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The paper discusses topologies that naturally arise in the study of
robust control problems. A new 'robust topology' is defined. It is
shown that this topology is Hausdorff.

Introd uction1

Robustness issues in control theory play an important role because each
model of a real process has inherent uncertainties that have to be taken
into account in any controller design. An underlying issue of robust control
is the question of when two plants are close to one another from the point
of view of robustness. The most important aspect of robustness is that Qf
robust stability which is addressed in this paper. We are going to introduce
a 'robust topology' in order to describe what we mean by two systems being
close from the point of view of robust stability.

The purpose of the paper is to give a precise definition of this topol-
ogy and to study some of its elementary properties. We are also going to
compare this topology with the so called graph topology ([5]).

Definition of robust topology2

In this section we are going to define a topology on sets of plants in such a
way that we are able to study robustness issues with the help of this topol-
ogy. By robustness we mean that if a plant p is stabilized by a controller K
then all plants in a sufficiently small neighbourhood of p are also stabilized
by the controller K .

Let now p be a set of plants and K a set of controllers, where we assume
that for each plant Po E p there is a controller Ko E K that stabilizes Po.
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The robust topology TJ(.(P) on the set of plants P which is induced by the
set of controllers JC is defined through the following prebase. For each
controller K E JC let P(K) be the set of plants in P that are stabilized by
the controller K. The family of sets (P(K))KEJ(. forms a prebase for the
robust topology TJ(.(P) on the set P .

Note that in a dual fashion we can define a topology on the set of
controllers JC. Here we define a prebase on JC by (JC(P))PE1', where JC(P)
is the set of controllers in JC that stabilize the plant p E P. We have to
assume that for each controller K E JC there is at least one plant p E P
that is stabilized by K .

In order to be more concrete we are now going to recall one particular
way of defining closed loop stability (see e.g. [5]). Let p be a multivari-
able transfer function of a continuous time finite dimensional system. By a
right (left) coprime factorization of p we mean a factorization p = ND-l
(P = D-l N), where D, N (D, N) are asymptotically stable rational trans-
fer functions, D (D) being square and invertible, such that the Bezout

equation
XN+YD=I, (Nx+DY=I),

has a solution X,Y (X,Y), with X,Y (X,Y) being asymptotically stable
proper transfer functions.

Consider the right coprime factorization K = N K DKl (left coprime
factorization K = DKl N K ). Then K (internally) stabilizes p if and only if

NKN + DKD (NNK + DDK)

is unimodular, i.e. is invertible with asymptotically stable proper inverse
(for precise definition of internal stability and result see [5]). Of particu-
lar importance in our context is that, given a continuous time plant with
rational transfer function p of all (proper) rational controllers JC(P) that
stabilize p can be obtained via the so-called Youla parametrization

JCp(P) = {(Y -RN)-l(X + RiJ)IR E M(S), IIY -RNII # 0}
= {(X + DS)(Y -NS)-lIS E M(S), IIY -NSII # 0}

where p = D-l N = N D-l is a left respectively right coprime factorization
with X,Y,X,Y E M(S) solving the corresponding Bezout equations

XN+YD=I Nx+DY=I.

The symbol M(S) stands for the set of asymptotically stable proper ratio-
nal transfer function matrices of appropriate dimensions. By asymptotic
stability we here mean asymptotic stability as a continuous-time system.
Essentially the same results hold for more general notions of stability (see
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[5]). It has been shown in ([5], p. 115) that all strictly proper controllers
Ksp(P) of a plant "P are given by the same linear fractional map where
the parameter space M ( S) is replaced by the ideal of all strictly proper
functions in M(S), and X and X are chosen to be strictly proper. The set
of strictly proper functions in M(S) we denote by Msp(S).

Dually there is an analogous parametrization of the set of rational plants
that are stabilized by a fixed rational controller.

In the next section we are going to use these results to show that the
robust topology on the set of rational plants with rational controllers is in
fact Hausdorff.

3 The robust topology is Hausdorff

In the previous section we have defined in an abstract way a topology
on the set of plants with rational transfer functions. In order to be able
to deal with such a topology in a satisfactory way we would hope that
the topology is Hausdorff, i.e. that for each two points in the set we can
find neighbourhoods which do not intersect. We will now show that this is
indeed the case if the set of plants is p = M (IR.( s) ) and the set of controllers
is K:.p = M(IR.(s)) or K:.sp = Msp(IR.(s)), where M(IR.(s)) (Msp(IR.(s)) stands
for the set of proper (strictly proper) rational transfer function matrices
with fixed input and output dimensions.

We first need some preliminaries concerning the simultaneous stabiliz-
ability of two plants by a single controller. Let Pi, i = 1, 2 be two plants. By
a doubly coprime factorization of Pi, i = 1,2 we mean a choice of right and
left coprime factorizations (Ni, Di) and (Ni, bi), of Pi, i = 1,2, together
with matrices Xi, Yi, Xi, t, i = 1,2, in M(S) such that

Di -Xi
N. }r;I I.

¥i Xi

-Ni bi
L;R; := =1, i = 1,2.

By abuse of language we will say 'let LiRi = I be a doubly coprime fac-
torization of Pi, i = 1,2', as well as 'let LiRi = I be a doubly coprime
factorization of Gi', where Gi = Xi~-1 = Yi-l Xi, i = 1,2. We also set

LlR2 = [ Y!D2 + X};N2 --Yl:J2 + :Yly2 ] =: [ Bl Ac
]-NlD2 + DlN2 NlX2 + Dl~ Ap B2

We need to quote the following criterion on the simultaneous stabilizability
of two plants.

Theorem 1. ([5]) Given two plants Pi, i = 1,2, together with doubly
coprime factorizations LiRi = I, i = 1,2, then they are simultaneously

stabilizable if and only if one of the following equivalent conditions holds:

[ ] [ 1
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1. There exists a M E M(S) such that B1 + M~p is unimodular.

2. At all real blocking zeros of ~p in the extended right half plane C+e ,
det B1 has the same sign. ( A blocking zero of ~p is a value of the
independent variable s at which all entries of the matrix are zero. )

The following Proposition contains a result for the dual situation, i.e. given
controllers G;, i = 1,2, does there exist a plant that is stabilized by both
controllers.

Proposition 2. Let G;, i = 1,2, be two controllers together with doubly
coprime factorizations L;R; = I, i = 1,2. Then G1 and G2 simultaneously
stabilize a plant if and only if one of the following two equivalent conditions
holds:

1. There exists a M E M(S) such that B1 + ~cM is unimodular.

2. At all real blocking zeros of ~c in the extended right half plane C+e ,
the sign of det B1 remains constant.

PROOF. We only prove 1. The equivalence of 1. and 2. follows from the
Remark on p. 125 and Corollary 6 on p. 118 in [5].

Assume first that G1 and G2 are both strictly proper. Then

--IP(G;) = {(N; + YiH)(D; -X;H)- IH E M(S)}, i = 1,2.

Hence Go and G1 simultaneously stabilize a plant if and only if there exist
HI, H2 E M(S) such that

--I --I(N1 + YIH1)(D1 -X1H1)- = (N2 + ~H2)(D2 -X2H2)- .

Since both sides of the expression give a right coprime factorization of the
same plant P, there exists a unimodular matrix U (see [5]) such that

(N2 + Y2H2) = (N1 + YIHI )U, (D2 -X2H2) = (Dl .-X1H1)U

We rewrite these expressions to obtain

[ D2 -!2 ] [ I ] = [Dl -!I ][ I ] U

N2 Y2 H2 N1 Yt HI

which is the case if and only if

[ y~ ~l ] [ D2 -!2 ] [ I ] - [ I ] U
-N1 Dl N2 Y2 H2 -HI
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1. [N,Y] has full row rank (=p).

2. det(Y + N H) = 0 in S .

Then there exists G E Imxp such that det(Y + N(H + G)) # 0.

PROOF. First observe that

so that [y + NH,N] has full rank p too. Select a nonzero minor mp of
[y + NH,N] obtained by considering a submatrix which minimizes the
number of columns of N. Assume that this is achieved by selecting columns
j1, ...,jk of N and omitting columns ii, ...,ik of y + NH. Choose now
9 E I, 9 # 0, and put

9 if j = js and i = is, for some s = 1, ..., k

O otherwise.
gji =

I

]G K

By the Binet-Cauchy formula we obtain

det(Y+N(H+G» = det ([Y+ NH,N] [~ ]) = ~[Y+NH,N]K

where I{ varies over all the increasing p-tuples ( al , ..., ap) with 1 $: as $:
m + p, 1 $: s $: p. Observe that:

Thus G1 and G2 simultaneously stabilize a plant if and only if there exist
H1, H2 E M(S) and a unimodular U such that the above equation holds.

Assume that (*) holds for suitable H1,H2, U. Then B1 + ~cH2 = U.
Conversely suppose that B1 + ~CH2 = U is unimodular for a suitable H2.
Then set H1 = (~p + B2H2)U-1 and check that (*) holds.

To remove the assumption that G1 and G2 are strictly proper argue as
in [5], p. 126-127. Q.E.D.

Before proving the main result of this section we need to establish the
following technical Lemma (see LeUlID.a 21, p. 96 in [5]for a similar result).

Lemma 3. Let I be a nontrivial ideal in S, the set of asymptotically stable
proper transfer functions. Let N E Spxm, y E SPxp andH E Smxp be such
that

But this implies that

[El ~C ] [ I ] = [ I
] U (*)

~p E2 H2 HI

[Y+NH,N]= [Y N] [~ ~]

{

[
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.Every K containing more than k rows of G is such that [ ~ ] K = 0.

.Exactly one p-minor of [ ~ ] containing k rows of G is nonzero. This is

obtained by selecting rows j1, ...,jk of G and omitting rows i1, ..., ik
of I. If Ko is the corresponding p-tuple, then

[ ~ ] Ko = :i:gk.

.Every K containing less than k column indexes of N is such that

[Y+NH,N]K=O.

We therefore conclude that there is exactly one p-tuple K for which

[Y+NH,N]K [~]K :1 0,

namely,

det(Y + N(H + G)) = [Y + NH, N]Ko [ ~] Ko = :i:mpgk :1 0.

Q.E.D.

We can now prove the main theorem of this paper.

Theorem 4. Let

K(Pi) = { (Yi -HNi)-l(Xi + H[)i)IIIYi -HNill :1 0, H E M(I) } ,

i = 0,1, where M is either M(S) or Msp(S).

If Po :1 P1 are proper rational transfer functions of two plants, then
there exist Ci E K(Pi), i = 0,1, such that P(Co) n P(C1) = 0.

PROOF. For convenience of notation we only prove the result for the case
the set of controllers parametrized by M(S). With the obvious modifica-
tions the result also holds if the set of parameters is Msp(S).

a. ) We first assume that Po and P1 are not simultaneously stabilizable.
Fix doubly coprime factorizations LiRi = I of Pi, i = 0,1. Since Po and

P1 are not simultaneously stabilizable, ~p = ( -NoD1 +[)oN1) has at least
two real blocking zeros in <C+e, say [.1, [.2, at which det(YoD1 + XON1) =
detB1 changes sign. In particular, since detB1([.j) :1 0, j = 1,2, B1([.j) is
an invertible matrix, j = 1,2. Thus we can find f1 E M(S) such that

-1H([.j) = B1([.j)- ~C([.j). (**)
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Ifdet(Yl-Nlit) = 0, coDBider the ideal I of S coDBisting of those elements
9 for which g(~j) = 0, j = 1,2. Then by the lemma, there exists G E M(I),

the set of matrices with entries in I, such that det(Yl -Nl(it + G)) # 0.
Observe that (it+G)(~j) = it(~j), j = 1,2. Hence a choice of it satisfying

(**) can be made in such a way that det(~ -N it) # 0. On the other hand

K:(Pl) = {(Xi + D1H)(Yl -N1H)-lIH E M(S),det(Yl -NH) # 0}.

Thus, with the obvious meaning of the symbols:

6.o(it) = -YOX1(it) + XOY1(it)
= -YO(Xl + Dlit) + XO(Yl -Nlit)
= 6.0- Blit

Now,

BI(f.j)-I~C(i1)(f.j) = BI(f.j)-I~C(f.j) -i1(f.j) = 0, j = 1,2,

implies that ~c(i1)(f.j) = 0, j = 1,2. Thus we have found doubly coprime
factorizations LoRo = I, LI(i1)RI(i1) = I relative to which ~c has two
real blocking zeros in <C+e at which det BI changes sign. Therefore Go and
GI(i1) stabilize no common plant.

b.) Now assume that Po and PI are simultaneouslystabilizable. Choose
right and left coprime factorizations ( X, Y) and ( X, Y) of a simultaneously
stabilizing controller G of Pi, i = 0,1. Then choose right coprime factor-
izations (Ni, Di) and left coprime factorizations (i>i, Ni) of Pi such that

y X Di -X -

-Ni i>i Ni y
=1 i = 0,1.

X:(Po) = {(Y -TNo)-l(X + T.iJo)IT E M(S), det(Y -TNo) # 0}

X:(Pl) = {(X + D1R)(Y -N1R)-1IR E M(S), det(Y -N1R) # 0}

and so with the obvious meaning of the symbols:

Bl(T) = Yo(T)Dl + Xo(T)N1
= (Y -TNo)D1 + (X + TiJo)N1
= I + T( -NoDl + .iJON1)

=I+T.::\p

6.c(T,R) = -Yo(T)Xl(R) + Xo(T)~(R)
= -(y -TNo)(Xl + DlR) + (X + Tf>o)(Y -NlR)
= -R+ T- T6.pR
= T- (I+ T6.p)R
= T -Bl(T)R.

] [[ ]



64 DE MARl AND OBER

Now, since Po # PI, ~P # ° in M(S). Thus we can find two real ~j,
j = 1,2, in C+e at which ~p(~j) # 0, j = 1,2. Then we can find matrices
TF.j, j = 1,2, with

detBI(TF.l)(~I) = det(I+TF.l~P(~I)) > °

detB2(TF.2)(~2) = det(I+ TF.2~P(~2)) < 0.

Finally, we can find T E M(S) such that T(~j) = TF.j, j = 1,2. Applying

the lemma we may assume thatdet(Y-TNo) # 0. In particular BI(T)(~j)
is invertible and so we can find R E M(S) such that

R(~j) = (BI(T)(~j))-i(T(~j)), j = 1,2,

and by the lemma, det(Y -NIR) # 0. From

(BI(T)(~j))-I~(T,R)(~j) = (BI(T)(~j))-IT(~j) -R(~j) = 0, j = 1,2.

it follows ~(T,R)(~j) = 0, j = 1,2. Hence we have found doubly coprime
factorizations Lo(T)Ro(T) and Ll(T)RI(T) of Po and PI relative to which
~c has two real blocking zeros in C+e at which det BI changes sign. The
corresponding controllers stabilize no common plant. Q.E,D.

We immediately have as a corollary that the robust topology as introduced
in the previous section is Hausdorff.

Corollary 5. If the set of plants and the set of controllers are given
by P = M(IR.(s)) and Kp = M(IR.(s)) (Ksp = Msp(IR.(s))), then TKp(P)
(TKsp(P)) is Hausdor.ff.

In the same way we have that the dual topologies on the set of controllers
are Hausdorff.

The theorem also has an interesting interpretation regarding model re-
duction. Since for every two plants however 'close' they are there is a
controller that will stabilize one plant but not the other it follows that
the general rule is confirmed whereby great care must be taken when a
controller is designed on the basis of an approximate model. Note that a
weaker form of the theorem was shown in [3].

4 Robust topology and graph topology

Vidyasagar defined the so called graph topology on the set of rational trans-
fer functions. Similarly to our work the intention was to define a topology
on the set of all plants that describes in topological terms what we nor-
mally mean by r,obustness. In contrast to our definition his approach does



TOPOLOGICAL ASPECTS OF ROBUST CONTROL 65

not only require robustness of the stability of the closed loop but also ro-
bustness of performance. In particular it is req,Iired that the closed loop is
continuous in the Hoo topology with respect to perturbations of the plant.
(For more precise definitions and results see [5].) This implies that the
robust topology defined here is weaker than the graph topology.

Example 1. We are going to consider some examples that show that on a
set of plants p the topologies 'TK:" (P) and 'TK:." (P) given by two different sets
of controllers Kp and Ksp can be different. They also indicate the differences
in definition between the robust topology and the graph topology.

Consider the sequence of plants given by

i
gi(S) = -;+i

Note that for all i E N the transfer function gi(S) is asymptotically stable
and that for all s E C,

,tim gi(S) = 1,
I-+CX)

Since

Ilgi(S) -11100 ~ Igi(OO) -11 = 1,

the sequence (gi(S))i>l does not converge to 1 in the HOO topology on
the right half plane. Since on the set of rational Hoo functions the graph
topology is equivalent to the HOO topology we have shown that the sequence
does not converge in the graph topology.

Now define the topology TK:p(P), by setting P = JR.(s) and K:p = JR.(s).
We can see that the sequence of transfer functions also does not converge
in the topology TK:p (P) since the controller

k(8) = -28 + 0.5

8-1

stabilizes the limiting system, i.e. the transfer function go(s) = 1, but it
destabilizes gi( s ) for all i E N.

If we however define the class of controllers Ksp to be strictly proper
transfer functions we can show that the sequence (gi( s ) )i>l converges to
go(s) = 1 in TK:.,,(P). Since gi(S) in H(X) for all i E N, a coprime factoriza-

tion (ni(S), di(s)) of gi(S), i E N, is given by

ni(S) = 9i(S), di(S) = 1,

i E N. Let k( s) E K-sp be a strictly proper controller that stabilizes the
limiting transfer function go(s) = 1. Write nk(s)dk(S)-l for a coprime
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factorization of k(s), where nk(s) is strictly proper. We want to show that
k(s) stabilizes gi(S) for i sufficiently large. This will be the case if

gi(s)nk(s) + dk(S)

is unimodular for large enough i. Note that

nk(S) + dk(S)

is unimodular since k(s) stabilizes the transfer function go(s) = 1. Hence

if we can show that

(gi(S)nk(S) + dk(S)) -(nk(S) + dk(S)) = (gi(S) -l)nk(s)

converges to zero in H<X) we have proved the result since the unimodular
functions are open in H<X). But this is a simple consequence of the fact
that (gi(S))i>l is a bounded sequence converging pointwise to go(s) = 1
and that n(s)k is strictly proper. D

It might be worthwhile pointing out at this point that it is relatively easy
to characterize the graph topology of functions of fixed McMillan degree.
It is essentially already shown in [5] that the graph topology on this set is
equivalent to the topology on the set which is induced by the convergence
of the coefficients of the transfer function. This topology which is highly
nontrivial has been extensively studied by many authors (see e.g. [1], [4],

[2]).
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