Proceedings of the 29th Conference
on Dacision and Control
Honolulu, Hawall ¢ December 1990

TA-2-1 - 8:30

Robust Stabilization in the presence of
Coprime Factor Perturbations

J.A Sefton*

R. Obert

K. Glover

University of Cambridge
Trumpington Street,

Abstract

McFarlane and Glover in [3] proposed a method of ro-
bust controller design to coprime factor perturbations. In
common with all H, design methods, their bound on the
size of allowable perturbations is restrictive, in that there
exist perturbations outside this bound that do not desta-
bilize the closed loop system. This paper studies perturba-
tions in certain ‘key’ directions whose sizes are larger than
the robustness margin but do not destabilize the plant.

1 Introduction

The problem of robustly stabilizing a closed loop system in the
presence of uncertainty has received a considerable amount of at-
tention in recent years. In particular, the Hoo approach to optimal
control system analysis and design has provided some promising
results in the area of robust stabilization of plants with unstruc-
tured uncertainties. This paper will examine uncertainty in the
nominal system modelled by additive perturbations on the co-
prime factors of the system. It will demonstrate that the bound
on the admissible uncertainty in McFarlane and Glover [3] is re-
strictive in that there exit perturbations of larger size than this

bound which are still stabilized. Section 2 reviews the coprime
factor robust stabilization problem and Section 3 outlines the re-

sults of this paper. All systems will be assumed to be SISO, linear,
finite dimensional and time-invariant.

Lack of space only allows us to give a brief summary of the
results. The details will appear elsewhere.

2 Preliminaries

This section introduces the robust stabilization problem first sug-
gested by Vidyasagar [5]. It is formulated in terms of unstruc-
tured additive perturbations on the normalized coprime factors
of the nominal system, g. Let the nominal scalar transfer func-
tion g, have normalized cf. (n,m) such that ¢ = nm~! and
n*n + m*m = 1. Then any other scalar transfer function can be
written in the form,

g8 = (n+Ba)(m + Am)~ M

where An, A, € Ho are stable transfer functions. It is possible
to define various families of systems by placing restrictions on the
allowable perturbations Ay, An. The normalized robust stabiliza-
tion problem considered here is to internally stabilize the nominal
system, g, with normalized c.f. (n,m) and the family of systems
G, defined by

Goi={(n+ An)(m+An)":
A B I

using a dynamic feedback controller & . The maximum stability
margin is then defined as the largest possible number, €naq, Such
that there exists a controller k internally stabilizing all systems in
the family G.....-
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This problem can also be stated in the general H,, frame-
work [1]. Define the standard H,, plant

P=[Pu Py = [0 m“] m™!
Py Pp [ 1l g ] ]
and define the linear fractional transformations
Aﬂ
)
= Pua+ Py [ —AA.."' ] (I-Py [ —AA“,,. ])’11’13
= (n+An)(m+Aa)"
ﬁ(P, k) = Pu + Puk(] - P”k)—lpn
= m(1-ke) [k 1] (3)
The problem fits into the standard M, framework. Using the

small-gain theorem to show that the feedback system
.7-}(7-'..(}’,[_“-_ ]),k) is stable for all An,Ap € My where

and

[_A‘-_ ]" <e if and only if Fi(P,k) € M and
{F (P, kMoo < €7 , we obtain
Lemma 2.1 ([5]) (i) The mazimum stability margin,
Ghe =, i, AP (®)

where the infimum is taken over all stabilizing controllers.
(ii) k internally stabilizes all ga € G, if and only if
7P k)l < € (5)

However this Lemma is restrictive in the sense that given a con-
troller k& where || Fi(P, k)|l = €, there exist systems ga d 0.
that are internally stabilized by the controller k.

3 < Outline of Results

This section will summarize the results for scalar systems and
illustrate these with an example. Given a nominal system, g with
coprime factorization (n,m), and a stabilizing controller, k, then
there exists, [4], a coprime factorization of the controller, k = v~'u
such that the Bezout identity is satisfied

mv—nu=1 (6)
Substituting the factorizations into the expression for Fi(P, k) de-
fined in (3) gives

Fi(Pk)

m (1 - v lunm")? [ vy 1 ]

[ ¥ v ] )
A perturbation [ A ] is called destabilizing if and only if the
controller, k, does not stabilize the system (1 + A, )(m + An)™2.
The feedback system Fi(Fu(P, [ A ]), k) is stable by the small
gain theorem if the open-loop transfer function Fi(P, k)[ A ]
has norm less than 1.  With (7) this is the case if
1F(P, k)[ A ]||‘,° < 1. But by a Nyquist stability argument,
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ga is not stabilized if there exists a frequency w, € R such that
Fi(P, k)[ (7wo) = 1 or equivalently,

am

[u v](;w.)[_A"m](]w,)=l. ®)

Perturbations that satisfy (8) are on the boundary between sta-
bility and instability if we also have that c[ Z» | is not a desta-

bilizing perturbation for all € < 1. Finally the observation that a
perturbation that can be expressed in the form

][]

is never destabilizing, suggests a preliminary decomposition of an
arbitrary perturbation of the form

BN ]

From the condition (8), a perturbation expressed in the above
form is stable if {|r;}| < 1, and destabilizing if there exists a fre-
quency w, such that r;(jw,) = 1.

We now come to define our ‘key perturbations’. These are
the minimum norm destabilizing perturbations in particular di-
rections in the space of all perturbations.

r€RMHu

r, 3 € RHy.

Definition 3.1 Given a plant g = nm™ of McMillan degree j
with distinct Hankel singular values and a stabilizing controller
k = v~'u such that (6) is satisfied , then [ A ] € RM is a key

perturbation in the i** direction, i =0,1,...j — 1, if and only if

[ ]~

where B; is the unique finite Blaschke product of degree i chosen
such that [ An ] € RH o, and where

o e B

such that r§ has i poles in the right half plane i.e. is in RH:_and
is the unique solution to the two block H,, optimization,

S e ©

This definition is easily generalized to the case when g no
longer has distinct Hankel singular values. It is clear from the
definition of a key perturbation that

[4 ,,][j;m]f

and hence (8) is satisfied for at least one frequency. It is worth
noting that the key perturbation in the j — 1 direction is a min-
imum norm destabilizing perturbation, and the perturbation in
the zeroth direction perturbs the nominal system to the inverse
of the controller, that is'to {n + A2)(m + A%)~! = k=!, These
perturbations can be calculated by the two-block M, optimiza-
tion in (9) or with techniques similar to those used in (3], it can
be shown to be equivalent to Hankel Norm approximation prob-
lem of the normalized coprime factors of the controller. Hence
for the optimal oontrollet, i.e. the controller achieving the bound
[|7(P, k)||.,, = €pger We have that a; = AT T for i =
0,1,2...5 ~ 2 and @;_; = €mqs Where o; are the Hankel singular
values of [ ] the normalized coprime factors of the system g.

k)|

Example 3.0.1 (Example 3.1.2 [2]) Consider the system
V3

$2+1
which has a normalized coprime factorization

n]_ ]

m 242 42| P +1
The Hankel singular values of [,_] are al =32 ando} =2
and therefore the optimal robustness margln of this system with
respect to coprime factor uncertainty is emse = 0.5. Using the

techniques in 3], the optimally robust controller can be derived
and is given by

s
s+2v2

Its coprime factors that satisfy the Bezout identity (6) are,

[“ ”]=[_7!+3% A ]
It achieves the bound || F(P, k)|l = 2. A minimum norm desta-
bilizing perturbation is simply

V3
[ A, ] - [ "'4(:+'z) ]
. -2
&m ] 4(.+§:)
whose Hy,-norm is 0.5. The perturbed system with the perturba-
tion above is,

g=

_ =Vi(s* + v2s® - 25 — 4/2)
98 =35 + 5v/2s1 + 63 + 8Y3)

Finally a destabilizing perturbation of Hq-norm equal to 1//3
in the zeroth direction is,

[ L-[F

and the perturbed system for this perturbation is k~!. A per-
turbation of the form e[ “A» |, however, is not destabilizing

for all € < 1 even though it might have H,-norm greater than
€Emas = 0.5.
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