FP2 - 16:20

Stability analysis of infinite dimensional discrete and continuous
time linear systems

Raimund Ober

Yuanyin Wu

Center for Engineering Mathematics
University of Texas at Dallas, Richardson, TX 75083

Abstract. The question of power and asymptotic stability of infinite dimen-
sional discrete-time state space systems is investigated. It is shown that every
balanced realization is asymptotically stable. Conditions are given for balanced,
input normal or output normal realization to be asymptotically and/or power sta-
ble.

1. Introduction. Balanced realizations for finite dimensional sys
tems have received a great deal of attention. They were introduced
as a means of performing model reduction in an easy fashion {7] and
have subsequently been used in H control theory, for example, to
evaluate the Hankel norm of a linear system [4], [5]. Recently, they
have been used to study parametrization problems of certain sets of
linear systems [8].

The elegant results obtained for finite dimensional balanced sys-
tems brought about some interest in the problem of the extension
of the notion of a balanced realization to infinite dimensional sys-
tems. Glover, Curtain and Partington [5] derived continuous-time
balanced realizations for a class of systems with nuclear Hankel op-
erators. Young [12] developed a very general realization theory for
infinite dimensional discrete-time systems. Similar results were ob-
tained in the continuous time case by Ober and Montgomery-Smith
[9].

One of the fundamental problems in systems theory is the question
of the stability of the system. In this paper we will address this
problem in the case of infinite dimensional balanced realizations and
the closely related input and output normal realizations. In the case
of discrete time systems, by relating balanced realizations to restricted
shift realizations, we are able to show that every balanced realization
is asymptotically stable. In general, input normal and output normal
realizations do not have the same stability properties as balanced
realizations, but we can also give necessary and sufficient conditions
for them to be asymptotically and/or power stable.

Analogous results for continuous time systems can also be ob-
tained. The main approach here is to use the generalization of a
bilinear transformation that is routinely used in finite dimensional
case to translate the results for discrete time systems to those for
continuous time systems and vice versa.

Let X,Y and U be separable Hilbert spaces. The discrete time
linear system )

) Tkt1 = Azp+ Bu ke

Yx =
where A is a contraction on X with 1 ¢ 0,(A), B € L(U,X),C €
L(X,Y) and D € L(U,Y), will be denoted by the quadruple of 08-
erators (4, B,C, D). The set of all such systems is denoted by Dy(' .
For (A,B,C,D)in D%'Y, its observability operator is defined as

O:X =1}, Oz=(CA"Z)nyo0,

for z € D(O) = {z | (CA™z)n30 € I} }. If D(O) = X, Ker(O) = {0}
and @ is bounded then the system is said to be observable. The reach-
ability of a system (A, B, C, D)is defined through its dual system, (A*,
C*, B*, D*). If (A*, C*, B*, D*) is observable then (4, B,C, D) is
said to be reachable. This is equivalent to that the operator

R:iE =X, (un)nor Z A" Bu,
n>0
is bounded and has dense range in X. R is called the reachability op-
erator of (4, B,C, D). If (A4, B,C, D) is reachable and observable the
observability gramian is defined to be M = O*O and the reachability
gramian is W = RR".
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For a discrete time system (A, B,C,D) € Df,]('y, the £L(U,Y) val-
ued function G(z) = C(2I-A)"'B+D, 2 € D, is called the (discrete
time) transfer function of (4, B,C, D) while (4, B,C,D)is called a
realization of G. In this case it is clear that G is analytic on D, and at
infinity. The discrete time transfer functions treated in this paper are
supposed to be bounded and analytic on D.. Notice that the bound-
edness and analyticity of a £(U,Y) valued function G on D, means
that G € Hgyy)(D) where for z €D, G1(2) = 2" G(2™1) - G(o0)]-

The following symbols are used: D denotes the open unit disk; 9D
the unit circle; D, the exterior of (D) UD; D(A) € X the domain of
an operator A on X; RH P the open right half plane.

2. Stability of discrete time systems. Our results will be
mostly based on the investigation of restricted shift realizations whereby
the shift realizations can be analyzed in terms of Hankel operators re-
lated to the transfer functions. General references in realization theory
are e.g. Fuhrmann [3] and Helton [6].

First we recall the restricted shift realization which was first in-
troduced by Fuhrmann [2] and Helton [6] (see also [12]).

THEOREM 2.1. Let G be a L(U,Y) valued function such that
Gte Hf:?u,Y)(D)‘ Then G has a state space realization (A, B,C, D)
with state space X, i.e. G(z) = C(zI — AY'B + D, for z € D, which
is given in the following way:

The state space X' is given by X = TangeHgL C HE (D), where
Hgy @ HY(D) — HE(D) is the Hankel operator with symbol G*:
Hiu = PyG*Ju, (u€ HE(D)), where (Ju)(s) = u(-3).

The state propagation operator A: X — X, the input operator
B: U — X, the output operator C : X — Y and the feedthrough
operator D: U — Y are given by the following, for f € X,

(Af)(2) = (5" )Y (Bu)(z) = G*(2)u, (u€ U);
Cf:= f(0); Du:=G(co)u, (v€U);
where S is the (forward) shif operator: (S f)(z) = zf(2), f € HE(D).
The realization (A, B, C, D) is called the restricted shift realization of
the transfer function G.

This realization is observable and reachable. The observability
operator O and reachability operator R of (A, B,C, D) are respectively
given by O = Ix : X — HZ(D) end R = Hg. : HE(D) — X. u]

Another realization can be constructed as the dual realization of
the restricted shift realization. Let G be such that G* € HZy;y)(D)

and let (A_, B,C, D) be the restricted shift realization of the t_r:msfer
function G(z) := (G(2))", z € D,. Then the dual system (4%, C*,

B*, D*) is a realization of G(2). It is called the *-restricted shift
realization of G ([8]).

THEOREM 2.2. The slate space representation (A., B.,C., D.)
of the *-restricted shift realization is given as follows:

The state space X, is X. = rangeHg, with G1(z) = (GL(2))".
The operators A., B.,C. and D, are defined as

A, = Px_5|x.; B.u:= Px u, (u € U);
C.f = (Hgif)(0), (f € X.); Da=G(co),
where Px, is the orthogonal projection from H}(D) onto X..

This realization is observable and reachable. The reachability and
observability operators R. and O, are respectively given by R. = Px, :
H}(D) — X. and O.=H(‘~;J_Ix‘=Hgl|x‘. o

These two realizations are important because they represent two
classes of systems: the input normal and output normal systems as
defined in the following ([gp

Let (4,B,C,D) € D" be a reachable and observable discrete-
time system. Then the system is (i) output normal, if M = I; (ii) input
normal, if W = I; (iii) par-balanced, if M = W; (iv) balanced, if M =
W and there is an orthonormal basis of the state space with respect
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to which M (and hence W) has a diagonal matrix representation.

From our results on the restricted and the *-restricted shift re-
alization we immediately have that the restricted shift realization is
output normal whereas the *-restricted shift realization is input nor-
mal.

We now turn to the study of stability. The two notions of stability
we will consider in the sequel are the follows:

A discrete time system (4, B,C, D) € DE\{'Y or the state propa-
gation operator A is called (i) asymptotically stable if for every z € X
A¥z — 0, as k — oo, (ii) power stable if 7 := inf{F| AM; > 0 such that
[|A¥[| € Ms7*, k =0,1,...} < 1. The number r is called the degree of
power stability.

It can be seen that stability, observability as well as reachability
of discrete-time systems are preserved under equivalent transforma-
tions whereas input and output normality is preserved under unitary
equivalence. Moreover, two equivalent power stable systems have the
same degree of power stability. Note that two systems (4, B,C, D)
and (A, B1,C1, D1) are (unitarily) equivalent if (A(, By, C1, D1) =
(VAV-1,VB,CV~1,D) where V is a bounded and boundedly in-
vertible operator (a unitary operator).

In [12], it is shown that any two input normal systems are uni-
tarily equivalent; similarly two output normal or two par-balanced
systems are equivalent. Therefore we can establish all stability and
other important results concerning input and output normal realiza-
tions by restricting ourselves to restricted and *-restricted shift real-
jzations. Notice that the state propagation operators in the restricted
and *-restricted realizations are respectively restricted left and right
shift operators. Hence the stability study of input/output normal re-
alizations amounts to the study of the restricted shift operators. The
following is the summary of our main results. In formulating the re-
sults we will use the notion of cyclicity of analytic transfer functions.

A transfer function G is said to be strictly noncyclic if G = Q F* where
Q is inner, Q, F € Hz‘(’U,Y) and @ and F are weakly left coprime.
THEOREM 2.3. Let G be such that G* € Hgy,y (D) and let
(A, B,C, D) be an output normal and (A;, By,Cy, Dy) an input nor-
mal realization of G. Then
1. (A, B,C, D) is asymptotically stable.
2. If G* is strictly noncyclic, then (A1, By, C1, Dy) is asymptot-
ically stable. |
8. Every par-balanced realization is asymptotically stable.
THEOREM 2.4. Let G be such that G+ € HEy, (D) and let U
and Y be finite dimensional. Then an output normal or input normal
realization of G is power-stable if and only if G is rational.
THEOREM 2.5. Let G* € HZy (D) and U and Y be finite di-
mensional. Assume that G1 is strictly noncyclic. Then a par-balanced
realization of G is power-stable if and only if G is rational.

8. Stability of continuous time systems. We restrict our-
selves to the so called admissible continuous time systems defined
below. More details concerning infinite dimensional continuous time
state space systems and realizations of nonrational transfer functions
can be found in [3], [9], [11] and [1].

DEFINITION 3.1. A quadruple of operators (A, B.,C., D.) is
called an admissible continuous time system with state space X, in-
put space U and output space Y, where X,U,Y are separable Hilbert
spaces, if

1. (Ac, D(A.)) is the generator of a strongly continuous semi-
group of contractions on X.
2. B.:U — (D(ADD-|I') is a bounded linear operator-
8. C. : D(C;) = Y is linear with D(C.) = D(A.;) + (I -
A)"'B.U and Cyp(a,) : (D(Ac) |la,) = Y is bounded.
‘- CC(I_ Ac)-ch € L(U7Y)
5. Ag, B,,C. are such thatlim ,ex C.(sI—A;)~'B, =0 in the
norm topology. e
6. D.€ L(U,Y).
We write Cg’y Jor the set of admissible continuous time systems with
input space U, output space Y and state space X. a
By the resolvant identity, 4 of the definition implies that G.(s) :=

Co(sI—A;)™*B. € L(U,Y) for all s € RH P and G_ is analytic on the
RHP. The function G, is called the transfer function of the system
and (A, B., Ce, D.) is called a realization of G..

Because of lack of space, we tefer the reader to [9] [10] [11] for
the concept of equivalence, reachability, observability, input/output
normality, par-balancing and balancing, asymptotic and exponential
stability of infinite dimensional continuous time systems.

We can carry most of the stability results in the previous section
to continuous time linear systems using a bilinear transformation that
maps a discrete time linear system to a continuous time linear system,
though the exponential stability properties of continuous time systems
have to be obtained independently. Here are the asymptotic stabil-
ity results. The symbol TLCYY will stands for the class of transfer

functions that have reachable and observable realizations.
THEOREM 3.1. Let G, € TLCYY .
1. Every output normal realization of G, is asymptotically stable.
2. If G, is strictly noncyclic, then every input normal realization
is asymptotically stable.
3. Every par-balanced realization of G, is asymptotically stable.
For exponential stability, we have the following:
THEOREM 3.2. Let G, € TLCYY, with U, Y finite dimensional.
1. An input or output normal realization is ezponentially stable
if and only if G, is strictly noncyclic and there is € > 0 such
that G can be analytically continued to Re(s) > —e.
2. If G, is strictly non-cyclic, then a par-balanced realization is
ezponentially stable if and only if there is € > 0 such that G
can be analytically continued to Re(s) > —e. ]
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