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Based on the construction of infinite-dimensional balanced realizations, an
alternative solution to the following inverse spectral problem is presented. Given
a decreasing sequence of positive numbers (0,,),,,l (i.e. 0,= 0, =052 20),
does there exist a Hankel operator whose sequence of singular values is (0, ),.,?
This paper is an extension of a previously published paper in which the same
approach was taken in the case of a monotonically decreasing sequence (0,),...

1. Introduction

MoTivaTED by important problems in prediction theory for Gaussian processes
and approximation theory for rational functions [3, 5], Peller and Khrushchev
have pointed out the significance of inverse spectral problems for Hankel
operators. In this context, they conjectured that, given any nonincreasing
sequence (0,),»; of positive numbers with lim,_,. o, =0, there exists a Hankel
operator I' whose singular values (o,,(F)),,,l satisfy 0,(I') = o, for all n e N.

Using delicate function theoretic and functional analytic arguments, Treil &
Vasyunin [8] proved this conjecture also for the case when lim,,_,., o, #0.

A solution for the case of a strictly monotonically decreasing sequence (0,),5;,
which was based on a system theoretic construction, was published in
[7]. A recent result by Arendt & Batty [1] on the asymptotic stability of strongly
continuous semigroups of operators allows us to extend to the general case a
construction of finite-rank Hankel operators with possibly repeated singular
values as implicitly given in [6]. It is therefore now possible to give a complete
solution of the problem using balanced infinite-dimensional state-space systems.
While this approach allows us to construct Hankel operators with prescribed
nonzero singular values and thereby to prove the conjecture as stated in [3], it is
at the moment not clear how to deal with the kernel of the Hankel operator
within our framework. It is well known that the kernel of a Hankel operator is
either zero or infinite dimensional [3]. The method given in [8] not only solves the
conjecture but also allows us to assign the dimension of the kernel of the Hankel
operator to be either zero or infinite dimensional.

The construction will be given in terms of integral Hankel operators defined as
follows:

r: L([0,2)—>L%[0,x)) : u(t)— L mh(t + s)u(t) dt,

where h(t) € L([0, «)) is chosen such that I is bounded.
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Recall that the singular values 0,(4) (n=0) of a Hilbert space operator A are
defined as follows: 0,(A) is the nth point from the right of the spectrum of the
modulus |A| = (A*A)z, whose eigenvalues are counted with multiplicities and the
first point of the continuous spectrum is an eigenvalue of infinite multiplicity.

2. Balanced state-space systems and finite-rank Hankel operators

The construction of a Hankel operator with a desired set of singular values is
based on a connection between state-space systems and Hankel operators. We
shall briefly review this connection for the particular case of balanced realizations.

Dernmion 2.1 (see [4]) Let (A, b, c) e R™" X RV X R™™ be such that
(A, b, ¢) is a minimal and asymptotically stable continuous-time system. Then
(A, b, ¢) is called balanced if, for

W, = f ebbTet dr, W, = f e4'cTee dt,
0 0

we have W, = W, =: X =: diag (o,,..., 0,,)-
The following characterization of balanced systems is of particular importance.

ProposiTion 2.2 (see [4]) Let (A, b,c) e R xR X R be such that
(A, b, ¢) is a minimal and asymptotically stable continuous-time system. Then
(A, b, ¢) is balanced if and only if there is a diagonal matrix X with positive
diagonal entries which satisfies the Lyapunov equations

AZS+3AT=-bb", ATZT+3A=-c"c.
Moreover, if (A, b, c) is balanced then =W, =W,

Given a system (A, b, ¢) we associate with it an integral Hankel operator I
with kernel h(f) =ce”*b (¢=0). The following proposition relates the singular
values of the Hankel operator I' to the controllability Gramian W, (and the
observability Gramian W,) of a balanced system.

ProrosiTiON 2.3 (see e.g. [2]) Let (A, b, c) be a minimal and asymptotically
stable balanced system, with X =W,=W, =diag(0,, 0,,.., 0,), such that o,=
g,= = 0, >0, then the Hankel operator I with kernel h(t) = ce“'b (¢t =0) is of
rank n and has singular values o,(I') = 0,, 05(I') = 03,..., 0,(I') = 0,,.

It is clear from this proposition that the problem is solved for finite-rank
Hankel operators if we are able to construct finite-dimensional balanced
state-space systems with prescribed controllability Gramians W.. This is indeed
possible and follows from the following characterization result for rational
transfer functions.

THEOREM 2.4 (see [6])

(I) The following two statements are equivalent.

(i) g(s) is a strictly proper real rational transfer function of McMillan degree n
whose poles are in the open left half plane.
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(ii) g(s) has an n-dimensional state-space realization (A, b, c) which is given by
the following parameters:

1(1) 0 8(j) oy n(k), where n(j)eN (j=1,.,k) and X1 n(j)=n,
8§13 Sjrees Sk, Where ;= £1 (j=1,.., k),
01y jynry O, Where ;€ R (j=1,..,k) and 6,> - > 0;> - >0, >0,
by, bjy, by, where b;>0 (j=1,.,k),
oV, V.., ally-1,

agj);-": a:(j) yerey a’s:’?j)—lr

., a®,., ok 1, where a?>0fori=1,.n(j)—1 (j=1,.,k),
in the following way:
(1) b"=[b,,0,..,0,.., b;, 0,.'..,0,..., b, 0,..,0],
n(1) n(j) n(k)
(2) c= [‘Elbl’ 0,...,9,...,§jbj, 0,..., 9,..., gkbk’ 0,...,9],

n(1) n(j) n(k)
(3) a=
n(1) n(2) n(k)
P - - e -~ -~ - —
{ a; oY 0 a2 v Ay
P 0 afV
n(1)4 -V 0 0 0
. . 1
0 : . “f.()l)—l
1
\l _“5()1)—1 0
| ax ay, of 0 o Qo
) 0 el 0
n - 2
0 (;2) af,()z)_l 0
y ~ &1 0
A1 2 gy o 0
) —a® 0
n . .
(k) 0 0 0 : ‘”E.?c)—l
_“(’8:)—1 0
where
-1

bb, forl=<ij=<k.
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(II) The parameters in (ii) are uniquely defined for a transfer function g(s). For
any (A, b, c) defined as in (ii), we have .

w’c = vvo = dlag (alln(l)) q21n(2)r") akln(k))'

The theorem shows that each asymptotically stable transfer function of
McMillan degree n has a balanced representation (A, b, c) which has a certain
structure. Conversely, the matrices (A, b, ¢) form an asymptotically stable and
minimal system if they are defined as in part (ii) for some arbitrary parameters
0,>>0;>>0;,>0, b;>0, b,>0,...,5,>0, a>0 (1<is<n(j), 1<
j<k), and s;==%1 (1<j<k). Hence the previous theorem together with
Proposition 2.2 tells us that, in order to construct a finite-rank Hankel operator
with singular values given by the sequence (0;)%., each repeated with multiplicity
n(j), we only have to choose arbitrary positive parameters by, b,,..., b, and a{V,
oV, ally-1; o, o, aZy 15, a0, P, a¥)y_1, as well as s, = %1 for
1=i=k. These parameters are then used to define a state-space system (A, b, ¢)
as in (ii) of the previous theorem. Then the integral Hankel operator I given by
the kernel h(t) =ce"b (+=0) has singular values oy(I')= -+ = 0,q)(I) =03,

G,y+1(I) = = Opy+n@() = 02, ... -

In the next section, we will show that, given an infinite sequence of positive
decreasing numbers (0,),>1, we can construct an infinite-dimensional state-space
system (A, b, ¢) in the same way as in Theorem 2.4 such that the corresponding
integral Hankel operator has the sequence (0,-),;1 as its set of singular values.

3. Generalization to the infinite-dimensional case

As we have seen in the last section, the key to the solution of our problem for a
finite number of nonzero singular values is the construction of a balanced
state-space system with a prescribed diagonal controllability (observability)
Gramian. Therefore the next proposition is concerned with the extension of this
construction to infinite-dimensional state-space systems.

ProposiTioN 3.1  Given a sequence (0;))., of positive numbers such that
0,>0,>03>-->0,
with N e NU {=}, and a sequence of strictly positive integers,
(n(i))X,, where we allow N < and n(N) = .

(With a slight abuse of notation, no distinction will be made between N = and
N < in mathematical expressions.)

Define a sequence (b;)]., such that b;>0 for 1<i<N and LY, (b?*/0)<
(e.g. b;=0;/i) and choose for all n(i)>1 (1<i=<N) strictly positive numbers
o), af,.., aQy_1 such that

Mz

n(i)—1

2 (@) <.
1 j=1 :
>1

~.«|I

i
n(i
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Then set
= (blx 0,..., O, bz,..., 0, b3, 0,..., 0, ...)
[ SRS N N —
n(1) n(2) n(3)
c=b"
A=
n(1) n(2) n(3)
[ Fgll af? e a2 h raxa R
-a? 0 o 0 -‘
n(1) \ -af’ 0 0 0
: S ¢}
0 . . n(1)—-1
o® 0
\ n(l) 1
(| ax ax a? ax
—a® 0 0
1
n(2) < 0 : : ) 0
0 : @ (2)-1
\ e, 0
(] 2 as a3 af? 0
—a® 0
n(3) 1 0 0 ' . : @
0 : : n(3)—1
n3()3) 1 0
where a; = —b;b;/(0; + 0;) for 1 <i,j<N.
Then
(i) A is a Hilbert—Schmidt operator on €.
(ii) With § = diag (I,,(l), @y Iny+--), Where I,.(,) = diag (+1, -1, +1, —1,...)e

R"®*n®) for 1 <i< N, we have

A* =SAS.

(iii) = =diag (011,a1) O2ln2)s O3ls(3),-..) satisfies the following Lyapunov
equations on

AX + ZA*=-bb*, A*S + 3A = —c*c.

(iv) 0)(A)c{ze€C:Rez <0}

(v) The semtgroup (e"),»0 generated by A is asymptotically stable, i.e.
lim, . e“*x =0 for all x € ¢~

(vi) [oebb*e*"dt=3 and [Ge“’c*ce”* dt =2, where these expressions are
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understood to stand for

I (b*ex)(b e y)dt = (x, Zy) (x,y € €?),
0

J@ (ce”x)(cey) dt=(x, 3y) (x,y € £).

Proof.

(i) A =:]a;)i<ij<~ is Hilbert—Schmidt if Z;';l Y @< [9: theorem 6.22, p.

152]. Since by assumption LY, -1 L79D 7" (af?)* <, we have to show that
No1a5<. But

No( bb )2 L w bE?E ( X, b%)( N, b,?)
—L ) =3 > HL=1{1>— L)<,
i,j2=1(0i+aj 2i,jz=l 0; 2 i=210i ,2101'
(ii) and (iii) follow immediately from the definition of A.
(iv) We first show that
0(A)c {zeC:Rez =<0}
Let A € C and x € €% (x #0) such that Ax = Ax. Then, by (iii),
~(c*ex,x) = (A*Zx, x) + (ZAx, x)

= (3Zx, Ax) + (ZAx, x)

=A{(Zx, x) + A(Zx, x)

=2(Re A)(3x, x)
so that
{cvex, x) _ M
2(Xx, x)
To show that each eigenvalue of A is in the open left half plane, assume that
A=iw (w e R). Then, by (1),

Rel= —

(c*cx, x)

0=Reiw= —
eiw 205, 1)

0.

Hence (c*cx, x) =0 and thus
(cT,x)=(b,x)=0. )
Similarly, for each % e ¢* (£+#0) such that A*% =iw& for w e R, we have
(c",x)=(b, ) =0. Then
A*3x + ZAx = —c*cx.

Hence we may take ¥ = Zx to obtain (c", Zx) =0, so that A*>x = —iw3x, and
thus

(A + ZA*)3Zx = AZ* — iwZ% = —bb*Zx =0,

which implies that AX?x = iw=?x. So the eigenspace of A corresponding to A =iw
is a closed invariant subspace of 2. But the closed invariant subspaces of =2 are
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of the form N
E = @ Ei’
i=1
where E; (1<i=<N) is a closed subspace of
i—1 i
span {e,- >y n()<is, n(j)}.
j=1 j=1

Hence, the eigenspace of A with respect to the eigenvalue iw is of this form, i.e.
N
E = @ Ei'
i=1

We are going to show that E;=(J for 1<i<N. Assume E; #. For ease of
notation, take ip=1. Let x € E; (x #0), i.e. x" =[xy, X3, Xuqay, 0, 0,...]. By (2),
<b, x) = blil =),

Hence, x; =0 since b; > 1. Evaluating Ax = iwx componentwise, we have

[ an afV a 0
-a® 0 asd X3
- agl) 0 X3
Ax = aglel)—l
- 5.131)—1 0 Xn(1)
a, ax agz) 0
—a® 0 aof 0
[ a{Vx, } 0
a&l)x3 X2
‘d’&l)xz + a’gl)x4 X3
= —0’981)-2%(1)—2 + 0’5.131)—1%(1) =iw| X,qy-1
- a’fxlel)—lxn(l)—l Xn(1)
0 0
0 0
! : i |

The last equation shows by successive comparison of coordinates that x =0,
since a{V >0 for 1 <i=<n(1)— 1, which is a contradiction.

(v) Since A is a Hilbert—Schmidt operator and hence bounded, A generates a
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uniformly continuous semigroup of operators (e“*),,, By a theorem of Arendt &
Batty [1], a strongly continuous semigroup of contractions (€'?),., on a reflexive
space is asymptotically stable if the spectrum of its generator B is such that
o,(B)NIR = and o(B)NiR is countable. We have shown in (iv) that
o(A)NiR =. A is a Hilbert—Schmidt operator and hence compact. Thus, the
nonzero spectrum of A consists only of eigenvalues, and so by (iv) we have
o(A) NiR < {0} and hence countable.

It remains to show that (¢“Y),., is a semigroup of contractions or, equivalently,
that A is dissipative, i.e. Re (Ax,x)=<0 for all xe ¢> Let xe ¢* then
Re (Ax, x) =3{((A+ A%)x, x).

Hence A is dissipative if A + A* is nonnegative definite. Since A is compact,
A+ A* is compact. Moreover, A + A* is self-adjoint. Hence A + A* is nonnega-
tive definite if all eigenvalues of A + A* are nonpositive. We have

AZ + ZA* = —-bb*, A*Y + 3ZA = —c*c,
and so
(A+ AT +3(A+ A*)=—-2bb*.

Let A; € R be an eigenvalue of A + A™ with eigenvectors x,#0, then
0= —2(xq, bb*x,)
= (X0, (A + A*)2xo) + (x0, Z(A + A*)x,)
= ((A + A*)xo, Zxo) + (X0, Z(A + A*)x0)
= 2Ao(x0, Zxo),

and hence A,=<0. Thus, A+ A* is negative semidefinite, and hence A is
dissipative which implies the result.

(vi) We first have to show that
J’ e“bb*e™ dt: £2— £*
0

is bounded. Consider the operator
V: -LY([0,x)) : x—>b*e*x.

We are going to show that V is well defined, i.e. V¢2c L*([0, %)) and that V is
bounded. If V is bounded this implies the boundedness of V*V =
[5e“bb*e*” dt. Define A(n): = P,AP, and b(n):= P,b for 1<n <o, where,
forn=1,

P, : #>C : [x]or—=x1, x20 x,)"
and let, forn=1,
V, : £2>L%[0,®)) : x> b(n)*e“™ P,x.

Note that V,, (n=1) is well defined since by Theorem 2.4 all the eigenvalues of
A(n) are in the open left plane and hence V,(x)eL*([0,x)) (n=1,x € ¢).
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Since A is Hilbert—Schmidt, we have
lim ||A — P,A(n)P,|| =0.

Hence, for all x € #2, we have

lim |je“x — P,e*™P,x|| =0

uniformly for ¢ in bounded intervals. This, together with the fact that

lim b(n)P, = b

t—»o0

in ¢, implies that, for all M >0,

M

lim | (Vx)(¢)dt= I N (Vx)(¢) dt. 3)

n—o

Since, for all n =1 and x € ¢?,

Vx> = <P,,x, (f e“4™p(n)b(n)*e A" dt)P,,x> = (3P, P,x) < (3x, x),
0
it follows that (||V,||),>: is bounded. Since the step functions are dense in
L([0, «)), it therefore follows that (V,,),, is weakly Cauchy [9: theorem 4.26, p.

77] and that (V,),=, converges weakly to a bounded operator V. But (3) implies
that V =V. Hence, V is bounded, and therefore

V*V = I e“bb*e™” dt
0

is bounded, which implies by virtue of (ii) that [§ e“’c*ce* d¢ is bounded.
Next we show that [ e"c*ce* dt solves A*X + XA = —c*c. Let x,y € ¢; then

< *(f e“c*ce” dt)x, y> + <(f e“c*ce” dt)Ax, y>
0 0

00

=f ({A*e“c*ce™x, y) + (e c*ce” Ax, y)) dt
0
=f ({c*ce“x, e Ay) + (c*ce“Ax, e“y)) dt
0
> d tA tA
= o (c*ce“x, e“y) ) dt
0
=lim [{c*ce“x, e“y)];

=—(c%ex,y),

which shows the claim. Since we know that X =diag (011,¢1y, 021,(2),...) solves
A*X + XA = —c*c, we have to show that the solution to A*X + XA = —c*c is
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unique in order to conclude that [ e“’c*ce” dt = =. Assume that X, and X, are
bounded solutions to A*X + XA = —c*c. Then

A*A+ AA =0,

with A= X, — X,. Now consider for x,y € ¢,

aqt (Ae“x, ey) = (Aex, Ae”'y) + (AAe“x, e“ly)

= ((A*A + AA)e“x, e“'y)
=0 on(0,x).

Hence
(Ax, y) = (Ae™x, ™y) = (Ae“x, ely) forte[0,x).
By the asymptotic stability of (€**),..o, however, we have

(Ax, y) =lim (Ae“‘x, ey) =0 for all x,y € £

Since A is bounded we have A=0. O

In [7], the same result was proved for the case of a sequence of nonrepeated
positive numbers. The stability theorem for strongly continuous semigroups of
operators by Arendt & Batty [1] makes it possible to prove the uniqueness of the
solution of the infinite-dimensional Lyapunov equation (iii) for a not necessarily
self-adjoint infinite-dimensional A-matrix. This allows us to extend the finite-
dimensional construction of balanced systems to the infinite-dimensional setting
also in the general situation where we are dealing with sequences of possibly
repeated positive numbers.

TueoreM 3.2 Let the sequences (0;)!-, and (n(i))X, and the state-space system
(A, b,c) be as in Proposition 3.1. Then the Hankel operator I' with kernel
h(t) := ce”*b is bounded and its singular values are given by the sequence (o;)N.,
each repeated with multiplicity (n(i))X.,.

Proof. In the proof of Proposition 3.1, we introduced the bounded operator V.
Note that by the definition of S we have c¢'=Sb. Hence, we obtain the
decomposition I' = VSV*, which shows that I" is bounded. Consider the family of
vectors (b*e“’¢;);»1. By

(C(b*e*’e;))(s) =I ce“tI4pp*ete; dt
(V]

= ce™ Ze;
= (SZe;, ei>b*CSA.ei;

it follows that (b*e“’e;);», is a family of eigenvectors, with eigenvalues
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((SZe;, €;))i=1, which are orthogonal since

(b*ee;, b*e“ ey 2= <e,-, (f e“bb*e” dt)ej>

(V]
= <ei) 23,')
for 1=<i,j <o,
Let E :=span {b*e“*’¢; : 1 <i <w}. For u € E*, the orthogonal complement of
E, we have, for all 1 <i <o,

0= (u(t), b*e“’e;) 2

=I b*e“eu(t) dt
0

= <e,., fo i e“bu(t) dt> .

Thus, [§e“bu(t) dt =0, and hence
(r@))(s) = ce”“f e“bu(t)dt=0 for all s €[0, ).
0

So E* =ker I Choosing an orthogonal basis for ker I, it follows that L*([0 , ©))
is spanned by an orthogonal set of eigenvectors, which implies that o(I') = o,(I).
Since I is self-adjoint, it follows that the singular values of I' are given by
(1{=Se;, €;}|)i=1 which shows the result. O

Acknowledgements

I would like to thank Prof. W. Arendt for providing me with a preprint of [1]
and Prof. N. Young for bringing this problem to my attention.

REFERENCES

1. ARenNpT, W., & Batry, C. J. K. 1988 Tauberian theorems and stability of
one-parameter semigroups. Trans. Am. Math. Soc. 306, 837-52.

2. GLOVER, K. 1984. All optimal Hankel-norm approximations of linear multivariable
systems and their L™-error bounds. Int. J. Control 39, 1115-93.

3. KHRUSHCHEV, S. V., & PELLER, V. V. 1984 Moduli of Hankel Operators, Past and
Future, Lecture Notes in Mathematics 1043. Berlin: Springer, pp. 92-7.

4. MoorEg, B. C. 1981 Principal component analysis in linear systems. IEEE Trans.
Autom. Control 25, 17-32.

5. Nikov’skn, N. K. 1985 Ha-plitz operators: A survey of some recent results. In:
Operators and Function Theory (S. C. Power, ed.). Dordrecht: Reidel, pp. 87-137.

6. OBer, R. J. 1987 Balanced realizations: Canonical form, parametrization, model
reduction. Int. J. Control 46, 643-70.

7. OBer, R. J. 1987 A note on a system theoretic approach to a conjecture by
Peller—Krushchev. Syst. Control Lett. 8, 303—6.

8. TreiL, S. R. 1985 Moduli of Hankel operators and a problem of V. V. Peller and S. V.
Krushchev. Sov. Math. Dokl. 32, 293-7.

9. WEIDMANN, J. 1980 Linear Operators in Hilbert Spaces. Berlin: Springer.



