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Abstract

The paper examines the identification of time-series, following a
predictor-error approach using a new parametrization for predictors.
This parametrization relies on a canonical form for minimum-phase
systems which utilises a generalised notion of a balanced realisation. In
this framework an identification scheme involving only unconstrained
optimisations is developed, and an approach to the order selection
problem is suggested.
1 Introduction

The problem which we shall consider is that of the identi-

fication of a p-component, wide sense stationary, purely linearly
non-deterministic, full-rank stochastic process (yx)iez with a in-
novations representation

n

Az + BDy, ( 1 )
ye = Cap+ Dy

where M(A) CID:={z€ C :|z|< 1}, D> 0, (A,B,C,D) €
R™" x R™? x RP*" x R?? is minimal, and (¥})rez is a p-
component, identity covariance, orthogonal, wide sense stationary
process.

Following Caines ([1) Chapter 8) we consider identification to
be the procedure of finding the optimal predictor of the process.
We shall consider mean square predictor-error optimality. Us-
ing a novel form of balancing we shall demonstrate a convenient
parametrization of the appropriate predictors. This parametriza-
tion will also be shown to have important model reduction and
augmentation properties which will lead to an approach to the
model order selection problem. Other benefits of this method are
described in the last section.

As mentioned, it is the least-square optimal predictor of the
process (yx)rez which is of interest. This is given by the well
known Kalman filter which, in this case, has a realization

5:5.'_1 = (A - BC)-’E; + By,, (2)
i = Ciy,
which corresponds to the zero solution of the Kalman filter Ricatti
equation. From standard results (e.g. [1] Chapter 4) we also know
that this system is stable.

Let us introduce two classes of systems which relate to time-
series in innovations form. .

eMinimum-Phase Realizations: If (4, B,C, D) € R™" x
R™™ x R"™*" x R™*™ is minimal with D € GLn(IR) { the group
of invertible m x m matrices ) then:

1) (A,B,C,D) is called a discrete minimum-phase realization

if both AM(4) € D and A(A — BD-'C) C D. The set of all
such realizations will be denoted DM,

2) (A,B,C,D) is called a continuous minimum-phase realiza-
tion if both AM(4) € €. := {z € € : Re(z) < 0} and
MA—BD71C) € €_. The set of all such realizations will
be denoted M™, L]

Thus the class of innovations realizations we are concerned with
is the set IF := {(A,B,C,D) € DME : D > 0} and the class of
predictors is PE := {(A, B,C, D) € DME : D = I,}. Notice that
the D term is a parameter of the systems under consideration but
not of the predictor.

2 Parametrisation of Predictors
Before proceeding we need the following:

sInput-Output Equivalence and Canonical Forms: If
(A,B,C,D),(4,B,C,D) € R™" x R™*™ x RP*" x IRP*™ are
both minimal then they are said to be input-output equivalent if
there exists T € GL,(IR) such that

(4,B,C,D) = (TAT™*,TB,CT™, D)
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and such a T is called a state space transformation.

A canonical form for a set X with respect to an equivalence
relation ~ is a map I’ : X — X such that it is constant on each
equivalence class and I'(z) € [z]., the equivalence class of z under
the relation ~. L

To produce a parametrization of systems in PP we proceed to
develop a canonical form/parametrization of continuous minimum-
phase systems and then induce a parametrization of the discrete
minimum-phase systems by means of the bilinear transform. The
constraint D = I, is then imposed upon the induced parametriza-
tion to produce the required result.

As previously mentioned, we base our canonical form on the
notion of a balanced realisation appropriate to minimum-phase
systems. A method for producing balanced canonical forms for
classes of linear systems is described in [2]. The following is the
appropriate notion of balancing in this case.

sMinimum-Phase Balanced: If (4,B,C,D) € M™ and
we have the controllability Gramian W, and the observability
Gramian of the inverse system W, given by

AW, +W. AT = -BBT

(A-BD'CY’W, + W,(A— BD"'C) = -CTD-Tp-IC
then (4, B, C, D) is said to be minimum-phase balanced, or mp-
balanced if W, = W, = £ = diag(o1/n,,...,0%1n,) Where oy >
«e. > 0 > 0. I is the minimum-phase Gramian and o; are the
minimum-phase characteristic values. |

Proofs and further details of the subsequent results may be
found in {3].

Theorem 1 (Existence of MP-Balanced Realisations)

For each (A, B,C, D) € MD there ezisis T € GLo(IR) such that
(TAT-!,TB,CT™, D) is minimum-phase balanced with minimum.
phase Gramian T = diag(o1],,,...,0ul,,)-

The realisation is unique up to state space transformation by an
orthogonal matriz of the form U = diag(U,,...,Uy), U € O..(IR)
( the group of n; x n; orthogonal matrices ) a
Corollary 1.1 If(4,B,C,D) € M™= i3 4 minimum-phase bal-
anced realisation with distinct minimum-phase characteristic val-
ues (i.e. k =n ) then it is unique up to state space transformation
by a sign matriz, S = diag(+1,...,%1). u

We state the following theorem for the single-input-single-output
case for simplicity. The result generalises to the multivariable case
in a natural way, although the number of parameters increases sig-
nificantly.

Theorem 2 (Parametrization/Canonical Form)

In each state space equivalence class there ezists ezactly one
realisation (A(6), B(9),C(9), D(8)) given by a set of parameters
9 - ,n;,...,n;,,tr;,...,a'k,bl,...,bﬁ,al,...,s,.,d,)

[ BT PN o S o
wheren 2> k € IN and P e St
oy >...>05>0,‘wh¢1‘€6,'EIR.,

Ny, ..., My ' mEeEN; Th nj=n,
S1, 00y S, 7 s€{xl},

o9 o » (i) R

15 =ovs Oy, >0, 1<i<k,
by oy b, b>0,

d#0

The realization (A(8), B(6), C(8), D(8)) is mp-balanced and is given

by An  An A
Ay A A
1) A(9) = :n » :“ where
A Ap Ak
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0 .- 0
Ay = 0 0 o O L @Rmx™, ifij,
0 0 ... 0
-5 i
e ag) 0 0
_at') 0 (i) 0
(%)
and Ay = 0 - 0 0 € IRmxm,
: [1}
: 0 a,(,?_,
0 0 0 ... o, o
2) B(0)T = (b,0,...,0,...,4;,0,...,0,...,4,0,...,0
ny n; ng
"1
3 Co)=d b(o1 + s13/1+6}),0 U,..., 4) D(8) =
bk(dk +3kvl +‘7k Uy o
|

Theorem 3 ( Model Reductlon Property)

An A B,
lf([A: A::]’[B:]’[C‘ C’]’D)EM“‘*"’ e

-phase Gr

balanced realisation in canonical form with

L= Z(l; ):()) = diag(ayln,,. .-, 0ula,) € RMIMIXMM fhen
2

(Ay, B1,Cy, D) is a mp-balanced realisation in canonical form
with minimum-phase Gramian B;. |
Remark 3.1 This canonical form also has an augmentation prop-
erty, that is, by adding new parameters o;,b;, s; and/or ag’) we
may increase the order of the model without effecting the other
states. It is this property which we hope to take advantage of in
the tdentification scheme to be discussed in §3.

We have a parametrization of M and now we induce one on
DM via the following Moebius transform of the complex plane.
Proposition 4 The map B® : M™ — DM given by

. _ { (= AY MU+ A), V(T ~ A)B,

Bn (AvB! C,.D) - ( \/EC(I,. — A)—I,D + C(In— A)—IB ) (3)
is a bijection preserving inpul-output equivalence. ]
We have thus produced a canonical form for DMZ' by the ob-

vious application of BP.

It only remains to restrict the canonical form to the set PE. In
the simple case given in Theorem 2 this reduces to the restriction
that the canonical form for DM has D term equal to 1. From this
and the expression for D in (3) we may calculate the parameter d.
Thus we have a parametrization of P} in terms of the parameters
of the canonical form for M2. This has an obvious extention to
the multivariable case.

3 Identification

We have seen that the model classes I¥ are appropriate
classes of stochastic realisation to consider for time-series identifi-
cation. These classes give rise to sets P¥ of steady state predictors
and in §2 we have demonstrated a parametrization for PL.

Assuming that our time series does have an innovations repre-
sentation and that the assumption of steady state for the Kalman
filter predictor is well founded then our identification scheme is
composed of the following two steps:

1) Find the parameters (both discrete and continuous) of the
optimal predictor. For the case described by 1 we know that
an optimum exists.

2) Calculate the actual realisation. For our class of systems
this is a simple process as all but the D term are given by
the predictor. The value of the D term may me calculated

from the observed variance of y, and the expression for the
covariance of the state process zs.

The optimisation involved is step 1) is composed of two dis
tinct parts: the selection of structural discrete parameters, sl
notably the system order, and the optimisation of the continuoms
parameters.

The optimisation of the continuous parameters may be handled
by any standard method. As expressed in Theorem 2 the optimi
sation is constrained. However, by working with the logarithms
of the positive variables and the logarithms of the differences of
adjacent characteristic values, we may transform this to an un-
constrained optimisation.

As a result of the parametrization we have analytic expressions
for the gradients of the predictor error. A current area of research
is that of using a symbolic manipulation package to provide some
of the calculations necessary for the identification.

The structural selection is more complicated. Our approach
to order selection is to start to identify a first order system and
repeatedly increment the order of the system. The parameters are
initialised from the optimum of order one less. This is repeated
until a satisfactory combination of predictor error and model com-
plexity is achieved. This is a further topic fo study as the com-
plexity of the models is dependent on the structural parameters.

We have two new problems due to the use of the parametriza-
tion: how to choose 3; at each stage; and how to change the (n;)%,
during the identification. Work is underway to develop a consis-
tent estimator for the s;. Our approach to the (n;)X, is to assume
that the n; all take value 1 ( this is the “generic” case } and to
alter this if two characteristic values move together.

4 Conclusions

Due to limitations of space we have only sketched the de-
velopment of the material in the simplest case. However, we have
derived an identification scheme which is composed of a set of un-
constrained optimisations with a systematic choice of structural
parameters.

The method has the following advantages:

i. We optimise with respect to a minimal set of parameters.

ii. The optimisation is unconstrained and at each step stability
of the system and predictor is guaranteed.

iii. We have analytic expressions for the gradient and hessian of
the predictor error.

iv. We are able to utilise the augmentation properties to give
an approach to the selection of model order.

The method suffers from the disadvantages common to all iden-
tification schemes which use a stationary Kalman filter. Also, as
we parametrize all equivalence classes of realisations in P2 we in-
clude some badly conditioned realisations. This however is not a
flaw in the parametrization, and in fact it is hoped to show that
analogously to the balanced parametrization for stable systems
this method produces least badly conditioned realisations. The
main disadvantage of this method is the proliferation of structural
parameters.

This approach is currently being implemented.
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