I-A.,)"'B.U. On D(A.) we have,
Copay)=v2Ci(I+A,)7"

(iv) D.:=D,;—lim, ;>; C4(AI+A,)7'B,.
Moreover, let the admissible discrete-time system (A,, By, C;, D;) be a realization of the
transfer function
Gu(z):C\D~>Z(U, Y),

ie, Gy(z)=Cy(zI — A;) "B, + D, for ze C\D.
Then, (A, B,, C., D,)=T((A,, By, C4, D;)) is an admissible continuous-time
realization of the transfer function

G.(s)=G, (:—}5) :RHP- 2(U, Y).

Proof. We must check that conditions (i)-(vi) of Definition 2.4 are satisfied.
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(i) This follows from Theorem 3.5. The fact that A, =(A;— DUI+A) =
(I+A;)""(A;—I) was shown in Remark 3.8.
(i) Let ue U, x € D(A*). Then, since 3(I—A,)=(I+A;)7",

| B.(u)[x]| = |V2(B,(u), (I+A%)[xDx|
=75 | Ba(u)lx | - A2)x]x

= 1Ball zwollul o (lxl5+ A% x] 52

This implies that B.(u) € D(A*)\” and that B,: U~ D(A¥)"” is continuous.

(iii) We first note that, by Proposition 3.10, C. is defined on D(A, )=
D((I+A;)™), and that Cuipa, y=vV2 Ca(I+A,)7"

To show that C,jp(a,) is continuous with respect || - || o, we see that for xe D(A,),
we have

1
||ch||y=7§ ICaI-A)x|ly

=) Call el %+ 1 Ax15) 2.

It remains to show that lim, ., ,~, C4 (M +Ay) 'x exists for xe (I —A,)"'B.U. First
note that (I — A,) 'B. =(1/v2)B,, for if xe D(A¥), ue U, then

(I-A.)"'B.(w)[x]= B.(u)[(I - A¥)"'x]
| =v2(Ba(u), I+ A I -A¥)'x)

=%<Bd<u), x)

where we have used the identity (I — A*)™' =3(I + A¥). Now we see that
%\in} \/i Cd (AI+Ad)_1(I "Ac)—l U= !\iﬂ} Cd (/\I+Ad)—leu

A>1 A>1

exists by the admissibility of (Ay, By, Cy4, Dy).
(iv) We must show that C.(I - A,)'B.€ £(U, Y). But by the proof of (iii), we
know that (I —A.)™'B.=(1/v2)B,, and hence that

Cch = l)‘in} Cd(AI+Ad)—1Bd € g(l], Y)

A>1

’ 1
g b
Cc(I Ac) Bc - \/E
by the admissibility of (A, By, Cy4, Dy).
(v) This will be shown after the remaining parts of the theorem have been proved.
(vi) The boundedness of D, follows since D, € L(U, Y) and lim, ., >, Ca(AT+
Ag) 'B,e L(U, Y)
We will now prove the statements on the transformation of transfer functions. We
have for s€ RHP that (1 +5)/(1—s)eC\D and hence,

G.(s)= G,,,(H:) cd<(:fs)1 Ad)_l+D,,

=(1-5)C;((I-Ay)+s(I+A,;)) 'B,+ D,
=(1=-5)C;(I+A) ' (sI-(A;— DI+ A;) ) 'B;+ D,.
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The last identity is well defined, since
(sI—(A;—D(I+A;) ) 'BU=(sI-A)"'B,Uc D(A,)=D((I+A,;)7").

Hence, G.(s)=(1-s5)(1/v2)C.(sI-A.,) 'B,; + D,.

Now if we extend the range of (sI — A.)"'B, to D(A*)""), then we can show that
(sI-A.) "B, =v2/(1—s5)(sI —A.)"'B.—1/(1—s)B,. For if x € D(A¥), then we have,
using the resolvent identity, that

(s = A.)7'Ba(u), x)x
=(By(u), (I - AN - A))™'(GI - A¥) 'x)x

=<B.1(u), (I-A?) [(EI—AZ")"—(I—A?)")]X>

-9
==L (Ba(w), (I - AT~ A% ") —(Ba(u), 1)x)

=;—f2-[(sl—Ac)"Bc(u)](x)—%wd(u), X)x-
-5 1-s

But we know that B,U < D(C,) and (sI — A.) 'B.U < D(C,) for s e RHP. Hence

G.(s)=(1—-s)—=C.(sI-A.) 'B;+D,

L
V2
1
V2
= CC(SI—AC)—IBC —!\in} Cd(l\I+Ad)_le +Dd

A>1

=C/sI-A.)'B,~—=C.B,+ D,

= Cc(SI - Ac)—ch + Dc,
and so (A, B., C,, D,) is a state-space realization of G.(s).
To finish the proof, it remains to show (v) of Definition 2.4. By the admissibility
of (A4, By, C4, D;) we obtain
lim C.(sI-A,)"'B.=lim G.(s)- D,
seR seR
. 1+s -1
= lim Cd a— I"Ad Bd+Dd_Dc
seR 1—-s
= _lAiH} Cd(AI +Ad)_le + Dd - Dc

A>1
=0,

which completes the proof. a
Before we consider the map T ':C¥Y > D¥Y we need the following lemma,
which gives a version of the resolvent identity for not necessarily bounded resolvents.
LEMMA 4.2. Let A, : X - X be a contraction such that —1¢ a,(A,). Then forz€C,
such that |z|>1 and for x e D((I1+ A%)™"), we have

E+DT+ANTEI-AY)'x=(I+A%) 'x+ (2] - A%) 'x.
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Proof. We first must show that if xe D((I+A%)7"), then (I -A%)'xe
D((I+A¥)™"). We know by Theorem 4.1 that A, = (I + A;) (A, — I) is the generator
of a strongly continuous semigroup of contractions, such that D(A¥) = D((I + A%)™").

Since |z| > 1, we have that s = (z—1)/(z+1) € RHP. Hence (5] — A*) ! is bounded.
But

BI-AHT"'=E+1D)(EI-AN-(T+A¥)) ' =(Z+1)(E - AX) (I - AH)".

Thus (51 — A¥)™'(1 - A¥) = (Z+1)(ZI - A%)™" and hence, since (5] — A¥)"'X c D(A¥)
by Lemma 2.6, we have that

(Z+1)(EI - A¥)7'D(A¥) = (51 - A¥) ' (I - A¥) D(A¥)
S (SI-A¥)"'X < D(A}) =D((1+A%™),

which shows the claim.
To prove the statement of the lemma, let y == (zI — A%) 'xe D((I + A%¥)™"). Then,

E+D)yy=(ZI-A5y+T+ Ay
Since y € D((I+ A%)™"), we can apply (I + A%)™! from the left to obtain
(Z+ DI +AYHy=(I1+A¥) (I - A}y +y,

and hence (£+1)(I1+A%)7'(2I - A%)'x = (I + A¥) 'x+ (2] - A%) 'x. O

THEOREM 4.3. Let (A,, B., C, D.)eCxY; then T"\((A., B., C., D,))=
(A4, B,, C4, D;)e DY, where

(i) Ay=(I+A)I—-A.)"", and for xeD(A.) we have that A;x=

(I-A) "I+ A)x

(ii) By=v2(I-A,)'B..

(iii) Cs=v2C.(I-A,)"".

(iv) D;=C.(I-A,)"'B,+D..
Moreover, let the admissible continuous-time system (A., B,, C., D.) be a realization of
the transfer function

G.(s):RHP-> £(U, Y),

ie, G.(s)=C.(sI—A.)"'B.+ D, for s RHP.
Then, (A,, By, Cs, D;)=T7'((A., B., C., D,)) is an admissible discrete-time
realization of the transfer function

z—1

o 1) :C\D->2(U,Y).

Gu()= G

Proof. We mustshow that (A,, B, C,, D,) satisfies conditions (i)-(v) of Definition
2.1.
(i) Let x€ X and define y=(I—-A.) 'xe D(A,); then

|Aax| = (1 +A)y|>=(, y)+(A.y, A.y)+2 Re (A.y, y)
=((I-A)y, (I-A)y)+4Re(A,y,y)=|x|*+4 Re (A.y, y)
=|x|?

since Re (A.y, y)=0 as A, is dissipative, being the generator of a strongly continuous
semigroup of contractions. This shows that A, is a contraction.
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It is easily verified that (I+A)UI-A) 'x=(I-A,)"'U+A)x, xe D(A,), as
claimed in the theorem and that —1¢ o,(A,).
(ii) This follows in a straightforward way from Lemma 2.6.
(iii) Since
Cch(Ac):(D(Ac)a -lla)->Y
and .
(I-A)7"(X, |- llx)> (D(A), |- lla)
are continuous, we have that
Ca=V2C(I-A)":(X ||-]|x)~> Y

is continuous.

(iv) Since by assumption C.(I-A.) 'B.€ (U, Y) and D.e (U, Y), we have
that D, e (U, Y).

(v) Before we prove (v) we first show the last statement of the theorem.

Let ze C, such that |z| > 1; then s =(z—1)/(z+1) e RHP. By definition

z—1
z+1

-1
Gd(z)=Cc( I—-AF) B.+D..

Consider ((z—1)/(z+1)I—A,) 'B.. Let uc U, xe D(A¥); then

(:: : I —Ac) _ch(uZ[x] = B‘(“)[(;—: I —A’c")_lx]

=(z+1)B.(u)[(Z(I - A¥) - (I + A¥))'x]
=(z+1)B.(u)[(ZI - A7) (I - A})"'x].
But using the fact that (I — A¥) =2(I + A%)™! we obtain,
B.(w)[x]=((I - A) ™' B(w), (I - A})x)
=vV2(B,(u), (I - A})7'x).

Hence
z—1 -
(Err-4) B
=(z+1)B.(u)[(ZI - A%)"'(1 - A¥) 'x]
=v2(z+1)XBy(u), (I+A%) (21 - A%) ™I - A¥)'x)

=V2By(u), (zI - A5 NI - A} 'x)
+V2(B,(u), (I+A%) (I~ A¥)'x)

‘ =~/§<Bd(u>,(zz—Aﬁ)“u—At)*‘x>+%<3d(u),x}

where the second but last equation uses Lemma 4.2, noting that (I — A*) 'xe D(A¥) =
D((I+A*)™Y). Thus

1
V2

(Z—l I—Ac)_ B.(u)=v2(I-A.) (zI —A;) 'B;(u)+—= B, (u) e X.

z+1
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Note that by Lemma 2.6 (I — A.)'X c D(A.)< D(C,) and hence
V2Z(I-A) ' (zI - A;)'B,U < D(C,).

Since B,U < D(C,) we can apply C., and we obtain
1 ! 1
C. (z I-A ) B.+D.=v2C.,(I-A.) '(zI-A;)"'B, +ﬁ C.B;+D,

=Cy(zI-A;) 'B,+C.(I-A,)"'B.+ D,
= Cd(ZI _Ad)—le + Dd.

Thus (Ay, Ba, C,, D,) is a realization of G,(z).

We are now in a position to prove (v) of Definition 2.1, i.e., that lim, > o1 Ca(AI +
A,) "B, exists in the norm topology. By the admissibility of (A,, B., C., D.), we have
that

k -1
lim Cd(AI"'Ad)—le:_lim Gd(u)-i-Dd——hm G ( )+Dd
A=>1 p<—1 +1
l

A>1 m—>—1 p,
=CA(I-A)'B,

which implies the result. 0

Combining the previous two theorems, we can show the following corollary, whose
proof is straightforward.

COROLLARY 4.4. The map T: DY > C%Y is a bijection with inverse T™': C3Y >
D%

Remark 4.5. The followmg identities that have been used in the above proofs are
worthwhile noting for later use:

%(I“‘Ac) = (I+Ad)_l and ‘ (‘I_z4c)-—?l =%(I+Ad).

*§, Unitary state-space transformations. In this section we will discuss briefly the
effect of a unitary transformation V: X, - X, of the state space on state-space systems.
This discussion will be important in § 8 where we will show that a (par-) balanced
realization is unique up to a unitary state-space transformation. The first two proposi-
tions show that such an operation is well defined and does not change the transfer
function. The last result shows that unitarily equivalent systems are carried over by
the map T: D¥Y > C¥%Y and its inverse.

We first consider unitary state-space transformations for admissible discrete-time
systems.

PROPOSITION 5.1. Let (Ay4, By, Cq, Dy)e DXY. If X2 is another Hilbert space and
V:X,~ X, is a unitary operator, then

(1) (VA,V*, VB,, C,V*, D;)e Dy;Y.

(2) If (Ay, By, C4, D,) is a state space realization of the transfer function

G,(s):C\D~ L(U], Y),

then the (VA,V*, VB;, C,;V* D,) is a state-space realization of the same transfer
Jfunction.

Proof. The proof is straightforward. 0

The following proposition, whose proof is straightforward, gives the analogous
result for continuous-time systems.
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ProrosITION 5.2. Let ((A., D(A.)), B., C., D.)e C%,". If X, is another Hilbert
space and V : X, - X, is a unitary operator, then
(1) ((VA.V*, VD(A,)), VB., (C.V*, VD(C,)), D.)e C,", where

(VB.): U~ ((VD(AE), -1
is given by
(VB.)(u)[x]= B.(u)[ V*x]

ue U, xe VD(A¥).
(2) If (A, B., C., D.) is a state-space realization of the transfer function

G.(s):RHP->L(U, Y),

then (VA V*, VB, C.V*, D.) realizes the same transfer function.

The following definition introduces the standard notation of unitary equivalence
of state-space systems. Note that by the previous two propositions, unitarily equivalent
systems have the same transfer function.

DEeriNITION 5.3. Two systems (A}, BL, Ci, Di)e C%Y, i=1,2, are called uni-
tarily equivalent, if there exists a unitary operator V:X,~ X, such that

(AZ, B2, CZ, D?)=(VALV* VBl C.v* D.).
An equivalent definition applies to admissible discrete-time systems.

We will now show that the transformation T: DYY » C%Y and its inverse preserve
the unitary equivalence of systems.

PROPOSITION 5.4. Let (A4, By, Cy,Dy)e DY, i=1,2. Let (AL, B.,C., D})=
T((AY, By, CY, DY), i=1,2, be the associated continuous-time systems.

Then, (Al, B%, C., D)) and (A2, B2, C%, D?) are unitarily equivalent if and only
if (A}, By, CY, DY) and (A}, B3, C3, D) are unitarily equivalent.

Proof. Assume (A4, B}, C4, DY) and (A%, B3, C3, D?) are unitarily equivalent,
i.e., there exists a unitary operator V:X;- X, such that (A3, B3, C3, D3)=
(VAL V*, VB, CyVv*, D).

Since A3 = VAL V* we have

Al=(I+AL) "(AZ-D)=(I+ VA V*) (VA V*-I)= VALV*

with D(A2%) = VD(A)).
Let u € U, x,€ D((A2)*); then

B(u)[x,] =V2(B3(u), (I+(A3)*) ™" x,) =VABy(u), (I +(A2)*) " V¥xy)
= B (u)[ V*x;]=[ VB.](u)[x,]

and hence B2= VB).
C%= ClV* since for x e D(C?), we have

Cix= lAin} V2 CY(AT+AY) 'x = lAin} V2 CLAT+ ALY 'VEix = CVv*x.
A>1 A>1

The fact that D!= D? follows, since two unitarily equivalent systems have the same
transfer function and thus

D?=D? —1}3} Ci(AI+A%) 'B3=D) —1}3 CLY(AI+AY) 'B,=D..
A>1 A>1

The converse follows similarly. a
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6. Dual systems. If (A, B,C, D) is a finite-dimensional linear system, then
(AT, C", BT, D7) is called the dual system of (A, B, C, D). It is well known that
properties of a system are closely related to those of its dual systems. To examine the
reachability operator of an infinite-dimensional system via the observability operator
of its dual system, we will now define what we mean by the dual system of an admissible
system.

We first consider discrete-time systems.

_ DerFINITION 6.1. Let (A4, Bs, C4, Dy)e D ; then the dual system
(Aa, By, C4, Dy) of (A4, By, Cy, D,) is given by
Ay=A%:X>X, B.=CiY-X,
C,=B%:X-U, D;=D*:Y->U.

The following lemma shows that the dual system of an admissible system is
admissible and shows how the transfer function of a system is related to the transfer
function of its dual system.

LEMMA 6.2. The duaI system (Ad, Bd, Cd, Dd) of an admissible discrete-time system
(Ay, Ba, Cy, D;) in DXY is an admissible system in D_x .

If the discrete-time transfer function G(s):C\D - .5!;( U,~Y) ~has an admissible
realization (A,, By, Cd,~D,,), thgn the dual system (Ag, B;, Cs,Dy) is a realization
of the transfer function G(s):C\D - £(Y, U), s— G(s) = (G(5))*, i.e, for allse C\D,

G(s)=(G(3))* = Cu(sI - A,) ' By + Dy
Proof. We must check (i)-(v) in Definition 2.1. To show (i) note that since

|A¥|| = |As4|l, we have that A¥ is a contraction. Thus we only have to show that
—1¢ 0,(A%). Assume there exists x€ X such that A} x=—x; then

0= ||Asx+x|*=||Asx|>*+2 Re (x, A¥ x)+ || x|
= [|Aax|*=2[lx|* + | x|I* = | Aax|| - |Ix|*= 0.

Thus ||Asx +x]|*=0 and hence A.x = —x, which is a contraction to —1¢ o,(Ay).

The remaining parts of the lemma are straightforward to check. 0

Next, we are going to define the dual system of an admissible continuous-time
system.

DEFINITION 6.3. Let (A,, B., C,, D,) € C%Y. Then the dual system (A, B,, C., D.)
of (Ac, B., C, D, .) is given by :

(Ac, D(A,)) =(A* D(A*)), the adjoint operator of (A., D(A,));

:Y>D(A)", y=> B.()[:1:= (3, Cc( )
C D(C.)» U, D(C.)=D(A.)+(I-A,)'B.Y, where C,x, is defined by
<“cho) = B.(u)[x,], for xoe D(A¥), ue U,
and by
' (Cexow) = (yo, C.(I = A;)'Baw), for xo=(I~A)"'B.yo, o€ Y, uc U;

D.=D*:Y->U.

The following lemma is the continuous-time equivalent of Lemma 6.2.

LemMMA 6.4. The dual system (Ac, ﬁc, C‘c, D) of an admissible continuous-time
system (A, B., C,, D.) is admissible.

If the continuous-time transfer function G(s): RHP- $(U Y) has an admissible
realization (A_, B, C., D,), then the dual system (Ac, Bc, Cc, D,) is a realization of the
transfer function G(s) = (G(3))*, i.e., for all sc RHP,

G(s)=(G(3)*=C.(sI-A,)'B.+D..
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Proof. We must show (i)-(vi) of Definition 2.4. Of these, (i)-(iv) and (vi) are
straightforward.

Before we show (v) of Definition 2.4 we show the last statement of the lemma.
Let uc U, ye Y, and consider for G(s) = C.(sI-A.)'B.+D,,

(v, G(s)u)=(y, (C.(sI = A.) ' B.+ D.)u).
Using the resolvent identity we have that
(y, G(s)w)
=(y, C.(I - A)"'Bau)+{y, Dauy+ (1= 5)y, Co(I = A)7'(sT — A.) ' Bou)
=(C.(I - A.) ' Boy, wy+(De.y, w)+(1-5)y, C(I - A) 7' (sI - A.) ™' Ba).
Note that for x € X we have
3, C(I - A) %) = B - A) 'x]=((I ~AH) ' B.y, x).
Using this identity, we now obtain that
3, C(I-A) (I - A) "By =((I— A¥) "By, (sT- A ) 'B.u)
=((sI - A.)"'Bu, (I-A¥)'B.y)
= B.(w)[GI - A} (I~ A})'B.y]
- =(u, C(5T-AH) (1-AHB.y)
=(C.GI-A) (I~ A)'B.y, w).
Summarizing and again applying the resolvent identity, we have
(», G(s)u)
=(CI-A) 7' Boy, w)+(Dey, wy+ (1 =X C.GT - A) (I~ A) 7' Bey, w)
=((C.(51-A)'B.+ D)y, u)
=((G(s))*y, u).

Hence (G(E))*=C~‘c(sI—Ac)“l§c+D"c for all se RHP. Now (v) of Definition 2.4
follows, since

lim C.(sT - A) ™' B, =lim (C.(sI - A.)™'B.)* = (litg cc(sI—Ac)*'Bc)* 0. O

$=>00 §—>00 500

We will now show that the notion of duality of two systems is carried over between
discrete- and continuous-time systems by the transformation T.

PROPOSITION 6.5. Let (Ay, By, Ci, D;)e DY and define (A., B., C., D.)=
T((Aqy, By, Ca, Dy)). Let (AY, By, Cy, DY)e DYY be another discrete-time system and
let (A}, B!, Cl, D)= T((A}, By, C}, D})) beits corresponding admissible continuous-
time system. Then,

(AY, BY, C4, DY) is the dual system of (A4, B4, Ca, D)
if and only if
(A, BL, C!, D)) is the dual system of (A, B:, C,, D.).

Proof Assume (AL, BY, CY, DY) is the dual system of (Ad, B,;, C,;, D,;). Let
(Ac, Bc, Cc, D, ) be the dual system of (A, B., C., D.). Then A= A,, = A% implies that

Al=(I+A) AV -D=((As- DI +A) )= AL =4,
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For a justification of the operations with the adjoints, see Weidmann [18, p. 74]. The -
identity B) = Bd = C% implies for ye Y, xe€ D(A,), that
B.(»)[x]1=vV2AByy, (I1+(As)*)"'x)
=V2y, Ca(I+A,) 'x)
=y C.x)
= B.(y)[x]

and hence B!=B..
To show that C! = C,, we must consider two cases.
(i) For xe D(A!) we have Clx= C.x, since for ue U,

(u, Cixy=v2u, CL(I+ AL)"'x) =vX(Byu, (I + A%)'x)
= B.(u)[x]=(y, C.x).

(ii) Note thatfor yoe Y, xo:= (I — A})™'Bly,=(I—A,) ' B.y,, since for x € D(A,),
we have

(I - AY'Bl(yo)x]
=((I- A} BX(y), x) =% (BLyo, x) =%<yo, Cax)

= (¥o, Cc(I = A)'x) = B.(yo)[(I - A.)'x]
=(I-A.)""B.(yo)[x).
Then for ue U,
(Cexo, uy=lim(Cy(AI+AL) "' Buyo, u) =lim (yo, Ca(AI +As) ™' Byu)

A>1 A>1
=(¥0, Co(I = A.) "By =(C,x,, u)
= <C~ xO’ u)

where the last equality follows since x,:= (I — A) ‘cho—xo and hence C!=C..
Since D} = Dd = D,, , we have that

D!=D} ~lim CL(AT+AY) 'BY=D*- lim BX(AI+A%)"'CX=D*=D..
A>1 A>1

Hence we have that (AL, B, CL, D}) is the dual system of (A, B., C., D,).
To show the converse, assume that (AL, , Cl, D!) is the dual system of
(A, B, C., D.) and let (Ac, B,,, Cd, D,) be the dual system of (Ag, By, C;, D;).
Then

Ai=(I+AN(I-A) ' =(I+AN(I-AN "= Af= 4,

where we apply Theorem 4.19 of Weidmann [18] to justify the manipulations with the
adjoints. .
The fact that B}, = B, follows from the following identities, where y € Y, x € D(A,),

(Bly, xy=vX(I - A)'Bly, x)=v2 BXy)[(I-(A)*)'x]
=v2 B.(y)[(I -A.) "'x1=vy, C.(I-A,) %)= (y, Cax)
=(B,y, x).
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To show that CL=C, = B%, let ue U, xe D(A¥),
(u, Clhx)=v2u, CI-A)"'x)=vXu, C.(I - A%)"'x)
=v2 B.(u)[(I1 - A¥)'x]=V2((I - A.) "' Bau, x) = (Bau, x)

={(u, é,,x).
Since also
D} =Ci(I-A)"'Bl+ Dl=(C(I- A)'B.+ D)*= D}=D,,
we have the result. 0

7. Observability and reachability operators. We are now in a position to discuss
some of the central objects of this paper. We define the observability operator for
admissible systems. The reachability operator of a system is mtroduced as the dual of
the observability operator of its dual systems. ‘

Having defined observability and controllability gramians of admissible systems,
we show one of the main theorems of this paper. It states that the observability operator
of a discrete-time system is related by a unitary transformation to the observability
operator of its corresponding continuous-time system. This result is the main tool
in proving that the transformation T maps discrete-time balanced realizations to
continuous-time balanced realizations.

We first define the observability and reachability operators for discrete-time
systems.

DEFINITION 7.1. Let (Ay, By, Cy, Ds)e DYY; then the operator

0,:D(0;)> 15
x> (CiAGX) nzo
is called the observability operator of the system (A,, By, C;, D,;), where
D(0;) ={x e X|(CsAIxX) nzo€ I3}.

If 0, is bounded and ker (0,) ={0}, then the system (A4, By, C,, Dy) is called
observable.

Let (Ad, Bd, Cd, Dd) be the dual system of (A,, By, Cd, D,). If the observability
operator 6, of (A4, B,, Cy, D,) is bounded (and hence D(6,) = X), then the adjoint
of 6, is called the reachability operator &, of (Ay, B;, Cy4, D,), i.e.,

%d = O:f .

If R, exists and range (R,) is dense in X, the system (A,, B,, C,, D,) is called
reachable.

The analogous definitions for continuous-time systems are now given.

DEFINITION 7.2. Let (A,, B., C., D.)e C%Y, then the operator

0.: D(0,)~ L3([0, oo[)
x> C, eex
is called the observability operator of the system (A, B., C., D.), where

D(0.)={xe X|C.e"*x exists for almost all [0, oo, C, e"*x e L3([0, o[)}.

We say that (A, B,, C., D.) has a bounded observability operator if D(A, )< D(0,)
and O, extends to a bounded operator on X. This extension will also be denoted by O..



458 R. OBER AND S. MONTGOMERY-SMITH

If (A, B,, C,., D.) has bounded observability operator 0. such that ker (€,) = {0},
then the system (Ac, B,C.,D .) is called observable.

Let (Ac, Bc, Cc, D, ) be the dual system of (A, B., C,, D.). If the observability
operator 6. of (Ac, Bc, Cc, D, ) is a bounded operator on X, the adjoint of O’ is called
the reachability operator R, of (A, B,, C., D.), i.e.,

R, = 0%,

If R. exists and range (R,.) is dense in X, the system (A, B., C., D,) is called
reachable.

The notion of reachability and observability gramians as defined below is central
in the discussion of balanced realizations in the next section.

DEeFINITION 7.3. Let (Ay, By, C4, Dy) € DY with bounded reachability operator
R4 and bounded observability operator 0,. Then

Wd:=@d@ﬁ:X—)X, ./ﬂd1=0§0’d:X—>X

are called the reachability and the observability gramian, respectively, of the system
(A4, By, C4, D;). The reachability gramian %, and the observability gramian . of a
continuous-time system with bounded reachability operator &, and observability
operator 0, are similarly defined to be

W.=RR*. X> X, M =0%0,:X > X

Before stating the main theorems of this section we present a collection of
standard results on Laguerre functions and straightforward modifications thereof. For
a reference, see, e.g., Abramowitz and Stegun [1].

PROPOSITION 7.4. There exists a complete set of orthogonal real-valued functions
(L.(1)) nzo< L¥([0, o[) such that

(i) 1/(1+z) e"CVEM=F* L (£)z" for|z|<]1.

(i) f3 La(t)L,,(t) dt =15, for all n, m.

(iii) |L,(2)|=1 t€[0, [, for n=0.

(iv) L,()e L ([0, o[) for n=0.

(v) If Y is a separable Hilbert space, then the operator

Wil L(0,®D),  (5)aze>VZ I Li(0)x,
n=0
is unitary, with adjoint

W*: L3([0, o) > I3, f(t)'->~/5<J S L, (1) dt)
0 n=0

Now we will state and prove the main theorems of this section. They show that
the observability operators of discrete-time systems are related to the observability
operators of their corresponding continuous-time systems by a unitary transformation
of the input spaces and vice versa. We first consider the case where a discrete-time
system is given. Here the connection of its observability operator to the observablllty
operator of its corresponding continuous-time system is investigated.

THEOREM 7.5. Let (A4, B;, Ci, D,)e DY and let (A, B., C., D)=
T((Aq4, By, C4, D)) be the corresponding admissible continuous-time system. Then,

(i) For xe D((I+A,;)"")N D(0,), we have x € D(0,) and

O.x=W0,x
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_ where O, is the observability operator of (A, B., C., D.), and W is the unitary operator
defined in Proposition 7.4.
(ii) If 0,: X - I3 is bounded, then O, extends to a bounded operator given by

00 = WOd.
Proof. (i) Let xe D((I+A,;) )N D(0,)= D(A.)N D(0;). Write

F:[0,00[>Y, t—>F(t)=Y L,(t)CiALx,
n=0

F:[0,00[>Y, 1—>F(t)= L L.()r"CiAzx,

n=0
G:[0,0[>Y, t->G(t)=C,e"x,

with 0<r<1. The function G(t), t€[0, o[, is well-defined since e*xc D(A,) for
x€ D(A,) and hence e'*xe D(C,).

First note that F(t) is well defined and in L%([0, ]), because (C A% X) 1=0€ I3
and because (v2 L,(t)) .z forms an orthonormal basis in L([0, co[).

Now we are going to show that

V2 F,(t)»> G(t) pointwise weakly as r>1—0.

Using the notation and results of § 3 we have that Z::o L,(t)r"A3=68,(rAy), 0<r<1,
since §,(rz) € . Hence,

n=0

F()=% Ln(t>r"ch:x=cd(°z° L"(t)r"A:)

=Cy6,(rA;) = Cy(I+rAy)"! eHIHADTMI=rA)

Weak convergence now follows from Proposition 3.11.
But F,(t)~> F(t) in L3([0, o[) as r>1—0, since

(r"CaA% x) o> (C4ATX) nzo in I3 as r>1-0.
We can now show that these two convergence results imply that for all ye Y

almost everywhere for all ¢ € [0, co[. For otherwise, there is an £ >0 and a measurable
set A< [0, oo with Lebesgue measure A(A) = ¢ such that

1 GOy — (V2 F(t))y>¢
for te A. Now, clearly there is an r, such that for r=r,
Mte A: (y, V2 F,(1))~ (0, V2 F(1))>¢/2} < e/2,
and by Egoroff’s Theorem, there is an r, such that for r=r,
Mte A: (0, V2 F,(1))—(y, G(1)y>e/2} < &/2.
These three statements together form a contradiction.
Now, since Y is separable we have that

C.e*x=v2 Y L,(1)C,A%x
n=0

almost everywhere for ¢t €[0, oo[. Thus 0.(x) = W0,(x) for xc D(A,).
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(ii) Since 0, is bounded, W is unitary, and D(A,) is dense in X, O, extends to
a bounded operator on X. 0

The corollary to this theorem shows the equivalent result for reachability operators.

CoROLLARY 7.6. Let (A,;, By, C4, D;)e DXY and let (A., B., C., D,):=
T((Ag, By, C4, D,)) be the corresponding admissible continuous-time system.

Then, if the reachability operator R, of (Ay, By, C4, D;) exists as a bounded
operator, the reachability operator R, of (A, B, C,, D,) exists as a bounded operator
and is given by

% = %dW*.

Proof. Let (Ad, By, Ca, D,) be the dual system of (Ad, By, Cy, . D,). By definition
Ry = 0’4, where O‘d is the observablhty operator of (A,,, B,,, C,,, Dd) Now consider
T((Ad, Bd, C,,, D,))= (Ac, B, C, D,). By Proposition 6.5 we know that
(A, B., Cc, D,) is the dual system of (Ac, B., C., D.). But the reachability operator
% of (Ac, B, C., D, .) is given by &, = 6* , where 0. is the observability operator of

-~

(A, B., C., D,). By the previous theorem 6.= W&, and hence %. =0*=0W*=
RLW*, O

We now show that if a continuous-time system has a bounded observability
operator O, then the observability operator of its corresponding discrete time system
is given by a unitary transformation of 0,.

Tueorem 7.7. Let (A., B., C., D.)eC¥X" and let (As;, Bs, Cs, Di)=
T Y(A,, B., C., D.)) be the corresponding admissible discrete time system. Then,

(i) For xe D(A,)N D(0.), we have x € D(0,) and

de = W*ch

where 0, is the observability operator of (A4, By, C4, D;) and W* is the unitary operator
defined in Proposition 7.4.
(ii) If O, is bounded, then O, extends to a bounded operator on X given by

Od = W*Oc.

Proof. (i) Let xe D(A.)N D(0,); then we know that G(t):= C,e"*x exists for
all £ € [0, 00}, since e"*x € D(A.) < D(C,), te [0, oo[. By assumption G(¢) € L3([0, o).
Corollary 4.4 implies that

G(t)=V2 Cy(I+A,) ™" "4y,

“For 0<r<1,let G,(1)=v2 Cy(I+rA,) ! e T+ 47 "A:~Dyx Qince C, is bounded, we
have by Proposition 3.11 that for all ¢t [0, o[,

ligr_xo G,(t)=G(t) weakly.

Since C, is bounded and §,(rz) € &, where 8, is as defined in § 3, we have that
G, (1) =vV2 Ca(I1+rA,) " e'Hra (A =Dy
=2 Cy8,(rAg)x

~=~/§ c,,( v L,,(t)r"A;x)

n=0

=v2 z L,(t)r"C,A% x € L([0, 0]).
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We will now show that there exists M >0 such that
|G.()|=M <o forall0<r<1, te[0,o[.
Let t€[0, oof; then ; :
sup |G.()]|= sup V2 Ca(I+rA,)~" !+ 074Dl
o<r<i Oo<r<1
SVI |G, sup [[(T+ 7, iAo A Dy
o<r<1
=M<

where the second to last line follows from Proposition 3.11 noting that D(A.)=
D((I+A)™Y).
Thus for y € Y, we have that

KG.(1), yW2 L,()|=V2 M||y|||L.(2)l,  te[0,oof.

Since L,(t) € L'([0, oo[), we can therefore apply the Dominated Convergence Theorem:

lim Iw (G,(t), yW2 L,(t) dt= J'co (G(t), yW2 L,(¢t) dt.

r—>1-0 0 0
But
r (G(1), yW2 L,(t) dt = Jmf < § V2 L(1)r'CsAu x, y>~/'2' L,(t) dt
0 0 i=0
=23 (r"<ch:;x, » r L)L (1) dt)
i=0 0

=r"(C,Ag X, ).

Thus

r (G(1), YWE Ly(1) de = lim_ r (G(1), YVZ Ly(1) dt

=(CAGx, y).

Since G(t) e Lzy([O, oo[), we have an expansion
G(t)=Y GV2L,(t), G,eY.
n=90

Thus (G, y)=(C,A} x, y) for all ye Y and hence G, = C, A% x for n=0. This implies
that ‘

0.(x)=C.e*x=v2 ¥ L,(1)C,A}x=W0,(x)
n=0

and hence 0,(x) = W*0.(x).

(i) This is a straightforward consequence of (i). 0

In the following corollary the corresponding result is established for the reach-
ability operators.

CoroLLARY 7.8. Let (A,, B., C., D.))eC%Y and let (A;, By, Cs, Dy):=
T Y((A,, B., C., D.)) be the corresponding admissible discrete-time system. Then, if the
reachability operator R. of (A., B, C., D.) exists as bounded operator, the reachability
operator R, of (A4, Ba, C4, D) exists as a bounded operator and is given by ' '

%d = @cw
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Proof. Let (Ac, B, C., D.) be the dual system of (A, B, C., D, ) By definition,
R = O’c s where 0 is the observablhty operator of (A., Bc, Cc, D,). Now con51der (A,,,
B,, C,, D;)= T (A, B., €., D.)). By Proposition 6.5 we know that (A4, By, C4, D)
is the dual system of (A, B, Cd, D,). But the reachability operator ®, of
(A,,, B,, C,,,, Dd) is given by R, = o* , where 6, is the observability operator of
(A4, By, Cy, D). By the previous theorem 6, = W*0,. Hence R, =0%=6*W=
R.W. 0

The following corollary to the previous two theorems shows that the properties
of observability and reachability as well as the observability and reachability gramians
are preserved by the transformation T,

COROLLARY 7.9. Let (Ay, By, Cy, D;)e DYY and (A., B.,C.,D.)e C%Y such
that

(Au Bcs Cc, Dc) = T((Ad, Bd’ Cda Dd))
Then,

(1) (A, B, C,, D,) is observable (reachable) if and only if (A,, By, Cy, D) is
observable (reachable).

(2) If the reachability gramians W,., W, (observability gramians M., M;) of
(Ay, B4, C4, D;) and (A, B., C., D,) are defined, then

Wc= cu/.d (‘/“c=-/”d)'

8. Balanced realizations. We will now apply the results on infinite-dimensional
state-space systems of the previous sections to tackle the problem that motivated this
paper, namely, that of the existence of balanced realizations for continuous-time
systems. Our results will allow us to deal with a wider range of transfer functions than
previous results; for example, we can handle any transfer function that is bounded in
the RHP, and with a limit at infinity along the real axis. This allows us to consider
nonstrictly proper delay systems with transfer functions such as G(s) e™*7, where G(s)
is a matrix-valued stable rational transfer function. Previous results were unable to
deal with, for example, the pure delay system e 7 because the limits lim,,, ., e~ ™"
and lim,,,_, e™™ do not exist and, therefore, the corresponding Hankel operator is
not compact. Another example of a function we will be able to deal with is G(s)=
log (1+1/s). This function is unusual in that it has a singularity at 0.

The approach taken is to carry over the discrete-time results by Young using the
transformation T: D% > C%'". Thus we will first review Young’s results before we
turn to proving the continuous-time analogue of his discrete-time realization theorem.

The following definition recalls the notion of a balanced system as defined by
Moore [10] and the notion of a parbalanced system as introduced by Young [20].

DEFINITION 8.1. Let (A,, By, C,;, D;)e DY ((A., B., C., D.)e C%Y) be such
that the observability gramian #, (#.) and reachability gramian W ,(%,) exist.
Then the system is

(i) Parbalanced, if M, = W,(M.=W.);

(i) Balanced, if it is parbalanced and moreover the gramians are diagonal.

Before we state any results, we introduce some notation. Let H:D - £(U, Y) be
analytic. We say that He P.L¥(D, #(U, Y)) if there exists an analytic function
F:D-> (U, Y) such that H + F is essentially bounded, where F(z) = F (z7"). Further-
more, if F can be chosen so that H+ Fe C(D, ¥(U, Y)), where C(D, ¥(U, Y)) is
the set of norm continuous functions on D with values in the set of compact operators
from U to Y, then H is said to be in P,C(D, ¥(U, Y)).
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Similarly, if H: RHP-> £(U, Y) is analytic, we say that H € P, L°(RHP, £(U, Y))
(P.C(RHP, ¥(U, Y))) if there is an analytic function F:RHP- %(U, Y)Y H(U, Y))
such that H + F is essentially bounded (extends to a norm continuous function on the
imaginary axis such that lim,.cp - (H+ F)(zw) =lm,cp poe (H+ B)(- iw)), where
F (s)=F(-s).

Remark 8.2. If He P,L™(D, #(U, Y)), then the Hankel operator with symbol H
is bounded by an operator-valued version of Nehari’s Theorem, whereas by Hartmann’s
Theorem it is compact if He P,C(D, %(U, Y)). Note that if U and Y are finite-
dimensional, He P, L*(D, £(U, Y)) (P.L°(RHP, £(U, Y))) if and only if H is in
BMOA(3D) (BMOA(IR)) and H e P,C(D, #(U, Y)) (P.C(RHP, ¥(U, Y))) if and
only if H is in VMOA(sD) (VMOAC(IR)) (for references, see [15]).

The following theorem by Young [20], gives criteria for a (par-) balanced realiz-
ation to exist of a discrete-time transfer function.

THEOREM 8.3. Let G,(z):C\D~ £(U, Y) be analytic with G;(c0)= D, € .Z’( UY),

and write
1
g(z):=—(G,, (l)-—Dd), zeD.
z z

(i) If ge PLL™(D, £(U, Y)), then there exists a separable Hilbert space X and a
discrete-time state-space realization (A,, B;, C4, D;) of G4(z) with state space X, such
that

Age £(X) is a contraction,
B, e Z(U, X), CaeZ(X,Y),

and (A4, By, C4, D,) is reachable and observable with bounded reachability and observa-
bility operators, such that (A, Bs, C4, D,) is parbalanced, i.e., My, = W,. The gramians
My, W, satisfy the Lyapunov equations

AdeA* -W,= ‘Bi';Bd, A:li“/“dAd —My= —Cdcﬁ

If (A,, By, C,, D) is another parbalanced realization of G,(z) with state space X, then
(A4, By, Ca, D) and (A,, B, C,, D,y) are umtanly equivalent.

(ii) If, moreover, ge P.C(D, ¥ (U, Y)), there is a basis in X with respect to which
(A4, By, C4, D,) is balanced.

To show that for a transfer function G, such that lim,._; ,._; G;(A)e L(U, Y),
the realization given in the previous theorem is, in fact, admissible, we need to show
that —1 is not an eigenvalue of A,.

LeMMA 8.4. Let (Ay, Ba, C4, D;) be a parbalanced realization of a discrete-time
transfer function as given in Theorem 8.3; then —1¢Z o (Aq).

Proof. Let M, be the observability gramian of (Ad, B, C4, Dy); then

AfMA, — My =—-CEC,.
Assume —1€g,(A,) with eigenvector x # 0, then
(x, A§M4A4x) —(x, Myx)=~(x, CXCyx)
and hence
(Aax, MaAgx)—(x, Max)=0=—| Cyx|?,

which implies that Cyx=0. Hence for all n20, 0;x =(C,A]X)nz0=(—1)"Cyx =0,
which is a contradiction to the observability of (A,, B,, Cy, D,). |
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We can now apply our results on the transformation T to obtain realization results
for continuous-time transfer functions.

THEOREM 8.5. Let G.:RHP- #(U, Y) be a continuous-time transfer function that
is analytic and such that im g ;.o G.(s)€ L(U, Y) exists.

(i) If G.e P.L*(RHP, £(U, Y)), then there exists a separable Hilbert space X
and a parbalanced admissible continuous-time state-space realization (A., B,, C., D,) of
G. with state space X. This system is reachable, observable, and has bounded reachability
and observability operators.

If (A,, B,, C., D.) is another parbalanced realization of G.(s), then (A, B,, C., D,)
and (A, B,, C,, D.) are unitarily equivalent.

(ii) If, moreover, G.€ P,C(RHP, ¥(U, Y)), then there is a basis in X with respect
to which (A., B., C., D,) is balanced.

Proof. Let G,:C\D- %(U,Y) be the associated discrete-time transfer function
G4(z) = G(z—-1)/(z+1)), and write

g(z)=§(c,,(§)—cc(1)), zeD.

Then it is easy to see that G.€ P,L*(RHP, #(U, Y))(P.C(RHP, ¥(U, Y))) if and
only if ge P.L™(D, £(U, Y))(P.C(D, ¥(U, Y))).

Hence G,(z) has a parbalanced realization (A,, B,, C;, D;) that is admissible
since Ay is a contraction, such that —1¢ 0,(A;) by Lemma 8.4 and since

!\ig} Cd(AI'*'Ad)_le = —"\li<ﬂ_ll Gd(A)"'Dd = _ling Gc(s)".'Dd G.Z’(U, Y)

A->1 A>—1 $-»00

exists. Then (A,, B, C., D,):= T((Aq4, B,, C4, D;)) € C%ZY is a state-space realization
of G. (Theorem 4.1) that is observable and reachable, such that W, = %, and M. = M,
(Corollary 7.9).

The statement on the uniqueness of the realization follows from Proposition
5.4. a

The following corollary discusses special cases of transfer functions and gives
simple criteria for the existence of a parbalanced or balanced realization of a
continuous-time transfer function.

COROLLARY 8.6. Let G.(s):RHP~> Z(U, Y) be a continuous-time transfer function,
such that lim,cp ;.o G.(s)€ (U, Y) exists and G.(s) is analytic in RHP.

(i) If G.(s) is bounded in the RHP, i.e., sup,cgup [|G.(s)|| <, then G.(s) has a
parbalanced realization.

(ii) If, in particular, G.(s): RHP— ¥ (U, Y), such that G, is bounded in the RHP
and G.(s) is norm continuous on the imaginary axis including at the points + and —co,
i.e., w—> G.(iw), weR, is norm continuous and lim,, ., _, G.(iw) =lim,, .. G.(iw), then
G.(s) has a balanced realization.

As examples to the previous realization results we can consider delay systems. It
follows immediately from the previous corollary that the transfer function ¢™*7 of a
pure delay with time constant T > 0, has a parbalanced realization. Note that the limits
lim, . e”™" and lim, . _. e ™7 do not exist. If G(s) is a matrix-valued strictly proper
stable rational transfer function, then the transfer function G(s) e™*" of the delayed
system has a balanced realization.

Another example of a function that has a parbalanced continuous-time state-space
realization is the function G.(s)=log(14+1/s), which is well known to be in
BMOAC(iIR). We note that G, has a singularity at 0.
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