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Abstract

Connections are established between prob-
lems of Hankel norm approximation, of find-
ing approximating subspaces in Hilbert space
'H; and stability and instability of control sys-
tems.

1 Introduction

Over the years it has become more and more
evident that operator theory especially can
be of great help in analyzing linear dynami-
cal systems and in particular control systems
(see e.g.[2]). This paper aims at establish-
ing further connections between control the-
ory and the theory of Hankel operators. We
were motivated to do this work by results
that interpreted robustness properties of con-
trol systems from the point of view of the ge-
ometry between the graph spaces of the plant
and the controller (see e.g. [7],[1]). Let

&= Az + Bu, z(0)= z,,

y=Cz+ Du

be a finite dimensional linear continous-time
system, which we do not necessarily assume
to be stable. By taking the Laplace transform
and assuming 2o = 0, we obtain the transfer
function G(s) = C(sI—A)~! B+ D, whichis a
matrix-valued rational function (see e.g. [4]).
In the transform domain the linear system
can be seen as acting as a multplication oper-
ator on the Hardy space H3, which can be in-
terpreted as the space of Laplace transforms
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of the space L?([0,00[). With the transfer
function G we will associated the graph G(G)
of the multiplication operator with symbol G,
i.e. the operator Mg : Hy — Ha; f — Gf.
Clearly, if the system is not stable and there-
fore G has poles in the closed right half plane
then Mg will not be defined on the whole of
Ha.

In order to obtdin a workable representa-
tion of the graph of Mg we need to intro-
duce coprime factorizations (see e.g. [8]). The
factorization G = NM~1 (G = M-1N) is
a right (left) coprime factorization of G, if
N,M € RHo (N,M € RHy), the space
of real rational functions with poles in the
open left half-plane; M (M) is invertible as a
proper rational function; and N, M (1\7,1\71)
are right (left) coprime, i.e. ~there exist
X,Y € RHo (X,Y € RHoo) such that
~XN+YM =1(-XN+YM = 1I). The
factorization is called normalized if moreover
N*N+M*M =1 (NN*+MM* = I). With
such a factorization the graph of Mg can be
characterized as

G(G) = [ﬁ,]m.

In what follows we will be make much use of
the following geometric notions in a Hilbert
space H (see e.g. (3], [6], [9]). In our case the
Hilbert space H will be the space Hy x Hs.
Let A, B C H be two closed subspaces, then
it is possible to define the minimal angle and
the gap between these two spaces as follows:

cos 0in(A,B) = sup w
uedveB lullllv]l

and
_(j(t])[A,B) = ”PA - PB“a



where Pc denotes the orthogonal projection
on the closed subspace C. Alternatively the
sine of the minimal angle can be defined by

sin8min(A, B) = ||Pasll ™"

where the skew projection Py p is defined by
PA||B :A+B - A, u+ve— u u € A,
B € B. The skew projection is well defined
on the Hilbert space H if H = A+ B and
AN B = {. The skew-projection is bounded
if and only if 8,.in(A4, B) > 0. The following
relationships hold,

08 Omin(A, B) = ||PaPB|| = || PBPall

= sup dist(u,Al),

u€B ||u||=1
where dist(u, AY) = inf,c o |Ju — v[]|. The
gap between two spaces can be characterized
as follows,

gap(A, B) = max{||PaPg+l, || P4+ PBll}

= maz{cos Onin(A, B*),c08 0min( B, AL)}

= maz{ sup dist(u,B),
u€A,||ul|=1
sup dist(u, A)}
vEB,[jul}=1

If gap(A, B) < 1 then ||P4Pg.|| = || P41 PBl|-

The central issue in the area of control the-
ory is the stabilization of unstable systems
by a control K. With a controller K we as-
sociate the transposed graph GT(K) of the
controller, i.e. if K = UV~! is a right co-
prime factorization of I, then

GT(K) = [ ‘[; } Ha.

In [7) the following equivalent conditions were
proved for a controller K to stabilize the
plant G. For an alternative equivalent condi-
tion see [1].

Theorem 1.1 Let G = NM~' = M~'N be
a right respectively left coprime factorization
ofapx mplant G and K = UV~1 =V-1U
be a right respectively left coprime factoriza-
tion of a controller K. Then the following
statements are equivalent:

50) the control system (G,K) is internally
stable,

$1) the function —NU + MV is invertible in
RH oo,

S52) the function —UN + VM is invertible in
RHoo,

53) G(G) +GT(K) = HE™™,

S4) PgreyG(G) = [GT(K)),

55) Bmin([G(GIE,[G7 (K)]*) > 0,
S6) gap(G(G), [GT (K1) < 1.

The conditions S1) and $2) are the classi-
cal conditions for internal stability of a con-
trol system (see e.g. [8]). A substantial part
of this paper will be devoted to an extension
of these results to the case when the con-
trol system has a certain number of unstable
poles.

In 7] it
was argued that 0rmin([G(G)), [GT ()Y is
a good indicator for how far a control system
is away from instability. When designing a
controller for a given plant G it therefore ap-
pears natural to try to find the controller that
maximizes this angle, i.e. to find a controller
Kg, such that

Omin([G(G)F. (6T (Ko)IY)

- sgp([@?(c)]l, [GT(E)]Y).

It was shown that such a controller does ex-
ist and that it in fact coincides with the op-
timally robust controller with respect to nor-
malized coprime factor uncertainty as stud-
ied in [5). This controller is characterized
through the solution of the following Nehari
extension problem, i.e. Ko = UOVO_l, where

—| Yy

Uy | "
M* 1%
N~ || U oo

M*

1

= inf | [
UVERH~



-N*

where G = M~!N is a normalized left co-
prime factorization of G and H e ] is

= ”Hl: M* :IH’

the Hankel operator with symbol [ le* ]

Theorem 1.1 gives characterizations of sta-
bility in terms of the graph of the system
and the transposed graph of the controller. It
was shown that internal stability was equiv-
alent to the minimal angle between the or-
thogonal complement of the graph associated
with the system and the orthogonal comple-
ment of of the transposed graph associated
with the controller being greater than zero.
Therefore if the system is unstable, there ex-
ists an intersection between these subspaces.
One of the aims of this paper is to character-
ize the intersection between these two sub-
spaces. As this subspace is orthogonal to
both the graph space associated with the sys-
tem and the transposed graph space associ-
ated with the controller, the closed-loop sys-
tem behaves as a stable system on the span of
these graph spaces. This characterization en-
ables most of the stability conditions in The-
orem 1.1 to be generalized to unstable closed-
loop systems with a finite number of poles in
the open right half plane. Also the angles be-
tween these subspaces can be calculated from
similar expressions to those of Theorem 1.1.

2 Graphs of Linear Systems
and Instability

The first definition generalizes the usual defi-
nition of internal stability (see e.g. [8]) to in-
clude closed-loop systems with a finite num-
ber of poles in the open right half plane.

Definition 2.1 Given a p x m system and
am X p controller with transfer functions G
and K respectively, then the pair (G,K) is
called unstable to order k, £k = 0,1,... if

I ¢l
K I

(I - GK)™!

B -(I-GK)'G
| -K(J - GK)1

(I - KG)!

€ RH{FPI*0mtr),

It is evident that a pair (G, K) is unstable
to order k only if it is also unstable to order
k — 1, and that a pair (G, K) is unstable to
order zero if and only if it is internally stable
(see e.g [8]).

The following result is a generalization of
well known stability criteria (see e.g. [8]).

Proposition 2.2 Suppose the p x m trans-
fer function G has a r.c.f. (N,M) and a
Le.f. (N, M) respectively and the mx p trans-
fer function K has a r.c.f. (U,V) and a
le.f. ((.J,V), then the following statements
are equivalent,

U0) The pair (G, K) is unstable to order k.

U1l) There exists a right inner-outer factor-
ization,

(MV - NU)= 068,

where © € RHEXP is an inner function
of McMillan degree less than or equal to
k and Sy € RHEX? is a unit. The fac-
tors are unique up to right respectively
left multiplication by a constant unitary
matriz.

U2) There exists @ right inner-outer factor-
ization,

(VM -UN)= 05,

where @ € RHZ*™ is an inner function
of McMillan degree less than or equal to
k and So € RH™X™ is a unit. The fac-
tors are unique up to right respectively
left multiplication by a constant unitary
matriz.

One of the aims of this section is to in-
terprete the previous result from a geometric
point of view by considering the graph of the
plant and the graph of the controller.



The next proposition connects the unique
right inner-outer factorizations of S
(MV - NU)and § = (VM ~ UN) directly
to a decomposition of the space Hj x HF' in
terms of the graph space of the system G and
the transposed graph of the controller K.

Proposition 2.3 Given the assumptions of
Proposition 2.2,

1. Let ©® € RHPXP be an inner function,
then

J7ad
—-N*

(6 +6" ) BTy

_ | M
= | 1z

if and only if
(MV - NU) =05
for some unit So € RHESP.

9. Let © € RHTX™ be an inner function
such that,

_o* ](.Hg ©

e

(6(6)+67()) ® d

_| M
= |y
if and only if
(VM -UN)= 05

for some unit So € RHZX™.

The following theorem summarizes the pre-
vious results. It gives further necessary and
sufficient conditions for a control system to
be a unstable to order k. The importance of
the result in our context is that the stability
properties of the control system are charac-
terized in terms of the graph of the plant and
the transposed graph of the controller. This
result generalizes the result on stable control
systems given in [7],[1].

o
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] (Hy© OH3)

)

Theorem 2.4 Given the assumptions of
Proposition 2.2 , the following statements are
equivalent,

UO0) the pair (G, K) is unstable to order k,

U3) there exists an inner transfer function
® € RHPXP of McMillan degree less than
or equal to k such that the space Hyx HF'
can be decomposed as

Hyt = (6(6) + 67 ()

ArT*
_N*

@T{ ]m;’ & OHY),

The inner function © is unique up to
right multiplication by « constant uni-
tary matr.

U4) there exists a unique inner transfer
function @ € RHLX™ of McMillan de-
gree less than or equal to k such that the
space HY x ‘Hy* can be decomposed as

HE™ = (6(G) + GT(K)) &

T[ o ](HQ 2 OHL).

e

The inner function © is unique up to
right multiplication by a constant unt-

tary matriz.
Furthermore,

T Y
_N*

](H%

~o*

v

= T{ ]('HSL = OHY).

3 Gap between graph spaces
and control systems

In the previous section it was shown how
order-k stability of a closed-loop system can
be characterized in terms of spanning condi-
tions of the graph of the plant and the trans-
posed graph of the controller. In this sec-
tion we are going to give further interpre-
tations of these results in terms of the gap



and minimum angle between certain graph
spaces. These results generalize the results
in [7] which were derived for stable closed-
loop systems.

For ease of notation we define the following
class of inner transfer functions, B := {@ €
RHEXP : ©*0 = I,; McMillan degree of © <
k} Therefore the class B = {U € CP*P :
U*U = I}, and define the class B7, = {0}.

The main (in-) stability results are now
stated.

Theorem 3.1 Suppose the p x m transfer
function G has a r.c.f. (N,M) and a lc.f,
(N, M) respectively and the m X p trans-
fer function K has a r.c.f. (U,V) and a
Lef (U,V), then the following statements
are equivalent,

UO0) The pair (G, K) is unstable to order k.

USB) There exists an inner transfer function
© € BY such that

pt+m
H;

| Pror(seye Prgaay+
GT[

. . <1
- ](Hg’eows)”

U6) There exists an inner transfer function
O € BY such that

T/ 1~
gap (g (IX),T[ ar,

UT) There ezists an inner transfer function

O¢ B such that
H}
HT

e ](H’Q’ 6 0HY)| < 1
~N*

I Por(xy — P[G(G)]J-l (
eT

In case the system (G, K') is stable to order
k we have the following result.

]Z&I((:)'Hg)) <1
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Theorem 3.2 Given the assumptions of
Theorem 3.1, and further assume that the
pair (G, K) is stable to order k then,

inf gap | K, T .
( [ 2

]ZGI(@‘H ))

= inf ||Por(x
ant, 1 Pgrx)

—Pgye IHE ™ 6 T[ ] (H2 & OHD))|

= | Py Pacsy | = 10470 + NV,

4 Optimally unstable con-
trollers and Hankel norm
approximations

The optimal unstable controller to order k
of a system G could be defined as the con-
troller which maximizes the minimum angle
between the graph of the system and the
transposed graph of the controller, subject to
the constraint that the closed-loop system is
unstable to order k. Though this controller
has little significance in terms of design, the
result is interesting in that it gives a geomet-
rical interpretation of Hankel norm approx-
imation of non-square inner functions. For
this reason the analysis is pursued in this sec-
tion.

Definition 4.1 Given a pxm system G, the
optimal minimal angle to order k, (Gmfn)k is
defined by

cos(6,77 )i

= I\"ienlgc; Cos gmin(g(IMG)’ QT(MK ))

where K = {m x

p functions K s.t. (G, K) unstable to order k}.
Further a controller achieving this infinum is
called an optimal unstable controller to order
k.

Theorem 4.2 Suppose the p x m transfer
Junction G has a r.c.f. (N,M) and a lLe.f



(N,M) respectively and let o; with multi-
plicity r; be the singular values of the Han-
kel operator with symbol [M — N]* where
g1 >02>...>0;> ... then,

cos(877 )&

min

= inf_cos Omin(G(Mc),GT (MK)) = ;i

where E};‘l r; <k < Z;zl. An optimal
unstable controller to order k erists and ev-
ery optimal unstable controller has a right co-
prime factorization (U, V') such that

%))

where © € RHEXP is the unique inner func-
tion such that (MV — NU)©O™ is a unit.

= 0;

o0
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