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Abstract

It is discussed how in a natural way geometric ideas can give new insight
into problems of robust stabilization. Stability criteria for control systems
are phrased using geometric notions involving the graph of the plant and the
graph of the controller. In this framework the connection between coprime
factor uncertainty and uncertainty in the gap metric is examined. Necessary
and sufficient conditions for robust stabilization are given. In the geometric
framework the notion of a maximally robust controller is defined and it is
shown that this controller is identical to the optimally robust controller by
McFarlane-Glover.
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1 Introduction

The purpose of this paper is to show how geometric ideas can be applied in control
theory and in particular in robust control to give further insight and understanding
of fundamental issues. If G is the p X m rational transfer function of a plant and
G = NM™! a normalized right coprime factorization, i.e. N, M € RH,, M
invertible, N, M right coprime over RH,, and N*N + M*M = I, then the graph
of the multiplication operator acting between the input space H3 and the output
P
AA; ] H7*. In the space [ ,}7_2‘,’, ]
which contains G(Mg) as a closed shift invariant subspace, the usual geometric
notions can be defined such as the minimal angle 8,,;,(A, B) € [0, 7| between two
closed subspaces A and B which is given by cos0p,in(A, B) = supuea ueBJW,'nl
A standard measure of the distance between two closed subspaces A, B the gap,
defined by gap(A, B) := ||Pa — Ps||, where P4 is the orthogonal projection onto the
subspace A. Of importance are the following relationships:

gap(A,B) = maz{||PsPp.l|;||PasPsl}
= maz{cosfnmin(A, BL), cosOpmin(B, AY)}.

space HZ with symbol G is given by G(Mg) = [

In the following sections we apply these notions to analyze stability and robustness
properties of control systems.
Due to space constraints no proofs are given, they can be found in [6],[7],[8].
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2 Characterizations of Closed-Loop Stability

We are now going to show how stability criteria for control systems can be stated -

P
in terms of geometric notions in the Hilbert space ,;_{-{,i }
2

Theorem 2.1 Suppose the p x m transfer function G has a r.c.f. (N,M) and a
Le.f. (N, M) respectively and the m X p transfer function K has a r.c.f. (U,V) and
alc.f. (U,V), then the following statements are equivalent,

S0) The pair (G, K) is internally stable, i.e.
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A further equivalent condition appeared in [1]. The quantities which are used to
characterize internal stability can be easily calculated. This is of particular impor-
tance for the application of these results to robust control where it is necessary to
have the precise quantaties available. In the following proposition it is shown that
the quantities can in fact be calculated as standard H..-optimization problems.
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Proposition 2.2 Suppose the p X m transfer function G has a normalized r.c.f.
(N, M) and a normalized l.c.f. (N,M). Assume that the m X p transfer function K
has a normalized r.c.f. (U,V) and a normalized lc.f. (U,V) then,
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If (G, K) is internally stable then
N m |4 P * * * X/ 3 2
gap (| 3 (M55 (| 7 |P8) | =INV+M Ullo = /1 — (r(VM — UN))2,

where for F € L, we set T(F) = ess inf{omin(F(3)) | Re(s) = 0}.

3 TUncertainty Description

Two ways of modelling uncertainty in robust control have received a considerable
amount of attention: uncertainty in the gap metric and coprime factor perturbations.
In this section the connection between these two uncertainty descriptions will be
discussed.

The gap between the graph of the plant G and the perturbed plant Ga was
introduced in [2] as a measure of distance between two plants, i.e. §(G1,Ga) =
gap(G(Mg),G(Mg,)). The directed gap is defined as 5(G1, @) := ”Pg(MGZ)J.Pg(Maz)”,
so that 6(G1, G2) = ma,x{g(Gl, Gg), g(GQ, Gl)}

In [3] it was shown how the directed gap can be calculated by an Hoo-optimization
problem. For a more elementary proof see [8].

Proposition 3.1 Given two p x m systems G, Gy with normalized right coprime
factors (Ny, M1) and (Nz, M) respectively, then
M N,
HREALR

Since g(Gl,Gz) = g(Gg,Gl) if 6(G,,G,) = 1 it is of importance to have a
characterization for when 6§(G1,Gz) < 1. This is given in the following theorem.

560,62) = [Pusto ool = o3t

Theorem 3.2 Given two p x m systems Gy, G, with normalized right coprime fac-
tors (N1, My) and (N2, M>) respectively, then the following statements are equivalent,

1) §(Gy,Gs) < 1.

2) The Toeplitz operator T(n:n,+M;My) @5 invertible.
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3) There exists a Q € RHo, such that — Ql < 1and Q' €
L Ml - L M2 - o0
RH .
. [ -N2 ] [ .Nl ] _1
4) There ezists a Q € RHy such that — Ql < 1and Q7' €
L M2 e L Ml e o]
RHoo-

Another way to describe uncertainty in the plant description is to allows for
uncertainty in the coprime factors of the plant ([9]). Given a system G = NM™!
then any other system of the same input/output dimensions can be written in the
form Gp = (N + An)(M + Ap)7? for a An, Ay € Heo. It is shown here that if
the correct restrictions are placed on the class of allowable perturbations, the class
of systems generated by Ga = (N + An)(M + Ap)~! is equivalent to an open ball
in the gap metric. The gap ball and the directed gap ball are now defined.

Definition 3.3 Given a p X m system Gy with normalized r.c.f. (Ny, M) then the
following classes of transfer functions are defined for ¢ > 0,

BEY'] = {G2 : 5(G1,G2) < E}
B = {G;:6(G1,Ga) < ¢}

which are called the gap ball and directed gap ball of Gy respectively. Also define the
following classes

Gs = {(Mi+AN)(My+AM)™ [ 21 | € HEH™,
(M, + An), (My + Apm)) right coprime; “[ ay ”Lo < €}
Gs, = {(Mi+AN)Mi+Apm)7": [ an | eHE™ | [ ax ||| <

In [4] it was shown that for given e the directed gap ball B'g;l and the coprime

factor ball é&l are identical. In the same paper it was also shown that for small
enough ¢ the gap ball Bg, and the coprime factor ball G, are also identical. The
following theorem states that gap balls B, can be fully characterized in terms of in
terms of coprime factor uncertainty balls G, .

Theorem 3.4 Given a p x m system Gy with normalized r.c.f. (Ny, My) then for
e>0,

€ __ e
Gl_-gGl'

4 Robust Stabilization

We can now give a result that gives a full characterization of the maximal ball in
the gap metric that can be stabilized by a controller.

Theorem 4.1 Given a p X m system G, a m X p stabilizing controller K then for
all perturbed systems Ga € Bg; ,

(Ga, K) is internally stable
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if and only if

cssona ([ 2 ][]

In the previous theorem it was shown that a control design is the more robust
the smaller the gap is between the orthogonal complement of the graph of the plant
and the orthogonal complement of the transposed graph of the controller. Therefore
a natural question is whether for a given plant there is a controller that maximizes
the robustness of the control system, as measured in this sense. Given a p X m
system G, the optimal minimal angle 8%}, is defined by,

cos0% :=  inf gap(g(Mg),@T(MKE?.

K stabilizing

Further a controller, K, achieving this infinum is called a maximally stable controller.

Theorem 4.2 Suppose the pxm transfer function G has a normalized r.c.f. (N, M)
and a normalized l.c.f. (N, M) respectively then,

cos 0% =  inf gap(g(Mg),gT(Mxﬁ = oy,
K stabilizing
where 0y = ||H[ 4 1]l A mazimally stable controller exists and each mazimally
ZR

stable controller has a right coprime factorization (U, V) satisfying the extension,

E3RH

Notice that the maximally stable controller is precisely the optimally robust
controller derived in [5]. That the approach taken here arrives at the same controller
as the approach via coprime factor uncertainty is no surprise if the results on the
connection between corime factor uncertainty and uncertainty in the gap are taken
into account.
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