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Abstract: The balanced canonical form and parametrization
of Ober for the case of SISO stable systems are extended to
block- balanced canonical forms and related input-normal forms and
parametrizations. They form an overlapping atlas of parametrizations
of the manifold of stable SISO systems of given order. This extends
the usefullness of these parametrizations, e.g. in gradient algorithms
for system identification.

1. Introduction

In [5],{6] a canonical state space form was presented for the set
of asymptotically stable linear systems, with the property that it is
balanced, i.e. for each system represented in canonical form the cor-
responding observability and controllability Grammians are equal and
diagonal (and positive definite). One motivation for studying bal-
anced realizations and balanced canonical forms is their close relation
to model reduction (see [6] and the references given there), Another
motivation mentioned in [6] is the potential usefullness of balanced
realizations for system identification. In many cases, in system identi-
fication as well as in related areas, one can reduce the problem at hand
to an optimization problem in which some criterion function is qﬁti—
mized over a set of systems. Very often one cannot solve the optimiza-
tion problem analytically and one has to use search a.lgorlthms (e.g.
gradient algorithms), in which an initial point in the set of systems is
adapted iteratively to give a hopefully good approximation of the opti-
mal system. In such search algorithms one often uses a parametrization
of the set of relevant systems. The balanced paramef.nza.non of [6] has
the advantage that by constructxon problems of identifiability are to
a large extend avoided in such a search a.lgorlthm The parametnfa,-
tion has the property that it contains structural indices (i.e. discrete-
valued parameters), and with each possible choice of values for. these
indices corresponds a particular submanifold of systems, for which a
parametrization in terms of real- valued parameters is given. To each
system corresponds 2 unique set of structural indices. As the structural
indices can take a large number of values, even for rather low-order sys-
tems (the number of possxb:lltles increases fast with increasing order
of the system), this means that in a search algorithm one has to either
identify the structural indices by other means or one has to apply the
search algorithin to a large number of parametrized submanifolds of
systems. This i is due to the fact that the parametrizations are d.lspmt
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Several authors (see e.g. [7,1} and the references given there) have
investigated the possibility of using socalled overlapping parametriza-
tions (in differential geometric temms: an atlas of coordinate charts).
If one uses overlapping parametrizations, one does not have to search
through each and every of the submanifolds, but instead one can search
through the manifold as a whole, using the parametrizations to de-
scribe the manifold locally and changing from one parametrization to
another when required. In case the search algorithm is of the gradient
type, one can make sure that the decision rule for changing from one
parametrization to another has little effect on the search algorithm by
using a Riemannian gradient, with respect to some suitable Rieman-
nian metric on the manifold (cf. [1] and the references given there).

In view of this it would be very desirable if the balanced
parametrization of [6] could be extended to give a set of overlapping

arametrizations. In this paper such an extension will be presented
for the case of SISO stable systems. In the extension balancedness of
the realization no longer holds fof all realizations. Instead (what we
will call) block-balanced realizations are used and the corresponding
input-normal realizations. With a block-balanced cangnical form we
mean a canomcal form for which the observabxhty and controllabil-
ity Grammian are equal and block-diagonal (and of course positive
definite). i

2. Canonical forms, balanced realizations and

block-balanced realizations

Let us consider continuous time SISO systems of the form

& = Ay + bug,y; = cxy witht € R,u, € R,zyinR™,y, € R,A €
R™". b € R"*Y,c € R (A,b;¢) a minimal triple. Let for each
n € {1,2,3,--} the set C,, be given by C; = {(A4,b,c) € R™*" x
R"X! x R1X"|(A, b, c) minimal and the spectrum of A is contained
m the open left half plane}. As is well-known two minimal system rep-
resentatnons (A1.b1,¢1) and (Ag,b,,r-,) have the same transfer func-
tion g(8) = er(sl — A))7b = c;(al Ay)~ by, and therefore describe
the same input-output behaviour, iff there exists an n x n matrix
T € Gly(R) such that Ay = TA;T™', by = Thy,e; = 77" In that
case we say that (A1,b1,¢1) and (Ag,b2,¢2) are ifo-equivalent. This
is clearly an equivalence relation; write (A,,bl,cl) ~ (Az,b2,¢c2). A
qquue representation of a linear system can be obtained by deriving
a canonical form:

2835




Definition 2.1 A canonical form for an equivalence relation * ~' on
aset X isamap T : X — X which satisfies for all 2,y € X : (i)
I(z) ~ z and (ii)) z ~ y <= T'(z) = ['(y)

Equivalently a canonical form can be given by the image set T(X);
a subset B C X describes a canonical form if for each x € X there
is precisely one element b € B such that b ~ z. The mapping X —
B,z — b then describes a canonical form.

Let {A,b,¢) € C,. As is well-known the controllability Grammian
W, can be obtained as the unique, positive definite symmetric solution
of the Lyapunov equation AW,.+W.AT = 507 In a dual fashion, the
observability Grammian W, is the unique, positive definite symmetric
solution of the Lyapunov equation ATW, + W, 4 = —cTe

Definition 2.2 Let (A,b,c) € Cn. then (A,b,c) is called balanced
if the corresponding observability and controllubility Grammians are
equal and diagonal, i.c. there exist positive numbers 1,02, ...
that

0y, such

W, = W, = diag{oy,...,0,) =1 & (1)

The numbers oy, ...,0, are called the (Hankel) singular values of the
system.

The singular values are known to be uniquely determined by the
input-output behaviour of the system.

Theorem 2.3 (Moore 1981) Let (A,b,¢) € C,, with
k
T = diagoyIn1ye -1 Okluiy) 01 > 02> .00k > 0 and Zn(j) =n.
=

Then (A, b, c) is unique up to an orthogonal state-space transformation
of the form
Q = diag(Q1.Q2. ..., Q)

with orthogonal Q; € RV =1 .. k.

Definition 2.4 Let (A.b.c) € (. then (A.b,c) is called input-normal
if W. = I, and will be called o-input-normal if W, = ol,.

Similarly (A, b, ¢) is called output-normal if W, = I, and a-output-
normal if W, = of,.

It is not difficult to show that an input-normal realization is unique
up to an arbitrary orthogonal state-space transformation.

The following definition is new and basic to our considerations in
this paper.

Definition 2.5 Let (A,b,c) € C,, then (A,b,¢) will be called block-
balanced, with indices n(i) € N,i = 1,...,k,adding up to n, if the
observability Grammian and the controllability Grammian are equal
and block-diagonal, i.e. there czist n(i)x n(i) positive definite matrices
Zii=1,...,k, such that
W, = W, = diag(%,...,Zk)

It will be convenient to call an arbitrary system represenlation
(A,b,¢) € R*™™ x R*™*! x R'" block-balanced if the pair of Lya-
punov equations AY + SAT = 0T, ATS + ©A = —T¢ has a positive
definite solution of the form © = dieg(Zy,...,Tk) (assuming neither
asymptotic stability nor minimality).

Remark. The matrices £;,7 = 1,...,k are in general not uniquely
determined by the input-output behaviour of the system. However
the eigenvalues A (X)) > A2(S;) > ... 2 Ayiy(Ei) of the matrices
;i = 1,...,k together form the set of Hankel singular values of the
system, which are uniquely determined by the input- output behaviour
of the system, as remarked before.

Theorem 2.8 Suppose (A,b,c) € Cp is block-balanced with indices
n(j) € N,j = 1...../;.2;;, n(j) = n and with the additional prop-
erty (1) 2 Ayy(B1) > M(E2) 2 Ap(S2) > oo > M(Ey) 2
An(k)(Zk) > 0. This uniquely determines (A,b,c) up to an orthogo-
nal state-space transformation of the form Q = diag(Q.,...,Q) with
orthogonal Q; € R0 i =1, . &k

Proof. See [2].

The following theorem will be fundamental for our results.

Theorem 2.7 (Pernebo and Silverman, [8], Kabamba, [3])
Let

(4,5,c)e R x R x RIX" be conformally partitioned as follows:

_ A An (b _
A= a)a= () e o).
with Ay € RMOX6) 1§ = 1,2 and let (A,b,c) be block-balanced with

indices n(1),n(2) such that £,, 2 > 0 have no eigenvalues in common.
Then (A,b,e} € Cr & (Aiiybiyei) € Crpay,i = 1,2,

3. The case k=1; a Schwarz-like canonical form
for stable SISO systems in continuous time

Theorem 3.1 Consider the set B, of all (A.b.c) € C' of the follow-
ing form:

a0 0
— b2
A = a0 Jan = -2 <0,
L e, 2
—an-y 0
a > 0,i=1,...,n—1,
b
0
b = ., Wby > 0,
0
¢ = (C1 " 771-1),qER,’ijR,j:l,...,n—l.

Each triple (A.b,c) € By is input-normal.

Let §,, be the set of values of the vector of parameters
(..o @ 1.€1. 714« o T ) Such that the corresponding triple
(A,b,¢) € By, ie such that by > 0,a; > 0,i = 1,....,n and
€1y« - »Yn—1 Such that the pair (¢, A) is observable.

The set B, describes a continuous canonical form and the
parametrization mapping S, ~— Bn, which maps each parameter vec-
tor to the corresponding triple (A,b,c), is @ homeomorphism.

If (7155 m=1) # 0 € R" 1} n > 2, then the system has several
different singular values.

Proof See [2].

Remarks (i) If ¢; # 0 we define o := I%lll > 0, which we will call a
pseudo-singular value. If the vector ¥ = (1,...,7n-1) is close enough
to zero the pseudo-singular value will be close to the true singular
values of the system, because of continuity of the singular values as
a function of 4 and the fact that if ¥ = 0, the system has only one
singular value and its value is a. If ¢; # 0 the system can be brought
si{nply into o—input-normal form by multiplying ¢ by o~% and b by
o2. The resulting c—input -normal form is a canonica! form locally
around 4 = 0, but not globally because the systems which have ¢; = 0
in the previous canonical form cannot be represented in this way. (ii)
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Clearly the canonical forms presented are controllable (because they
are input-normal, resp. o—input-normal), but observability will fail
for certain choices of ¢; the observability Grammian will be singular
for such a choice of ¢. If ¥ = 0,¢1 # 0, the system is observable, because
the observability Grammian will be 621, resp. ¢I. Therefore also in
some open neighboutfiood arcund such a system, observability will
still hold. (iii) This canonical form is closely related to the so-called
Schwarz canonical form, cf. e.g. [4], [9].

4. An input-normal and a block-balanced canonical form

Let n(l),...,n(k) € {1,'2,...’7;},2?:1 n(j) = n, denote a parti-

tion of n as before. Let Cp(1),n(2).....n(k) denote the subset of all systems
in C,, with the property that their n Hankel singular values (multiplic-
ities included) o(1) > ¢(2) > ... > o(n) > 0 can be partitioned into &
disjoint sets of singular values (again with multiplicities included) in

the following way:

a(1) 2_...Za(n(l))>a(n(l]+1)2
> ...2a(n(l)+n(2)) >a(n(l) +n(2)+1) 2
! i
> 2o ) > e(n@) +1) 2
i=1 j=1
> ...>0 (2)

So we require that ¢7(E§=1 nG)) > o(Thain(d)) + 1) for 1 =
1,2,...,k — 1 and a(n) > 0 of course. Note that the notation is con-
sistent with the fact that C, denotes the set of stable systems which
have as their only "restriction” that there are n positive singular values
(multiplicities included), i.e. that the order of the system is n.

The other extreme is Ci1,...1, which denotes the set of n—th order
stable systems with n distinct singular values. For this set of systems
a balanced canonical form was derived in [3].

Next we will present a canonical form on Cpy),....n(k)-

Theorem 4.1 Consider the set By, n(k) of triples (A,b,c) of the
following form:

A = (A(i‘j))lsi,]sk'
A(i,j) € RO e {1....,k)
(1)
b2 )
b = (_) (i) € R = 1,.. .k,
bik)
¢ = (e(l)... eth)),e(i) R j=1,.. .k,
ali,iln  alin 0 0
—a(i) 0 afi)z :
A(i,§) = 0 —a{i), 0 )
: ’ - ) ali)n(i)-1
0 0 —ali)an)-1
L b?
a(i,i)jn = —?,
a(i); > 0,j=1,...,n(i) -1,
b;
0
b(i) = . ,b; > 0,
0
i) = (arne oA @n-a) 1= Looooks

where the parameters are to be taken such that the corresponding
obseryability Grammians T%i=1,,..,k, which satisfy the observabil-

ity Lyapunouv equations
S2A(0, 1) + AG,)TE? = —e(i)T e(d) 3)

are fulfilling the following matriz inequalities

025825 ... >8>0 (4)
Jor.each pair (i,j),i # j, the matrices A(i,§), A(f,i) are determined
(wniguely!) from the following pair.of linear matriz equations:

Aliy ) + AGL YT = =b(i)()T
T2AGG) + AGHTEE = —c()Te(f) ()

The set Bo1),....ngk) describes a continuous canonical form on
Cr1),....nik)- The 2n "free” pamme&_ers of the canonical form are

bi,ﬂ'(i)i,. . ,a(i),,m_l,c,-,'y(i),,. .. ,‘Y(i)n(,‘)_hi = l,...A,k.

Let Syq1),..nik) C R be the set of all values of the parameter vec-
tor for which the corresponding triple (A,b,c} € By, n(k)s i-€- for
all i € {1,...,k} : b > 0,a(i; > 6,5 = 1,...,n(i) ~ 1, and
Cia Y1+ s T Engi)—1 such that the matrices' S;,i = 1,...,k, found
in (8) satisfy the inequalities ({) The mapping Spq),..n(x) —

(A,b,¢) is a homeomorphism.
The form is input-normal, i.e. A+ AT = —bbT and has block-
diagonal observability Grammian £? := diag{L?,...,52) > 0.
_Let o(1) > o(2) > ... > a(n) > 0 denote the n positive Hankel
singular values of the system (with their multiplicities).
- JIf for some i € {1,...,k} the wector v(i) = 0, then I? is @ scalar
matriz £2 = o? (1 +3id n(j)) Iygiys and

o(Tizin() > o(1+TiZin() =
o (1+ Tizy n(d))

Ifforalli € {1,...,k},7(i) = 0, then the observability Grgmmian
is consequently diagonal. ' .

o = o(Tianl) >

1

Remark. A block-balanced realization can be obtained from the
presenteq canonical form by apply?ng a state-space transformation

T:= 2%=diag'(s$....,z:é) >0 )
The corresponding controllability and ol;sel've;,bility Grammians will

both be equal to .
I = diag(Zy,...,Zk) >0

Proof. See {2].

5. An atlas of overlapping block-balanced canonical forms

Theorem 5.1 Let the state space dimension n be fired.  The
continuous canonical forms Cugy,..n(k) = Brn(i),.n(k) n(j) €
{1,....n}15 =1,... .k '

2;;1 n(j) = n; k € {1,...,n}, form an overlapping set of con-
tinuous canonical forms covering Cn. Each of the sets Cy 1), . n(k)»
}:;?ﬂ n(j) = n, is an open subset of C, and together they cover C.

Proof. See [2].
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Corollary 5.2 The set of mappings C,1),...aky/ ~—— Sa(1),..n(k) C
R2', (a(1),....n(k)) € P(n;k).k = 1....,n, which map each equiv-
alence class of triples lo the corresponding parameter vector in the
canonical form, forms an atlas for the manifold of stable SISO ifo-
systems of order n.

Proof. See [2].

Remark. A motivation for using this atlas rather than e.g. just the
Schwarz-like canonical form B, is the following.. Suppose one wants
to use balanced realizations. Then one can use the balanced canon-
ical form of [6]. However this form is discontinuous at all points of
Cn(1),...n(k) \ Cy,..1, i.e. in all triples (A,I;,é) which have two or more
coinciding singular values. And the complement Cj, .1, of the set of
discontinuity points consists of 2" topological components, one com-
ponent for each sign pattern; this should be compared to C, which
has only n + 1 topological components (the Brockett components). It
appears that this is a serious disadvantage if one wants to use balanced
realizations and canonical forms in e.g. search algorithms for system
identification.

In order to overcome these difficulties one could use the overlap-
ping block-balanced canonical forms as follows. If (A,b.&) has & dis-
tinct Hankel singular values oy > 02 > ... > or > 0 with multiplicities
resp. n(l),...,n(k). then one can use the block-balanced continuous
canonical form on Cypy),... a(x) locally around (A,b,&). If one is moving
away from (A,b,é) in a search algorithm for example, one has to de-
cide whether the canonical form corresponding to a different partition
should be used: if the largest n(1) singular values differ sufficiently
from each other one could use e.g. Cy, ) n(2)....n(k) (Where there are
n(1) ones in the subindex before n{2)) etc. In this way one would use
balanced realizations and "almost- balanced” realizations while mov-
ing around in the set of n—th order systems, without encountering
discontinuity points.
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